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Abstract: Semi-covariance has attracted significant attention in recent years and is increasingly
employed to elucidate statistical phenomena exhibiting fluctuations, such as the similarity or differ-
ence in charge patterns of spike proteins among coronaviruses. In this study, by examining values
above and below the average/mean based on the positive and negative charge patterns of amino
acid residues in the spike proteins of SARS-CoV-2 and its current circulating variants, the proposed
methods offer profound insights into the nonlinear evolving trends in those viral spike proteins. Our
study indicates that the charge span value can predict the infectivity of the virus and the charge
density can estimate the virulence of the virus, and both predicated infectivity and virulence appear
to be associated with the capability of viral immune escape. This semi-covariance coefficient anal-
ysis may be used not only to predict the infectivity, virulence and capability of immune escape for
coronaviruses but also to analyze the functionality of other viral proteins. This study improves our
understanding of the trend of viral evolution in terms of viral infectivity, virulence or the capability
of immune escape, which remains further validated by more future studies and statistical data.

Keywords: SARS-CoV-2; coronaviruses; variants; spike protein sequence; semi-covariance coefficient;
infectivity; virulence; immune escape

1. Introduction

The Fractal DNA hypothesis (FDH) was introduced in 1994 [1]. The arithmetic data
derived from DNA sequences, obtained by counting the number of intervening bases from
a specific base to the next one (inter-event data), exhibits a dynamical process characterized
by the observation of long-range (fractal) correlations. The reports of fractal long-range
correlations in DNA sequences were also made by Peng et al. and others [2–4]. Unlike the
traditional DNA hypothesis, the analysis of RNA and proteins is based on the fragment
length between domains with electrical charges. Notably, it underscores the impact on
charge behaviors stemming from differences in information reception, expression lengths,
or neighbor status, indicating the presence of a fractal structure in stable DNAs [5]. Re-
cent work on FDH in RNA studies [6] involves converting genetic sequences into binary
numbers, with purines converted to −1 and pyrimidines converted to +1 [7]. We have
previously used the semi-covariance coefficient method to analyze the correlation between
the amino acid composition of spike proteins from SARS-CoV-2 and other coronaviruses for
viral evolution trends and characteristics associated with fatality or virulence [8]. The semi-
covariance is better to elucidate statistical phenomena exhibiting fluctuations, such as the
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similarity or difference in charge patterns of spike proteins among coronaviruses. The fluc-
tuation analysis method has been previously used in analyzing the long-range correlation
of DNA sequences [9]. To further characterize the charge patterns of spike proteins among
coronaviruses, we have then used normalized semi-covariance co-efficiency to analyze the
charge of the spike protein composition for viral infectivity and virulence [10]. In this study,
our objectives are to investigate the analogous electrical charge-specific relationship (+1 for
positive amino acids, −1 for negative counterparts, and 0 for neutral ones; the charges of
amino acids are determined as listed in the amino acid table in the biochemistry textbook)
in the spike protein sequences of coronaviruses for the viral infectivity and virulence [11]
and to attempt to associate the viral infectivity and virulence with the viral capability of
immune escape. The SARS-CoV-2 virus stands out as one of the longest positive single-
stranded RNA viruses [12], and its protein folding, tertiary structure, and functions are
intricately linked to the exhibiting of more positive charges than other proteins for binding
to or interacting with the receptor [13,14]. Therefore, it is crucial to scrutinize the charge
structure/patterns or nonlinear correlation patterns of the spike proteins of SARS-CoV-2
and its variants in comparison to spike proteins from the original SARS-CoV-2 strain, where
the negative charge is predominant [15]. This study on viral protein charges furthers our
understanding of viral evolution trends in terms of infectivity and virulence and associates
viral infectivity and virulence with the ability of viral immune escape.

2. Literature Review
2.1. Research on Spike Proteins of SARS-CoV-2

The spike protein is a structural protein unique to the surface of coronaviruses. It
contains crucial information about the natural evolution of coronaviruses and plays a key
role in the viral recognition and invasion of human cells [16–20]. Over the past decade,
the spike protein has been one of the most important research subjects in studies of coron-
aviruses closely related to humans. Following the outbreak of the COVID-19 pandemic,
the spike protein quickly became a focal point of research [21]. The authors in [22] utilized
pseudo-viruses to monitor the impact of FCS (furin cleavage site)-spike mutations of either
Alpha/Omicron, Beta, or Delta variants on viral infectivity and neutralization sensitivity
against sera that were drawn from fully vaccinated individuals. In Cordsmeier and col-
leagues’ study [23], the authors constructed SARS-CoV-2 with a uniform B.1. backbone
but with alternative spike proteins to analyze the specific impact of variant spike proteins
on infection dynamics. In Emmelot et al.’s study [24], the authors analyzed the functional
impact of Omicron BA.4/BA.5 spike mutations on T cell responsiveness to non-conserved
epitopes in vaccines. The result showed that several BA.4/BA.5 mutations in the spike
protein led to a reduced responsiveness of epitope-specific T cells in subjects that received
two doses of an mRNA vaccine based on the ancestral wild-type spike sequence. In the
Bains and colleagues’ study [25], the authors assessed the impact of SARS-CoV-2 spike
S1-domain glycans and spike proteins from different strains on the ability of pseudotyped
lentivirions to undergo DC-SIGN-mediated trans-infection. In Escalera et al.’s study [26],
the authors analyzed a set of emerging SARS-CoV-2 variants to investigate how different
sets of mutations may impact spike protein processing, and they demonstrated that the
mutations in spike protein present in these variants that become epidemiologically preva-
lent in humans are linked to an increase in spike protein processing and virus transmission.
The authors [27] introduced a total of 48 mutations in the spike protein of SARS-CoV-
2 variants and demonstrated that several amino acid changes found in Omicron spike
proteins impair infectivity. Additionally, numerous alterations in the N-terminal domain
(NTD) and receptor-binding domain (RBD) of BA.1 and/or BA.2 spike proteins impact
neutralization by sera from individuals vaccinated with BNT/BNT-based vaccines and
therapeutic antibodies.
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2.2. Research on Electrostatic Feature of SARS-CoV-2 Spike Protein

The spike protein of SARS-CoV-2 is made up of amino acids, each with specific
chemical properties. Amino acids like arginine (Arg) and lysine (Lys) have positively
charged side chains at physiological pH (around neutral pH). These positively charged
residues can be found within different regions of the spike protein, including the RBD
and other functional domains. These charges play critical roles in viral attachment, entry,
and immune recognition, making them important factors in understanding and combat-
ing COVID-19 [28–31]. The increase in positive charge on spike protein of SARS-CoV-2
variants (such as Omicron) altered the biochemical properties of spike protein and may
influence virion survival and promote transmission [32]. Studies found that mutations
increased the electrostatic interactions of the Omicron spike protein RBD with ACE2 and
promoted infectivity and transmission of the variants [33,34]. Nguyen and colleagues [35]
investigated the evolving positive charge of the SARS-CoV-2 spike protein and found
that the Omicron variant has enhanced binding rates to negatively charged glycocalyx
and significantly stronger interactions with heparan sulfate as compared to Delta. This
increased dependence on the heparan sulfate for viral attachment and infection suggests
new therapeutic and diagnostic opportunities. Kim et al. [36] compared the spike proteins
of SARS-CoV-2 Omicron sublineages with earlier SARS-CoV-2 variants and found that the
SARS-CoV-2 Omicron has a higher electric field line density than that of earlier SARS-CoV-2
variants, which indicates a stronger interaction between the Omicron spike protein and the
ACE2 receptor. Božič and Podgornik [37] found that the trend of increase in the positive
charge on spike protein of SARS-CoV-2 variants has been halted with the appearance of
Omicron variants, while these sublineages display a greater diversity in their composition
of ionizable amino acids. Pascarella and colleagues [38] examined the spike proteins from
B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.617.3 and found that these variants exhibit
significant changes in the spike protein’s surface electrostatic potential, particularly in Delta,
which may enhance the interaction with the negatively charged ACE2 receptor and increase
viral transmission. Lu and colleagues [39] calculated the charge distributions of SARS-CoV,
SARS-CoV-2, and variants of concern using net charge calculation formulas and found that
the SARS-CoV-2 spike protein had more positive charges than that of SARS-CoV. Further
analysis showed that variants, particularly the Delta variant, had even higher positive
charges in the S1 domain, significantly increasing Coulomb’s force with the negatively
charged ACE2 receptor and potentially leading to higher infectivity. Another study [40]
investigated the main electrostatic features involved in the interaction between the RBD of
the SARS-CoV-2 spike protein and the human receptor ACE2. Using the FORTE approach,
which models proton fluctuations and computes free energies for many protein-protein
systems, these authors analyzed wild-type and critical variants, focusing on pH-dependent
binding affinities, protein charges, charge regulation capacities, and dipole moments. They
revealed a linear correlation, termed the “RBD charge rule”, between the total charge of the
RBD and its binding affinity to ACE2, providing a quick test for predicting the severity of
future SARS-CoV-2 variants.

3. Methodologies

The coronaviral spike protein and RNA sequences used in this research were obtained
from NCBI GenBank and GISAID databases, including Wuhan strain SARS-CoV-2, UK
variant (B.1.1.7), Delta variant (B.1.617), Omicron, and Omicron subvariants BA.5 (B.1.1.529),
EG.5, and JN.1. The viral RNA sequences obtained from the GISAID database were
translated into protein sequences before analysis. As said above, a positive-charged amino
acid is represented as +1, a negative-charged amino acid is represented as −1, and a
neutral amino acid is represented as 0. Assuming two distinct viral protein sequences are
converted into sequences or symbols represented as charges, labeled as X = (x1, . . . , xn)
and Y = (y1, . . . , yn), with X serving as the baseline, various computational methods are
proposed to compare and analyze the correlation between viral protein sequences from
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multiple dimensions, aiming to better understand the evolution trend of the virus, such as
infectivity and virulence. These computational methods are detailed below.

3.1. Pearson Correlation Coefficient

The Pearson correlation coefficient quantifies the linear correlation between two vari-
ables, which is calculated as the ratio of the covariance of two variables to the product of
their standard deviations. It can also be used to represent the correlation between two viral
sequences, which is given by [41]

ρ(X, Y) =
E[(X − E[X])(Y − E[Y])]√

E[X2]− (E[X])2
√

E[Y2]− (E[Y])2
. (1)

3.2. Semi-Variance Correlation
3.2.1. Semi-Variance Correlation Coefficient

While the Pearson correlation coefficient excels at expressing the correlation among
multiple variables, it is limited to capturing only linear correlations and overlooks many
other types of relationships or correlations. Inspired by the Pearson correlation coefficient,
we propose the semi-covariance coefficient, which can measure the nonlinear correlation
between variables and provide more detailed information and insights. As shown in
Figure 1, when employing Pearson correlation to measure the relationship between two
sequences, it only indicates the linear relationship (positive and negative correlation folded
together) between the sequences. However, when using semi-variance correlation to
measure the relationship between two sequences, it reveals the nonlinear relationship
(positive and negative correlation unfolded separately) between the sequences, which can
better uncover the relationship between them.
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To shift from linear correlation to nonlinear correlation, the Rectified Linear Unit
(ReLU) [42] [https://en.wikipedia.org/wiki/Rectifier_(neural_networks) (accessed on 21
May 2024)] is employed in this study. ReLU is an activation function that introduces nonlin-

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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earity, allowing the model to capture or unfold and represent more complex relationships
in the data. The basic form of ReLU is given by the following:

ReLU(R) = max(0, R), (2)

where R is a real number. Then, R can be expressed or unfolded as following:

R = ReLU(R)− ReLU(−R), (3)

and the Pooling of the expectation of R

E[R] = E[ReLU(R)− ReLU(−R)]. (4)

Setting R = (X − E[X])(Y − E[Y]) and substituting it into Equation (1), the semi-
covariance coefficient is thus defined as following:

Spos(X, Y) =
E[ReLU((X − E[X])(Y − E[Y]))]√
E[X2]− (E[X])2

√
E[Y2]− (E[Y])2

, (5)

Sneg(X, Y) =
E[ReLU(−(X − E[X])(Y − E[Y]))]√

E[X2]− (E[X])2
√

E[Y2]− (E[Y])2
, (6)

where Spos is the positive correlation covariance coefficient or the convergent part, and
Sneg is the negative correlation covariance coefficient or the divergent part. According to
the mean of each two variables, all variables are divided or unfolded into four quadrants.
Spos belongs to the first and third quadrants, while Sneg belongs to the second and fourth
quadrants. We also include the following indicators to Semi-variance correlation to assess
its advantage.

3.2.2. Quantity of Charge

The quantity of charge of the sequence Y is

QY =
n

∑
i=1

yi. (7)

3.2.3. Gravity

As ReLU(R) is a sequence, denoted as (ReLU(r1), · · · ReLU(rn)), where each is as-
sumed to be the weight, the gravity of converge part of Y is calculated by

Cpos= Round
(

∑n
i ReLU(ri)Ii

∑n
i ReLU(ri)

)
= Round

(
∑n

i ReLU((x i − E[Y])(yi − E[Y]))Ii

∑n
i ReLU((x i − E[Y])(yi − E[Y]))

)
,

(8)

where Ii is the position of ReLU(ri) in the sequence, and Round is the rounding operation.
Likewise, the gravity of divergent part of Y is given by

Cneg= Round
(

∑n
i ReLU(−ri)Ii

∑n
i ReLU(−ri)

)
= Round

(
∑n

i ReLU(−(x i − E[Y])(yi − E[Y]))Ii

∑n
i ReLU(−(x i − E[Y])(yi − E[Y]))

)
.

(9)
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3.2.4. Charge Span

The charge span of Y is given by

MY =
∣∣Cpos − Cneg

∣∣. (10)

3.2.5. Reproduction Rate

The reproduction rate of Y is calculated by

OY =
MYOX

MX
, (11)

where OX and MX are the reproduction rate and the charge span of virus X, respectively.

3.2.6. Maximal Position

The position of maximal value in Spos is

Ppos ∈ argmax1≤i≤nSpos(i). (12)

Likewise, the position of maximal value in Sneg is

Pneg ∈ argmax1≤i≤nSneg(i). (13)

3.2.7. Charge Density

The charge density of Y is calculated by

DY =
Ppos

PnegOY
. (14)

3.2.8. Virulence

The virulence of Y is calculated by

VY =
DYVX

DX
, (15)

where VX and DX are the virulence and the charge density of X, respectively.

4. Result and Discussion

To assess the correlation between spike protein sequences of SARS-CoV-2 and its
variants using the proposed methods, the Wuhan strain SARS-CoV-2 is employed as the
sequence baseline, and the Delta variant is used as the data point reference. We first examine
the difference between Pearson correlation and semi-variance correlation in measuring
the correlation between BA.5 and Wuhan SARS-CoV-2. As shown in Figure 2a, Pearson
correlation can only represent the relationship between these two viral spike protein
sequences within the first quadrant of the coordinate axis. However, in Figure 2b, Semi-
variance correlation can demonstrate the correlation between these two viral sequences in
all four quadrants (unfolded with ReLU function). This result indicates that the proposed
semi-variance correlation can uncover the multiple nonlinear relationships between viral
sequences, thus facilitating the inference of the evolution between sequences.
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Figure 2. Visual comparison of correlations between the spike protein sequences of Wuhan SARS-
CoV-2 and BA.5 variant using (a) Pearson correlation and (b) semi-variance correlation. The analyses
with semi-variance correlation show multiple nonlinear patterns of viral evolution.

The comparison results of different variants are presented in Table 1. The charge span
MY reflects the infectivity of viruses. The higher the MY value of the viral spike protein,
the greater the viral infectivity. The results are consistent with the actual infectivity of the
virus and its variants. For instance, Omicron and EG.5 were both major prevalent variants
a couple of years ago, while JN.1 is currently the predominant variant and more infectious.
EG.5 is more infectious (MY value of 551) than Omicron (MY value of 270), while JN.1 is
more infectious (MY value of 565) than EG.5 (Table 1). Furthermore, the charge density
DY represents viral virulence. The higher the value of DY, the greater the virulence of
the virus. Due to the wide campaign of vaccination against SARS-CoV-2 and its variants
and the establishment of herd immunity to the virus and its variants, the viral virulence
is minimized in the immunized population. The value of DY may thus correlate with the
capability of immune escape for the variants due to the rapid evolution of the variants.
Immune escape is one aspect of the evolution of viral variants, and new variants gain
more and more capabilities of immune escape [43]. People who received vaccinations or
recovered from infections gain immunity or cross-immunity against new variants of the
virus. For the survival or evolution of the virus, its new variants or new mutants have to
develop the ability of immune escape to evade T cells, innate immunity and population
immunity [43]. Mutations in the viral spike proteins allow new variants to emerge with
the capabilities of greater transmissibility and immune escape [44]. The values of both
predicted infectivity and virulence may thus correlate with the capability of immune escape
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for these variants. Although the new variants develop a stronger immune escape capability,
the cross-immune response established previously in the human body may relieve the
symptoms of people who are infected with the new variants. Our analysis results appear
to be consistent with the trends of viral infectivity and virulence associated with enhanced
immune escape.

Table 1. Comparison of spike proteins of SARS-CoV-2 variants *.

UK
(B.1.1.7)

Delta
(B.1.617) Omicron BA.5 EG.5 JN.1

Spos 99.58% 99.44% 98.09% 96.04% 87.63% 63.9%

Sneg 0.32% 0.17% 1% 0.4% 1.95% 7.75%

ρ 0.9926 0.9927 0.9709 0.9564 0.8559 0.5615

QY 17 15 18 18 17 19

Cpos 626 629 631 665 718 868

Cneg 655 557 361 568 167 303

* MY 29 72 270 97 551 565

OY 0.84 2.08 7.79 2.8 15.89 16.3

Ppos 516 518 518 1264 1262 1262

Pneg 614 616 216 683 97 97

* DY 1 0.4 0.31 0.66 0.82 0.8

VY 5.33% 2.15% 1.64% 3.51% 4.35% 4.24%

Actual rate of
death (sourced

from the Internet)
1.3–5.3% 0.3–3.4% 0.06–0.3% 0.06–0.3% / 1.81%

* The charge span MY reflects the infectivity of viruses and the variants (higher value represents high infectivity).
The charge density DY represents the virulence of viruses and the variants. Both viral infectivity and virulence
further evolve to correlate with viral immune escape.

5. Conclusions

In this study, we examined the positive charge patterns of spike proteins from SARS-
CoV-2 and its current circulating variants. Our analyses indicate that the charge span (MY)
value may predict the infectivity of the viral variants, with a high charge span value exhibiting
high infectivity. The charge density (DY) may predict the virulence of the viral variants, with
a high charge density value displaying more virulence for the original strain of SARS-CoV-2
or more capability of immune escape for current circulating variants derived from Omicron.
Our analyses provide a profound understanding of the nonlinear pattern of viral evolution
trend and identify the protein mutation characteristics that may be associated with viral
infectivity and virulence for developing the immune escape capability of current circulating
variants and for predicting the evolving trend of future new variants. More future studies
and statistical data will be needed to further validate our findings and the association. This
semi-covariance coefficient analysis may be used not only to predict the infectivity, virulence
and capability of immune escape for coronaviruses but also to analyze the functionality
of other viral proteins. There are limitations to our study. The charges of the amino acids
may change under different pH environments, such as more acidic or more basic conditions.
These conditions were not considered in our study since the pH is generally maintained from
pH 7.35 to pH 7.45 in the human body. The infectivity and virulence of the viruses on the
human body are affected by many factors, such as underlying diseases (hypertension, heart
and lung diseases, medications of the patients, etc.), vaccinations, immunity of the affected
individuals, etc. These conditions were not considered in the study. Another limitation is
the Equations of (10) to (15) in our study. To further validate Equations (10) to (15), more
research and statistical data are needed in the future.
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