Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Virus and Disease Detection Data
2.3. Sequencing and Alignment
2.4. Phylogeographic and Phylodynamic Inference
2.5. Spatial Statistical Model
3. Results and Discussion
3.1. Phylogeography and Timeline
3.2. Transmission Scenarios
- Re-invasion: VSNJV lineage divergences occurred while the virus was geographically restricted to Mexico, followed by separate but recurrent US introductions in 2014 and 2015.
- Overwintering: VSNJV lineage divergences occurred within the US following a single introduction event in late 2013. The 2013 incursion instigated the 2014 outbreaks, and the virus remained undetected through the US winter before re-emerging in 2015.
- Diffuse border: VSNJV exhibits transient persistence near the US–Mexico border, where introduced lineages persist during winter and are the source of US epidemics. The introduced lineages become locally extinct but are sequentially replaced through re-colonization by lines translocated from endemic regions in southern Mexico.
3.3. Epidemiological Dynamics
3.4. Phylodynamics
3.5. Transmission Network
3.6. Vector–Host Interactions and Environment
4. Conclusions and Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APHIS | Animal and Plant Health Inspection Service |
ARS | Agricultural Research Service |
SVP | southern virus pool |
US | United States |
USDA | United States Department of Agriculture |
VS | Vesicular Stomatitis disease |
VSV | Vesicular Stomatitis virus |
VSNJV | Vesicular Stomatitis New Jersey virus |
References
- Pelzel-McCluskey, A.; Christensen, B.; Humphreys, J.; Bertram, M.; Keener, R.; Ewing, R.; Cohnstaedt, L.W.; Tell, R.; Peters, D.P.C.; Rodriguez, L. Review of Vesicular Stomatitis in the United States with Focus on 2019 and 2020 Outbreaks. Pathogens 2021, 10, 993. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.L.; Fitch, W.M.; Nichol, S.T. Ecological factors rather than temporal factors dominate the evolution of vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 1996, 93, 13030–13035. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Bunch, T.A.; Fraire, M.; Llewellyn, Z.N. Re-Emergence of Vesicular Stomatitis in the Western United States Is Associated with Distinct Viral Genetic Lineages. Virology 2000, 271, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Rozo-Lopez, P.; Drolet, B.S.; Londoño-Renteria, B. Vesicular stomatitis virus transmission: A comparison of incriminated vectors. Insects 2018, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Goodger, W.; Thurmond, M.; Nehay, J.; Mitchell, J.; Smith, P. Economic impact of an epizootic of bovine vesicular stomatitis in California. J. Am. Vet. Med. Assoc. 1985, 186, 370–373. [Google Scholar]
- Hayek, A.; McCluskey, B.; Chavez, G.; Salman, M. Financial impact of the 1995 outbreak of vesicular stomatitis on 16 beef ranches in Colorado. J. Am. Vet. Med. Assoc. 1998, 212, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.M.; Pauszek, S.J.; Jimenez, D.; Kelley, W.N.; Whedbee, Z.; Rodriguez, L.L. Spatial and phylogenetic analysis of vesicular stomatitis virus over-wintering in the United States. Prev. Vet. Med. 2010, 93, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Young, K.I.; Valdez, F.; Vaquera, C.; Campos, C.; Zhou, L.; Vessels, H.K.; Moulton, J.K.; Drolet, B.S.; Rozo-Lopez, P.; Pelzel-Mccluskey, A.M.; et al. Surveillance along the rio grande during the 2020 vesicular stomatitis outbreak reveals spatio-temporal dynamics of and viral RNA detection in black flies. Pathogens 2021, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Letchworth, G.; Rodriguez, L.; Del Cbarrera, J. Vesicular Stomatitis. Vet. J. 1999, 157, 239–260. [Google Scholar] [CrossRef]
- Palinski, R.; Pauszek, S.J.; Humphreys, J.M.; Peters, D.P.; McVey, D.S.; Pelzel-McCluskey, A.M.; Derner, J.D.; Burruss, N.D.; Arzt, J.; Rodriguez, L.L. Evolution and expansion dynamics of a vector-borne virus: 2004–2006 vesicular stomatitis outbreak in the western USA. Ecosphere 2021, 12, 2004–2006. [Google Scholar] [CrossRef]
- Elias, E.; Savoy, H.M.; Swanson, D.A.; Cohnstaedt, L.W.; Peters, D.P.; Derner, J.D.; Pelzel-McCluskey, A.; Drolet, B.; Rodriguez, L. Landscape dynamics of a vector-borne disease in the western US: How vector–habitat relationships inform disease hotspots. Ecosphere 2022, 13, e4267. [Google Scholar] [CrossRef]
- Walton, T.E.; Moore, C.G.; Smith, G.C.; Holbrook, F.R.; Schiefer, T.J.; Janney, G.C.; Jones, R.H.; Kramer, W.L.; Webb, P.A.; Davis, T. Epizootic Vesicular Stomatitis in Colorado, 1982: Epidemiologic and Entomologic Studies. Am. J. Trop. Med. Hyg. 1987, 36, 166–176. [Google Scholar] [CrossRef]
- Peters, D.P.; McVey, D.S.; Elias, E.H.; Pelzel-McCluskey, A.M.; Derner, J.D.; Burruss, N.D.; Schrader, T.S.; Yao, J.; Pauszek, S.J.; Lombard, J.; et al. Big data–model integration and AI for vector-borne disease prediction. Ecosphere 2020, 11, e03157. [Google Scholar] [CrossRef]
- Rodrıguez, L.L. Emergence and re-emergence of vesicular stomatitis in the United States. Virus Res. 2002, 85, 211–219. [Google Scholar] [CrossRef]
- Rainwater-Lovett, K.; Pauszek, S.J.; Kelley, W.N.; Rodriguez, L.L. Molecular epidemiology of vesicular stomatitis New Jersey virus from the 2004–2005 US outbreak indicates a common origin with Mexican strains. J. Gen. Virol. 2007, 88, 2042–2051. [Google Scholar] [CrossRef]
- Velazquez-Salinas, L.; Pauszek, S.J.; Zarate, S.; Basurto-Alcantara, F.J.; Verdugo-Rodriguez, A.; Perez, A.M.; Rodriguez, L.L. Phylogeographic characteristics of vesicular stomatitis New Jersey viruses circulating in Mexico from 2005 to 2011 and their relationship to epidemics in the United States. Virology 2014, 449, 17–24. [Google Scholar] [CrossRef]
- Cline, B. Ecological associations of vesicular stomatitis virus in rural Central America and Panama. Am. J. Trop. Med. Hyg. 1976, 25, 875–883. [Google Scholar] [CrossRef]
- Nichol, S.T.; Rowe, J.E.; Fitch, W.M. Punctuated equilibrium and positive Darwinian evolution in vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA 1993, 90, 10424–10428. [Google Scholar] [CrossRef]
- Thomas, M.B.; Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 2003, 18, 344–350. [Google Scholar] [CrossRef]
- Tabachnick, W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010, 213, 946–954. [Google Scholar] [CrossRef]
- LaDeau, S.L.; Allan, B.F.; Leisnham, P.T.; Levy, M.Z. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 2015, 29, 889–901. [Google Scholar] [CrossRef]
- Burruss, D.; Rodriguez, L.L.; Drolet, B.; Geil, K.; Pelzel-Mccluskey, A.M.; Cohnstaedt, L.W.; Derner, J.D.; Peters, D.P. Predicting the geographic range of an invasive livestock disease across the contiguous usa under current and future climate conditions. Climate 2021, 9, 159. [Google Scholar] [CrossRef]
- Smith, P.F.; Howerth, E.W.; Carter, D.; Gray, E.W.; Noblet, R.; Berghaus, R.D.; Stallknecht, D.E.; Mead, D.G. Host predilection and transmissibility of vesicular stomatitis New Jersey virus strains in domestic cattle (Bos Taurus) Swine (Sus Scrofa). BMC Vet. Res. 2012, 8, 183. [Google Scholar] [CrossRef]
- Drolet, B.S.; Reeves, W.K.; Bennett, K.E.; Pauszek, S.J.; Bertram, M.R.; Rodriguez, L.L. Identical viral genetic sequence found in black flies (Simulium bivittatum) Equine Index Case 2006 U.S. Vesicular Stomatitis Outbreak. Pathogens 2021, 10, 929. [Google Scholar] [CrossRef]
- Keymer, A.E.; Anderson, R.M. The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: The influence of infective-stage density and spatial distribution. Parasitology 1979, 79, 195–207. [Google Scholar] [CrossRef]
- Hanski, I.; Gaggiotti, O. 1—Metapopulation Biology: Past, Present, and Future. In Ecology, Genetics and Evolution of Metapopulations; Hanski, I., Gaggiotti, O.E., Eds.; Academic Press: Burlington, NJ, USA, 2004; pp. 3–22. [Google Scholar] [CrossRef]
- Keeling, M.J.; Woolhouse, M.E.; May, R.M.; Davies, G.; Grenfell, B.T. Modelling vaccination strategies against foot-and-mouth disease. Nature 2003, 421, 136–142. [Google Scholar] [CrossRef]
- May, R.M.; Anderson, R.M. Spatial heterogeneity and the design of immunization programs. Math. Biosci. 1984, 72, 83–111. [Google Scholar] [CrossRef]
- Grenfell; Bolker. Cities and villages: Infection hierarchies in a measles metapopulation. Ecol. Lett. 1998, 1, 63–70. [Google Scholar] [CrossRef]
- Humphreys, J.M.; Pelzel-McCluskey, A.M.; Cohnstaedt, L.W.; McGregor, B.L.; Hanley, K.A.; Hudson, A.R.; Young, K.I.; Peck, D.; Rodriguez, L.L.; Peters, D.P.C. Integrating Spatiotemporal Epidemiology, Eco-Phylogenetics, and Distributional Ecology to Assess West Nile Disease Risk in Horses. Viruses 2021, 13, 1811. [Google Scholar] [CrossRef]
- Velazquez-Salinas, L.; Pauszek, S.J.; Stenfeldt, C.; O’Hearn, E.S.; Pacheco, J.M.; Borca, M.V.; Verdugo-Rodriguez, A.; Arzt, J.; Rodriguez, L.L. Increased virulence of an epidemic strain of vesicular stomatitis virus is associated with interference of the innate response in pigs. Front. Microbiol. 2018, 9, 1891. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Pauszek, S.J.; Bunch, T.A.; Schumann, K.R. Full-length genome analysis of natural isolates of vesicular stomatitis virus (Indiana 1 serotype) from North, Central and South America. J. Gen. Virol. 2002, 83, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Pybus, O.G.; Rambaut, A.; Forsberg, R.; Rodrigo, A.G. Measurably evolving populations. Trends Ecol. Evol. 2003, 18, 481–488. [Google Scholar] [CrossRef]
- Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet. 2008, 9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Grenfell, B.T.; Pybus, O.G.; Gog, J.R.; Wood, J.L.N.; Daly, J.M.; Mumford, J.A.; Holmes, E.C. Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science 2004, 303, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [PubMed]
- Dellicour, S.; Troupin, C.; Jahanbakhsh, F.; Salama, A.; Massoudi, S.; Moghaddam, M.K.; Baele, G.; Lemey, P.; Gholami, A.; Bourhy, H. Using phylogeographic approaches to analyse the dispersal history, velocity and direction of viral lineages—Application to rabies virus spread in Iran. Mol. Ecol. 2019, 28, 4335–4350. [Google Scholar] [CrossRef] [PubMed]
- Klitting, R.; Kafetzopoulou, L.E.; Thiery, W.; Dudas, G.; Gryseels, S.; Kotamarthi, A.; Vrancken, B.; Gangavarapu, K.; Momoh, M.; Sandi, J.D.; et al. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat. Commun. 2022, 13, 5596. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Dellicour, S.; Rose, R.; Faria, N.; Lemey, P.; Pybus, O.G. SERAPHIM: Studying Environmental Rasters and Phylogenetic Informed Movements, R package version 1.0; R Core Team: Oxford, UK, 2014. [Google Scholar]
- Stadler, T.; Kühnert, D.; Bonhoeffer, S.; Drummond, A.J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. USA 2013, 110, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Jelley, L.; Douglas, J.; Ren, X.; Winter, D.; McNeill, A.; Huang, S.; French, N.; Welch, D.; Hadfield, J.; de Ligt, J.; et al. Genomic epidemiology of Delta SARS-CoV-2 during transition from elimination to suppression in Aotearoa New Zealand. Nat. Commun. 2022, 13, 4035. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.R. An Efficient Coalescent Epoch Model for Bayesian Phylogenetic Inference. Syst. Biol. 2022, 71, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Martin, M.; Koelle, K. Epidemiological inference for emerging viruses using segregating sites. Nat. Commun. 2023, 14, 3105. [Google Scholar] [CrossRef]
- Wakeley, J.; Sargsyan, O. Extensions of the Coalescent Effective Population Size. Genetics 2009, 181, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Frost, S.D.W.; Volz, E.M. Viral phylodynamics and the search for an ‘effective number of infections’. Philos. Trans. R. Soc. Biol. Sci. 2010, 365, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Karcher, M.D.; Palacios, J.A.; Bedford, T.; Suchard, M.A.; Minin, V.N. Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference. PLoS Comput. Biol. 2016, 12, e1004789. [Google Scholar] [CrossRef] [PubMed]
- Karcher, M.D.; Carvalho, L.M.; Suchard, M.A.; Dudas, G.; Minin, V.N. Estimating effective population size changes from preferentially sampled genetic sequences. PLoS Comput. Biol. 2020, 16, e1007774. [Google Scholar] [CrossRef] [PubMed]
- Palacios, J.A.; Minin, V.N. Integrated nested Laplace approximation for Bayesian nonparametric phylodynamics. arXiv 2012, arXiv:1210.4908. [Google Scholar]
- Karcher, M.D.; Palacios, J.A.; Lan, S.; Minin, V.N. phylodyn: An R package for phylodynamic simulation and inference. Mol. Ecol. 2017, 17, 96–100. [Google Scholar] [CrossRef]
- Didelot, X.; Fraser, C.; Gardy, J.; Colijn, C.; Malik, H. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol. Biol. Evol. 2017, 34, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Willgert, K.; Didelot, X.; Nair, M.S.; Kuchipudi, S.V.; Li, L.; Jayarao, B.M.; Levine, N.; Olsen, R.J.; Davis, J.J. Transmission history of SARS-CoV-2 in humans and white-tailed deer. Sci. Rep. 2022, 12, 12094. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, J.; Bertram, M.R.; Shults, P.; Velazquez-Salinas, L.; Peters, D.P.; Rodriguez, L.L. Overwintering or Re-Invasion? Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics. In Proceedings of the AGU Fall Meeting Abstracts, Chicago, IL, USA, 12–16 December 2022; Volume 2022, p. GH21E–03. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009. [Google Scholar]
- Diggle, P.J.; Menezes, R.; Su, T.l. Geostatistical inference under preferential sampling. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2010, 59, 191–232. [Google Scholar] [CrossRef]
- Pennino, M.G.; Paradinas, I.; Illian, J.B.; Muñoz, F.; Bellido, J.M.; López-Quílez, A.; Conesa, D. Accounting for preferential sampling in species distribution models. Ecol. Evol. 2019, 9, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Stenkamp-Strahm, C.; Patyk, K.; McCool-Eye, M.; Fox, A.; Humphreys, J.; James, A.; South, D.; Magzamen, S. Using geospatial methods to measure the risk of environmental persistence of avian influenza virus in South Carolina. Spat.-Spatio Epidemiol. 2020, 34, 100342. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, J.M.; Srygley, R.B.; Branson, D.H. Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change. Geographies 2022, 2, 12–30. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random field: The stochastic partial differential equations approach. J. R. Stat. Soc. Ser. Stat. Methodol. 2011, 73, 423–498. [Google Scholar] [CrossRef]
- Simpson, D.; Rue, H.; Riebler, A.; Martins, T.G.; Sørbye, S.H. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors. Stat. Sci. 2017, 32, 1–28. [Google Scholar] [CrossRef]
- Fuglstad, G.A.; Simpson, D.; Lindgren, F.; Rue, H. Constructing Priors that Penalize the Complexity of Gaussian Random Fields. J. Am. Stat. Assoc. 2019, 114, 445–452. [Google Scholar] [CrossRef]
- Illian, J.B.; Sørbye, S.H.; Rue, H. A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann. Appl. Stat. 2012, 6, 1499–1530. [Google Scholar] [CrossRef]
- Humphreys, J.M.; Ramey, A.M.; Douglas, D.C.; Mullinax, J.M.; Soos, C.; Link, P.; Walther, P.; Prosser, D.J. Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Sci. Rep. 2020, 10, 2592. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- Title, P.O.; Bemmels, J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 2017, 41, 291–307. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Tuanmu, M.N.; Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2014, 23, 1031–1045. [Google Scholar] [CrossRef]
- Didan, K. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC. 2023. Available online: https://doi.org/10.5067/MODIS/MOD13A1.061 (accessed on 15 June 2023).
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H. Bayesian Spatial Modelling with R-INLA. J. Stat. Softw. 2015, 63, 1–25. [Google Scholar] [CrossRef]
- APHIS. Final Situation Reports 2014–2015 VS Outbreaks. Technical Report, Animal and Plant Health Inspection Service, USDA. 2016. Available online: https://www.aphis.usda.gov/sites/default/files/Sitrep_012216.pdf (accessed on 15 June 2023).
- Morrone, J.J. Regionalización biogeográfica y evolución biótica de México: Encrucijada de la biodiversidad del Nuevo Mundo. Rev. Mex. Biodivers. 2019, 90, 2980. [Google Scholar] [CrossRef]
- Weinberg, M.; Waterman, S.; Lucas, C.A.; Falcon, V.C.; Morales, P.K.; Lopez, L.A.; Peter, C.; Gutiérrez, A.E.; Gonzalez, E.R.; Flisser, A.; et al. The U.S.-Mexico Border Infectious Disease Surveillance project: Establishing bi-national border surveillance. Emerg. Infect. Dis. 2003, 9, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Francy, D.B.; Moore, C.G.; Smith, G.C.; Jakob, W.L.; Taylor, S.A.; Calisher, C.H. Epizoötic Vesicular Stomatitis in Colorado, 1982: Isolation of Virus from Insects Collected Along the Northern Colorado Rocky Mountain Front Range. J. Med. Entomol. 1988, 25, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Drolet, B.S.; Campbell, C.L.; Stuart, M.A.; Wilson, W.C. Vector Competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for Vesicular Stomatitis Virus. J. Med. Entomol. 2005, 42, 409–418. [Google Scholar] [CrossRef]
- Rozo-Lopez, P.; Londono-Renteria, B.; Drolet, B.S. Venereal Transmission of Vesicular Stomatitis Virus by Culicoides sonorensis Midges. Pathogens 2020, 9, 316. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O.; Cross, P.C.; Briggs, C.J.; Daugherty, M.; Getz, W.M.; Latto, J.; Sanchez, M.S.; Smith, A.B.; Swei, A. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 2005, 20, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Navarro López, R.; Velázquez Salinas, L.; Arellano Chávez, S.; López González, I.; Villarreal Chávez, C.L.; Montaño Hirose, J.A. Caracterización epidemiológica de las áreas endémicas de estomatitis vesicular en México (1981–2012). Rev. Mex. Cienc. Pecu. 2015, 6, 277–294. [Google Scholar] [CrossRef]
- Dobson, A.; Meagher, M. The Population Dynamics of Brucellosis in the Yellowstone National Park. Ecology 1996, 77, 1026–1036. [Google Scholar] [CrossRef]
- Begon, M.; Hazel, S.M.; Baxby, D.; Bown, K.; Cavanagh, R.; Chantrey, J.; Jones, T.; Bennett, M. Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc. R. Soc. Biol. Sci. 1999, 266, 1939–1945. [Google Scholar] [CrossRef]
- Caley, P.; Hone, J. Disease transmission between and within species, and the implications for disease control. J. Appl. Ecol. 2004, 41, 94–104. [Google Scholar] [CrossRef]
- Guzzetta, G.; Tagliapietra, V.; Perkins, S.E.; Hauffe, H.C.; Poletti, P.; Merler, S.; Rizzoli, A. Population dynamics of wild rodents induce stochastic fadeouts of a zoonotic pathogen. J. Anim. Ecol. 2017, 86, 451–459. [Google Scholar] [CrossRef]
- Alexander, K.A.; Carlson, C.J.; Lewis, B.L.; Getz, W.M.; Marathe, M.V.; Eubank, S.G.; Sanderson, C.E.; Blackburn, J.K. The Ecology of Pathogen Spillover and Disease Emergence at the Human-Wildlife-Environment Interface. In The Connections between Ecology and Infectious Disease; Springer International Publishing: Cham, Switzerland, 2018; pp. 267–298. [Google Scholar] [CrossRef]
- Blumberg, S.; Lloyd-Smith, J.O. Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains. PLoS Comput. Biol. 2013, 9, e1002993. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.W. Differentiating Epidemic from Endemic or Sporadic Infectious Disease Occurrence. Microbiol. Spectr. 2019, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Kodric-Brown, A. Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology 1977, 58, 445–449. [Google Scholar] [CrossRef]
- Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 2004, 164. [Google Scholar] [CrossRef] [PubMed]
- Hagenaars, T.; Donnelly, C.; Ferguson, N. Spatial heterogeneity and the persistence of infectious diseases. J. Theor. Biol. 2004, 229, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Grenfell, B.T.; Bjørnstad, O.N.; Finkenstädt, B.F. Dynamics of Measles Epidemics: Scaling Noise, Determinism, and Predictability with the TSIR Model. ECological Monogr. 2002, 72, 185–202. [Google Scholar] [CrossRef]
- Bjørnstad, O.N.; Grenfell, B.T. Hazards, spatial transmission and timing of outbreaks in epidemic metapopulations. Environ. Ecol. Stat. 2008, 15, 265–277. [Google Scholar] [CrossRef]
- Bolker, B.; Grenfell, B.T. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 1995, 348, 309–320. [Google Scholar] [CrossRef]
- Hudson, A.R.; McGregor, B.L.; Shults, P.; England, M.; Silbernagel, C.; Mayo, C.; Carpenter, M.; Sherman, T.J.; Cohnstaedt, L.W. Culicoides-borne Orbivirus epidemiology in a changing climate. J. Med. Entomol. 2023, 60, 1221–1229. [Google Scholar] [CrossRef]
- Willig, M.; Kaufman, D.; Stevens, R. Latitudinal Gradients of Biodiversity: Pattern, Process, Scale, and Synthesis. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 273–309. [Google Scholar] [CrossRef]
- Sommer, B.; Beger, M.; Harrison, P.L.; Babcock, R.C.; Pandolfi, J.M. Differential response to abiotic stress controls species distributions at biogeographic transition zones. Ecography 2018, 41, 478–490. [Google Scholar] [CrossRef]
- SENASICA. Weekly Reports on Diseases and Pests of mandatory Immediate Reporting (Week 53, 2013). Technical Report, National Service of Agrifood Health and Quality, Directorate of Epidemiology and Risk Analysis, National Epidemiological Surveillance System. 2013. Available online: https://www.gob.mx/senasica/documentos/informes-zoosanitarios-semanales-2013 (accessed on 15 June 2023).
- May, R.M. Uses and Abuses of Mathematics in Biology. Science 2004, 303, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.D. The Prior Probabilities of Phylogenetic Trees. Biol. Philos. 2008, 23, 455–473. [Google Scholar] [CrossRef]
- Kühnert, D.; Wu, C.H.; Drummond, A.J. Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. Infect. Genet. Evol. 2011, 11, 1825–1841. [Google Scholar] [CrossRef]
- Humphreys, J.M.; Young, K.I.; Cohnstaedt, L.W.; Hanley, K.A.; Peters, D.P.C. Vector Surveillance, Host Species Richness, and Demographic Factors as West Nile Disease Risk Indicators. Viruses 2021, 13, 934. [Google Scholar] [CrossRef]
- Coffman, M.; Sanderson, M.; Dodd, C.; Arzt, J.; Renter, D. Estimation of foot-and-mouth disease windborne transmission risk from USA beef feedlots. Prev. Vet. Med. 2021, 195, 105453. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; et al. Scientific Opinion on the assessment of the control measures for category A diseases of Animal Health Law: Foot and Mouth Disease. EFSA J. 2021, 19, e06632. [Google Scholar] [CrossRef]
- APHIS. FAD Preparedness and Response Plan; Technical Report, Animal and Plant Health Inspection Service; USDA: Washington, DC, USA, 2015. [Google Scholar]
- Adler, P.H.; Kim, K.C. Ecological characterization of two sibling species, IIIL-1 and IS-7, in the Simulium vittatum complex (Diptera: Simuliidae). Can. J. Zool. 1984, 62, 1308–1315. [Google Scholar] [CrossRef]
- Titcomb, G.; Mantas, J.N.; Hulke, J.; Rodriguez, I.; Branch, D.; Young, H. Water sources aggregate parasites with increasing effects in more arid conditions. Nat. Commun. 2021, 12, 7066. [Google Scholar] [CrossRef]
- Elias, E.; McVey, D.S.; Peters, D.; Derner, J.D.; Pelzel-McCluskey, A.; Schrader, T.S.; Rodriguez, L. Contributions of Hydrology to Vesicular Stomatitis Virus Emergence in the Western USA. Ecosystems 2019, 22, 416–433. [Google Scholar] [CrossRef]
- Baldwin, W.F.; West, A.S.; Gomery, J. DISPERSAL PATTERN OF BLACK FLIES (DIPTERA: SIMULIIDAE) TAGGED WITH 32P. Can. Entomol. 1975, 107, 113–118. [Google Scholar] [CrossRef]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan; Chapman and Hall/CRC: New York, NY, USA, 2020. [Google Scholar]
- Humphreys, J.M.; Srygley, R.B.; Lawton, D.; Hudson, A.R.; Branson, D.H. Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations. Ecol. Model. 2022, 471, 110043. [Google Scholar] [CrossRef]
- Kettle, D.S.; Lawson, J.W.H. The early Stages of British Biting Midges Culicoides Latreille (Diptera: Ceratopogonidae) and allied Genera. Bull. Entomol. Res. 1952, 43, 421–467. [Google Scholar] [CrossRef]
- Lysyk, T.J.; Danyk, T. Effect of temperature on life history parameters of adult Culicoides sonoremis (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for bluetongue virus. J. Med. Entomol. 2007, 44, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Brand, S.P.C.; Keeling, M.J. The impact of temperature changes on vector-borne disease transmission: Culicoides Midges Bluetongue Virus. J. R. Soc. Interface 2017, 14, 20160481. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, J.; Mahjoor, A.; Chinners Reiss, K.; Arias Uribe, A.; Brown, M.T. A geostatistical model for estimating edge effects and cumulative human disturbance in wetlands and coastal waters. Int. J. Geogr. Inf. Sci. 2020, 34, 1508–1529. [Google Scholar] [CrossRef]
- Peck, D.E.; Reeves, W.K.; Pelzel-McCluskey, A.M.; Derner, J.D.; Drolet, B.; Cohnstaedt, L.W.; Swanson, D.; McVey, D.S.; Rodriguez, L.L.; Peters, D.P. Management Strategies for Reducing the Risk of Equines Contracting Vesicular Stomatitis Virus (VSV) in the Western United States. J. Equine Vet. Sci. 2020, 90, 103026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humphreys, J.M.; Shults, P.T.; Velazquez-Salinas, L.; Bertram, M.R.; Pelzel-McCluskey, A.M.; Pauszek, S.J.; Peters, D.P.C.; Rodriguez, L.L. Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics. Viruses 2024, 16, 1118. https://doi.org/10.3390/v16071118
Humphreys JM, Shults PT, Velazquez-Salinas L, Bertram MR, Pelzel-McCluskey AM, Pauszek SJ, Peters DPC, Rodriguez LL. Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics. Viruses. 2024; 16(7):1118. https://doi.org/10.3390/v16071118
Chicago/Turabian StyleHumphreys, John M., Phillip T. Shults, Lauro Velazquez-Salinas, Miranda R. Bertram, Angela M. Pelzel-McCluskey, Steven J. Pauszek, Debra P. C. Peters, and Luis L. Rodriguez. 2024. "Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics" Viruses 16, no. 7: 1118. https://doi.org/10.3390/v16071118
APA StyleHumphreys, J. M., Shults, P. T., Velazquez-Salinas, L., Bertram, M. R., Pelzel-McCluskey, A. M., Pauszek, S. J., Peters, D. P. C., & Rodriguez, L. L. (2024). Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics. Viruses, 16(7), 1118. https://doi.org/10.3390/v16071118