Role of miRNA in Highly Pathogenic H5 Avian Influenza Virus Infection: An Emphasis on Cellular and Chicken Models
Abstract
:1. Introduction
2. In Vitro Study of H5 Subtype Highly Pathogenic Avian Influenza Virus (HPAIV)
2.1. miRNA Studies in A549 Human Lung Epithelial Cells
microRNA | Expression | H5 Subtypes | Cells | Target | Ref. |
---|---|---|---|---|---|
miR-203 | Upregulation | A/Vietnam/1194/2004 (H5N1) | A549 | DR1 | [32] |
miR-136 | Upregulation | A/chicken/Hubei/327/2004 (H5N6) | A549 | IL6 | [40] |
miR-188-3P | A/chicken/Hubei/XY918/2016(H5N6) | A549 | PB2 | [44] | |
miR-345 | PB2 | [44] | |||
miR-3183 | PB1 | [44] | |||
miR-769-3p | NP | [44] | |||
miR-15a-3p | PA | [44] | |||
miR-21-3p | Downregulation | A/goose/Jilin/hb/2003 (H5N1) | A549 | HDAC-8 | [45] |
let 7 | Upregulation | A/Thailand/NK165/2005 (H5N1) | A549 | Unknown | [47] |
miR-10 | Downregulation | Unknown | [47] | ||
miR-15 | Upregulation | Unknown | [47] | ||
miR-21 | Upregulation | Unknown | [47] | ||
miR-29c | Upregulation | BCL2L2 | [47] | ||
miR-29a | Upregulation | HA | [47] | ||
miR-30 | Upregulation | Unknown | [47] | ||
miR-101 | Upregulation | Unknown | [47] | ||
miR-132 | Upregulation | Unknown | [47] | ||
miR-148 | Downregulation | Unknown | [47] | ||
miR-548 | Upregulation | PB1, NS | [47] | ||
miR-128 | Upregulation | H5N1 | A549 | PA | [47] |
miR-660 | Upregulation | A549 | PA | [47] | |
miR-16 | Upregulation | A549 | PB2, PB1, PA, NS1, NP, M | [47] | |
miR-181c | Upregulation | A549 | BCL2, Il2, TNFα | [29] | |
miR-507 | Unknown | Unknown | HA, PB2 | [28] | |
miR-484 | Downregulation | A549 | furin | [53,54] | |
miR-24 | Downregulation | A549 | furin | [60] | |
miR-100 | Downregulation | A/Thai/KAN1/2004 | NCI-H292 | IL13RA1, IL18RAP, CYTL1 | [63] |
miR-141 | Upregulation | A/Thai/KAN1/2004 | NCI-H292 | CXCL12, TGFB2, CRLF3 | [63] |
miR-574-3p | Downregulation | A/Thai/KAN1/2004 | NCI-H292 | NDUFA42 | [63] |
miR-1274a | Downregulation | A/Thai/KAN1/2004 | NCI-H292 | TNFAIP8L2, TNFAIP3, BCL2L2, BCLAF1 | [63] |
miR-1274b | Downregulation | A/Thai/KAN1/2004 | NCI-H292 | TNFAIP8L2, IL1RAPL1, BCLAF1 | [63] |
miR-21 | Downregulation | A/Thai/KAN1/2004 | NCI-H292 | CCl17, IL22, C20rf28, TNFSF13, CCL17, CCL19 | [63] |
miR-584-5p | Downregulation | A/Beijing/501/2009 | A549 | PB2 | [46] |
miR-1249 | Downregulation | A/Beijing/501/2009 | A549 | PB2 | [46] |
miR-181c | Upregulation | A/Thai/KAN1/2004 | NCI-H292 | Unknown | [63] |
miR-210 | Upregulation | A/Thai/KAN1/2005 | NCI-H292 | Unknown | [63] |
miR-29b | Upregulation | A/Thai/KAN1/2006 | NCI-H292 | Unknown | [63] |
miR-483-3p | Upregulation | A/Thai/KAN1/2007 | NCI-H292 | Unknown | [63] |
miR-324-5p | Upregulation | A/Thai/KAN1/2008 | NCI-H292 | Unknown | [63] |
miR-663 | Upregulation | A/Thai/KAN1/2009 | NCI-H292 | Unknown | [63] |
miR-200a | Upregulation | A/Thai/KAN1/2010 | NCI-H292 | TGFβ | [63] |
miR-1246 | Upregulation | A/Thai/KAN1/2011 | NCI-H292 | Unknown | [63] |
miR-146a | Downregulation | A/Vietnam/3212/04 | Primary human macrophage | TRAF6 | [64] |
has-let-7 | Differentially regulated based on time | A/Vietnam/3212/04 | Primary human macrophage | IL8, MAPK11, MAPK8, MAP3K1 | [64] |
miR-485 | Upregulation | A/duck/India/02CA10/2011 (H5N1) | HEK 293T, A549 | PB1, RIG-1 | [17] |
2.2. miRNA Studies in NCI-H292 Cells, Human Macrophages and Human PBMCs
3. In Silico Prediction-Based miRNA Studies
4. miRNA Studies in an In Vivo Chicken Model
5. Conclusions
6. Recommendations for Future Research
- Therapeutic development:
- Targeted miRNA therapeutics: Given the demonstrated efficacy of certain miRNAs (e.g., miR-203, miR-136, miR-188-3p) in suppressing IAV replication, developing miRNA-based therapeutics could be a promising approach. These therapeutics could either mimic beneficial miRNAs or inhibit those that facilitate viral replication and pathogenesis.
- Combination therapies: Combining miRNA therapeutics with existing antiviral drugs could enhance treatment efficacy and reduce the likelihood of resistance development.
- Further research:
- Mechanistic studies: More in-depth studies are needed to fully elucidate the mechanisms by which miRNAs regulate viral replication and host immune responses. Understanding these mechanisms will aid in the design of more effective therapeutic strategies.
- In vivo validation: Conducting in vivo studies using animal models is crucial to validate the findings from in vitro studies. These studies will help in understanding the systemic effects of miRNA modulation and the potential side effects.
- Diagnostic Tools:
- miRNA profiling: Developing diagnostic tools that profile miRNA expression in response to IAV infection could aid in early detection and personalized treatment strategies. This could also help in monitoring the progression of the infection and the efficacy of therapeutic interventions.
- Public health strategies:
- Vaccination and monitoring: Continued emphasis on vaccination programs and monitoring of avian influenza outbreaks is essential. Integrating miRNA research with these programs could improve vaccine design and outbreak response strategies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, A.M.; Lefkowitz, E.; Adams, M.J.; Carstens, E.B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2011; Volume 9. [Google Scholar]
- Hause, B.M.; Collin, E.A.; Liu, R.; Huang, B.; Sheng, Z.; Lu, W.; Wang, D.; Nelson, E.A.; Li, F. Characterization of a novel influenza virus in cattle and swine: Proposal for a new genus in the Orthomyxoviridae family. mBio 2014, 5, e00031-14. [Google Scholar] [CrossRef] [PubMed]
- Kilbourne, E.D. Taxonomy and Comparative Virology of the Influenza Viruses. In Influenza; Springer: Boston, MA, USA, 1987; pp. 25–32. [Google Scholar] [CrossRef]
- Skehel, J.J.; Wiley, D.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.K.; Morens, D.M. The pathology of influenza virus infections. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Suarez, D.L.; Sims, L.D. Influenza. In Diseases of Poultry; Wiley: Hoboken, NJ, USA, 2020; pp. 210–256. [Google Scholar]
- Ly, H. Highly pathogenic avian influenza H5N1 virus infections of dairy cattle and livestock handlers in the United States of America. Virulence 2024, 15, 2343931. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.; Monne, I.; Sánchez, A.; Zecchin, B.; Fusaro, A.; Ruano, M.J.; Del Valle Arrojo, M.; Fernández-Antonio, R.; Souto, A.M.; Tordable, P.; et al. Highly pathogenic avian influenza A (H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance 2023, 28, 2300001. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.F.; To, K.F. Pathology of human H5N1 infection: New findings. Lancet 2007, 370, 1106–1108. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zeng, X.; Cui, P.; Yan, C.; Chen, H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg. Microbes Infect. 2023, 12, 2155072. [Google Scholar] [CrossRef] [PubMed]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [CrossRef]
- Lau, N.C.; Lim, L.P.; Weinstein, E.G.; Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001, 294, 858–862. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Mourelatos, Z.; Dostie, J.; Paushkin, S.; Sharma, A.; Charroux, B.; Abel, L.; Rappsilber, J.; Mann, M.; Dreyfuss, G. miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002, 16, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Llave, C.; Kasschau, K.D.; Rector, M.A.; Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 2002, 14, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Li, J.; Song, R.; Messing, J.; Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 2002, 12, 1484–1495. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, B.J.; Weinstein, E.G.; Rhoades, M.W.; Bartel, B.; Bartel, D.P. MicroRNAs in plants. Genes Dev. 2002, 16, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Kim, V.N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005, 6, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S.; Grocock, R.J.; Van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–D144. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V.; Bartel, B.; Bartel, D.P.; Burge, C.B.; Carrington, J.C.; Chen, X.; Dreyfuss, G.; Eddy, S.R.; Griffiths-Jones, S.; Marshall, M.; et al. A uniform system for microRNA annotation. RNA 2003, 9, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S. The microRNA registry. Nucleic Acids Res. 2004, 32 (Suppl. S1), D109–D111. [Google Scholar] [CrossRef]
- Sittka, A.; Schmeck, B. MicroRNAs in the Lung. In MicroRNA Cancer Regulation: Advanced Concepts, Bioinformatics and Systems Biology Tools; Springer: Berlin/Heidelberg, Germany, 2013; pp. 121–134. [Google Scholar]
- Othumpangat, S.; Noti, J.D.; Beezhold, D.H. Lung epithelial cells resist influenza A infection by inducing the expression of cyto-chrome c oxidase VIc which is modulated by miRNA 4276. Virology 2014, 468, 256–264. [Google Scholar] [CrossRef]
- Pichulik, T.; Khatamzas, E.; Liu, X.; Brain, O.; Garcia, M.D.; Leslie, A.; Danis, B.; Mayer, A.; Baban, D.; Ragoussis, J.; et al. Pattern recognition receptor mediated downregulation of microRNA-650 fine-tunes MxA expression in dendritic cells infected with influenza A virus. Eur. J. Immunol. 2016, 46, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, C.; Sun, X.; Li, Z.; Zhang, M.; Guan, Z.; Duan, M. Induction of the cellular miR-29c by influenza virus inhibits the innate immune response through protection of A20 mRNA. Biochem. Biophys. Res. Commun. 2014, 450, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.S.; Choi, H.; Jiang, X.; Yin, L.; Seet, J.E.; Patzel, V.; Engelward, B.P.; Chow, V.T. Micro-RNAs in regenerating lungs: An integrative systems biology analysis of murine influenza pneumonia. BMC Genom. 2014, 15, 587. [Google Scholar] [CrossRef] [PubMed]
- Scaria, V.; Hariharan, M.; Maiti, S.; Pillai, B.; Brahmachari, S.K. Host-virus interaction: A new role for microRNAs. Retrovirology 2006, 3, 68. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, H.; Gao, S.; Jiang, W.; Huang, W. Cellular microRNAs inhibit replication of the H1N1 influenza a virus in infected cells. J. Virol. 2010, 84, 8849–8860. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Sun, X.; Guan, Z.; Zhang, M.; Duan, M. Modulation of influenza A virus replication by microRNA-9 through targeting MCPIP1. J. Med. Virol. 2017, 89, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ingle, H.; Kumar, S.; Raut, A.A.; Mishra, A.; Kulkarni, D.D.; Kameyama, T.; Takaoka, A.; Akira, S.; Kumar, H. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci. Signal. 2015, 8, ra126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Li, J.; Yang, Y.; Kang, X.; Li, Y.; Wu, X.; Zhu, Q.; Zhou, Y.; Hu, Y. Up-regulation of microRNA-203 in influenza A virus infection inhibits viral replication by targeting DR1. Sci. Rep. 2018, 8, 6797. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Gaur, P.; Munjal, A.; Lal, S.K. Influenza virus and cell signaling pathways. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, RA148. [Google Scholar] [CrossRef]
- Yang, C.H.; Murti, A.; Pfeffer, L.M. IFN induces NIK/TRAF-dependent NF-κB activation to promote cell survival. J. Biol. Chem. 2005, 280, 31530. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-F.; Su, W.-C.; Jeng, K.-S.; Lai, M.M.C. A host susceptibility gene, DR1, facilitates influenza a virus replication by suppressing host innate immunity and enhancing viral RNA replication. J. Virol. 2015, 89, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Gack, M.U.; Shin, Y.C.; Joo, C.-H.; Urano, T.; Liang, C.; Sun, L.; Takeuchi, O.; Akira, S.; Chen, Z.; Inoue, S.; et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Wies, E.; Wang, M.K.; Maharaj, N.P.; Chen, K.; Zhou, S.; Finberg, R.W.; Gack, M.U. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 Is essential for innate immune signaling. Immunity 2013, 38, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Sun, L.; Jiang, X.; Chen, X.; Hou, F.; Adhikari, A.; Xu, M.; Chen, Z.J. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhu, J.; Zhou, H.; Zhao, Z.; Zou, Z.; Liu, X.; Lin, X.; Zhang, X.; Deng, X.; Wang, R.; et al. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells. Sci. Rep. 2015, 5, 14991. [Google Scholar] [CrossRef] [PubMed]
- Olejniczak, M.; Galka, P.; Krzyzosiak, W.J. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res. 2009, 38, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.M.; Krüger, C.; Park, B.; Derkow, K.; Rosenberger, K.; Baumgart, J.; Trimbuch, T.; Eom, G.; Hinz, M.; Kaul, D.; et al. An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 2012, 15, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Sioud, M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 2005, 348, 1079–1090. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Zhao, Z.; Zhang, C.; Fu, Y.; Li, J.; Chen, G.; Lai, M.; Li, Z.; Dong, S.; et al. Identification of cellular microRNA miR-188-3p with broad-spectrum anti-influenza A virus activity. Virol. J. 2020, 17, 12. [Google Scholar] [CrossRef]
- Xia, B.; Lu, J.; Wang, R.; Yang, Z.; Zhou, X.; Huang, P. miR-21-3p regulates influenza a virus replication by targeting histone deacetylase-8. Front. Cell. Infect. Microbiol. 2018, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, Y.-Y.; Lu, J.-S.; Xia, B.-H.; Yang, Z.-X.; Zhu, X.-D.; Zhou, X.-W.; Huang, P.-T. The highly pathogenic H5N1 influenza A virus down-regulated several cellular Micro RNA s which target viral genome. J. Cell. Mol. Med. 2017, 21, 3076–3086. [Google Scholar] [CrossRef] [PubMed]
- Makkoch, J.; Poomipak, W.; Saengchoowong, S.; Khongnomnan, K.; Praianantathavorn, K.; Jinato, T.; Poovorawan, Y.; Payungporn, S. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Exp. Biol. Med. 2016, 241, 409–420. [Google Scholar] [CrossRef]
- Głobińska, A.; Pawełczyk, M.; Kowalski, M.L. MicroRNAs and the immune response to respiratory virus infections. Expert Rev. Clin. Immunol. 2014, 10, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.-B.; Lu, Y.; Yue, S.; Giffard, R.G. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 2012, 12, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Icli, B.; Wara, A.K.; Belkin, N.; He, S.; Kobzik, L.; Hunninghake, G.M.; Vera, M.P.; MICU Registry; Blackwell, T.S.; et al. MicroRNA-181b regulates NF-κB–mediated vascular inflammation. J. Clin. Investig. 2012, 122, 1973–1990. [Google Scholar] [PubMed]
- Xue, Q.; Guo, Z.-Y.; Li, W.; Wen, W.-H.; Meng, Y.-L.; Jia, L.-T.; Wang, J.; Yao, L.-B.; Jin, B.-Q.; Wang, T.; et al. Human activated CD4+ T lymphocytes increase IL-2 expression by downregulating microRNA-181c. Mol. Immunol. 2011, 48, 592–599. [Google Scholar] [CrossRef]
- Guan, Z.; Shi, N.; Song, Y.; Zhang, X.; Zhang, M.; Duan, M. Induction of the cellular microRNA-29c by influenza virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors BCL2L2. Biochem. Biophys. Res. Commun. 2012, 425, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Horimoto, T.; Nakayama, K.; Smeekens, S.P.; Kawaoka, Y. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J. Virol. 1994, 68, 6074–6078. [Google Scholar] [CrossRef]
- Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H.; Garten, W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [CrossRef]
- Bang, C.; Fiedler, J.; Thum, T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation 2012, 19, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.; Dubey, R.; Saini, N. Cooperative and individualistic functions of the microRNAs in the miR-23a~ 27a~ 24-2 cluster and its implication in human diseases. Mol. Cancer 2010, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Basak, A.; Zhong, M.; Munzer, J.S.; Chrétien, M.; Seidah, N.G. Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: A comparative analysis with fluorogenic peptides. Biochem. J. 2001, 353, 537–545. [Google Scholar] [CrossRef]
- Kawaoka, Y.; Webster, R.G. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc. Natl. Acad. Sci. USA 1988, 85, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Seidah, N.G. The proprotein convertases, 20 years later. Proprotein Convert. 2011, 768, 23–57. [Google Scholar]
- Loveday, E.-K.; Diederich, S.; Pasick, J.; Jean, F. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin. J. Gen. Virol. 2015, 96, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chen, M.; Ge, N.; Xu, J. Hemagglutinin from the H5N1 virus activates janus kinase 3 to dysregulate innate immunity. PLoS ONE 2012, 7, e31721. [Google Scholar] [CrossRef]
- Zhou, R.; Hu, G.; Gong, A.-Y.; Chen, X.-M. Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res. 2010, 38, 3222–3232. [Google Scholar] [CrossRef]
- Lam, W.-Y.; Yeung, A.C.-M.; Ngai, K.L.-K.; Li, M.-S.; To, K.-F.; Tsui, S.K.-W.; Chan, P.K.-S. Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol. 2013, 13, 104. [Google Scholar] [CrossRef]
- Zhang, N.; Bao, Y.-J.; Tong, A.H.-Y.; Zuyderduyn, S.; Bader, G.D.; Peiris, J.S.M.; Lok, S.; Lee, S.M.-Y. Whole transcriptome analysis reveals differential gene expression profile reflecting macrophage polarization in response to influenza A H5N1 virus infection. BMC Med Genom. 2018, 11, 20. [Google Scholar] [CrossRef]
- Chan, P.K.S.; To, K.F.; Lam, W.Y. Avian influenza A H5N1 infection on human cellular microRNA profile: Identification of gene regulatory pathway. Hong Kong Med. J. 2014, 20 (Suppl. S6), 7–10. [Google Scholar]
- Wang, F.-Z.; Weber, F.; Croce, C.; Liu, C.-G.; Liao, X.; Pellett, P.E. Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J. Virol. 2008, 82, 9065–9074. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.E.; Perry, M.M.; Moschos, S.A.; Larner-Svensson, H.M.; Lindsay, M.A. Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem. Soc. Trans. 2008, 36, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Nahid, A.; Satoh, M.; Chan, E.K.L. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J. Immunol. 2011, 186, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sen, C.K. MiRNA in innate immune responses: Novel players in wound inflammation. Physiol. Genom. 2011, 43, 557–565. [Google Scholar] [CrossRef]
- De Jong, M.D.; Simmons, C.P.; Thanh, T.T.; Hien, V.M.; Smith, G.J.D.; Chau, T.N.B.; Hoang, D.M.; Van Vinh Chau, N.; Khanh, T.H.; Dong, V.C.; et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 2006, 12, 1203–1207. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; de Jong, M.D.; Guan, Y. Avian influenza virus (H5N1): A threat to human health. Clin. Microbiol. Rev. 2007, 20, 243–267. [Google Scholar] [CrossRef]
- Haller, O.; Kochs, G.; Weber, F. The interferon response circuit: Induction and suppression by pathogenic viruses. Virology 2006, 344, 119–130. [Google Scholar] [CrossRef]
- Schütz, S.; Sarnow, P. Interaction of viruses with the mammalian RNA interference pathway. Virology 2006, 344, 151–157. [Google Scholar] [CrossRef]
- Asaf, V.N.M.; Kumar, A.; Raut, A.A.; Bhatia, S.; Mishra, A. In-silico search of virus-specific host microRNAs regulating avian influenza virus NS1 expression. Theory Biosci. 2015, 134, 65–73. [Google Scholar] [CrossRef]
- Hsu, P.W.-C.; Lin, L.-Z.; Hsu, S.-D.; Hsu, J.B.-K.; Huang, H.-D. ViTa: Prediction of host microRNAs targets on viruses. Nucleic Acids Res. 2007, 35 (Suppl. S1), D381–D385. [Google Scholar] [CrossRef] [PubMed]
- Robins, H.; Li, Y.; Padgett, R.W. Incorporating structure to predict microRNA targets. Proc. Natl. Acad. Sci. USA 2005, 102, 4006–4009. [Google Scholar] [CrossRef] [PubMed]
- García-Sastre, A. Interferon Antagonists of Influenza Viruses, in Modulation of Host Gene Expression and Innate Immunity by Viruses; Springer: Berlin/Heidelberg, Germany, 2005; pp. 95–114. [Google Scholar]
- Koparde, P.; Singh, S. Prediction of micro RNAs against H5N1 and H1N1 NS1 Protein: A Window to Sequence Specific Therapeutic Development. J. Data Min. Genom. Proteom. 2010, 1, 104. [Google Scholar] [CrossRef]
- Kumar, A.; Muhasin, A.V.; Raut, A.A.; Sood, R.; Mishra, A. Identification of chicken pulmonary miRNAs targeting PB1, PB1-F2, and N40 genes of highly pathogenic avian influenza virus H5N1 in silico. Bioinform. Biol. Insights 2014, 8, BBI.S14631. [Google Scholar] [CrossRef] [PubMed]
- Khongnomnan, K.; Poomipak, W.; Poovorawan, Y.; Payungporn, S. In silico analysis of human microRNAs targeting influenza A viruses (subtype H1N1, H5N1 and H3N2). Int. J. Med. Health Sci. 2012, 6, 554–560. [Google Scholar]
- Noor, F.; Saleem, M.H.; Javed, M.R.; Chen, J.-T.; Ashfaq, U.A.; Okla, M.K.; Abdel-Maksoud, M.A.; Alwasel, Y.A.; Al-Qahtani, W.H.; Alshaya, H.; et al. Comprehensive computational analysis reveals H5N1 influenza virus-encoded miRNAs and host-specific targets associated with antiviral immune responses and protein binding. PLoS ONE 2022, 17, e0263901. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Truong, A.D.; Lee, J.; Vu, T.H.; Lee, S.; Song, K.-D.; Lillehoj, H.S.; Hong, Y.H. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Vet. Res. 2021, 52, 36. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, Z.; Liang, H.; Wang, Y.; Qi, X.; Ding, M.; Sun, X.; Zhou, Z.; Huang, Y.; Gu, H.; et al. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly (rC)-binding protein 2. Cell Res. 2018, 28, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Brahmakshatriya, V.; Lupiani, B.; Reddy, S.M.; Soibam, B.; Benham, A.L.; Gunaratne, P.; Liu, H.-C.; Trakooljul, N.; Ing, N.; et al. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genom. 2012, 13, 278. [Google Scholar] [CrossRef]
- Wang, Y.; Brahmakshatriya, V.; Zhu, H.; Lupiani, B.; Reddy, S.M.; Yoon, B.-J.; Gunaratne, P.H.; Kim, J.H.; Chen, R.; Wang, J.; et al. Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genom. 2009, 10, 512. [Google Scholar] [CrossRef]
- O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 2007, 104, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Taganov, K.D.; Boldin, M.P.; Chang, K.-J.; Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Kumar, A.; Miao, H.; Holden-Wiltse, J.; Mosmann, T.R.; Livingstone, A.M.; Belz, G.T.; Perelson, A.S.; Zand, M.S.; Topham, D.J. Modeling of influenza-specific CD8+ T cells during the primary response indicates that the spleen is a major source of effectors. J. Immunol. 2011, 187, 4474–4482. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Su, J.; Liu, Y.; Guo, J.; Zhang, Y.; Lu, C.; Xing, S.; Guan, Y.; Li, Y.; et al. MicroRNAs in the immune organs of chickens and ducks indicate divergence of immunity against H5N1 avian influenza. FEBS Lett. 2015, 589, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Vu, T.H.; Heo, J.; Kim, C.; Lillehoj, H.S.; Hong, Y.H. Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus. J. Veter. Sci. 2023, 24, e73. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Ban, J.; Hong, Y.; Lee, J.; Vu, T.H.; Truong, A.D.; Lillehoj, H.S.; Hong, Y.H. MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Vet. Res. 2020, 51, 8. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Gao, Q.S.; Zhou, L.; Chen, Z.H.; Lu, S.; Huang, H.J.; Zhan, C.Y.; Xiang, M. microRNAs in avian influenza virus H9N2-infected and non-infected chicken embryo fibroblasts. Genet. Mol. Res. 2015, 14, 9081–9091. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X.; Liu, Y.; Zhao, D.; Han, K.; Zhang, L.; Li, Y.; Liu, Q. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Veter. Res. 2020, 51, 132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, D.; Nayeem, M.; Vanderven, H.A.; Sarker, S. Role of miRNA in Highly Pathogenic H5 Avian Influenza Virus Infection: An Emphasis on Cellular and Chicken Models. Viruses 2024, 16, 1102. https://doi.org/10.3390/v16071102
Chowdhury D, Nayeem M, Vanderven HA, Sarker S. Role of miRNA in Highly Pathogenic H5 Avian Influenza Virus Infection: An Emphasis on Cellular and Chicken Models. Viruses. 2024; 16(7):1102. https://doi.org/10.3390/v16071102
Chicago/Turabian StyleChowdhury, Dibakar, Md. Nayeem, Hillary A. Vanderven, and Subir Sarker. 2024. "Role of miRNA in Highly Pathogenic H5 Avian Influenza Virus Infection: An Emphasis on Cellular and Chicken Models" Viruses 16, no. 7: 1102. https://doi.org/10.3390/v16071102
APA StyleChowdhury, D., Nayeem, M., Vanderven, H. A., & Sarker, S. (2024). Role of miRNA in Highly Pathogenic H5 Avian Influenza Virus Infection: An Emphasis on Cellular and Chicken Models. Viruses, 16(7), 1102. https://doi.org/10.3390/v16071102