
Citation: Park, J.-S.; Jeong, C.-G.;

Chae, S.-B.; Yang, M.-S.; Oh, B.; Lee,

S.-Y.; Oem, J.-K. Porcine Astrovirus

Infection in Brains of Pigs in Korea.

Viruses 2024, 16, 1372. https://

doi.org/10.3390/v16091372

Academic Editor: Wentao Li

Received: 28 June 2024

Revised: 26 August 2024

Accepted: 27 August 2024

Published: 28 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Brief Report

Porcine Astrovirus Infection in Brains of Pigs in Korea
Jun-Soo Park 1 , Chang-Gi Jeong 1, Su-Beom Chae 1 , Myeon-Sik Yang 2, Byungkwan Oh 3 , Sook-Young Lee 4,*
and Jae-Ku Oem 1,*

1 Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University,
Iksan 54596, Republic of Korea; spinyang@naver.com (J.-S.P.); jcg0102@gmail.com (C.-G.J.);
cotnqja23@naver.com (S.-B.C.)

2 Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup,
Yesan 32439, Republic of Korea; 111@kongju.ac.kr

3 Laboratory of Veterinary Pathology, Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk
National University, Iksan 54596, Republic of Korea; guroom2@gmail.com

4 Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
* Correspondence: sylee163@gmail.com (S.-Y.L.); jku0623@jbnu.ac.kr (J.-K.O.)

Abstract: Recently, neurological diseases associated with astroviruses (AstVs) have been reported in
pigs, ruminants, minks, and humans. In 2017, neuro-invasive porcine astrovirus (Ni-PAstV) 3 was
detected in the central nervous system (CNS) of pigs with encephalomyelitis in Hungary and the USA.
In the process of diagnosing domestic pigs exhibiting neurological signs, histopathologic lesions of
non-suppurative encephalomyelitis with meningitis, neuronal vacuolation, and gliosis were detected,
and PAstV was identified using reverse transcriptase PCR in CNS samples of four pigs in three farms
from August to September in 2020, South Korea. Subsequently, the ORF2 region was successfully
acquired from three brain samples, facilitating subsequent analysis. Four genotypes of PAstV (PAstV1,
3, 4, and 5) were detected, and coinfection of PAstV with multiple genotypes was observed in brain
samples. This is the first study to report Ni-PAstV infection in pigs in South Korea.

Keywords: neuro-invasive; astrovirus; porcine; coinfection; encephalitis

1. Introduction

Astroviruses (AstVs) are non-enveloped (~28–30 nm in diameter), single-stranded,
positive-sense RNA (6.2–7.8 kb) viruses belonging to the family Astroviridae [1]. The genome
of AstVs consists of three open reading frames (ORFs), ORF1a, ORF1b, and ORF2 [2], with
two untranslated regions (UTRs) at 5′ and 3′ ends flanking the genome and polyadenylated
at the 3′ end. This family comprises two genera: Mamastrovirus (MAstV) and Avastrovirus
(AAstV). Members of the genus Mamastrovirus can infect mammalian hosts, including
19 species according to the 2023 classification of the International Committee on Taxonomy
of Viruses (ICTV). On the other hand, members of the genus Avastrovirus that can infect
avian hosts have three species. However, most newly discovered strains remain unclassified,
including porcine astroviruses (PAstVs). In 2017, fourteen newly identified AstV strains
were proposed as genotype species of the genus Mamastrovirus. PAstVs also belong to the
genus Mamastrovirus and are divided into five distinct genotypes (PAstV1–5) based on
sequence analysis of the open reading frame 2 (ORF2) region, which encodes the capsid
protein [3–5]. It has been proposed that PAstV1 corresponds to MAstV-3, PAstV2 to MAstV-
31 and MAstV-32, PAstV3 to MAstV-22, PAstV4 to MAstV-26 and MAstV-27, and PAstV5 to
MAstV-24 [6].

AstV was first identified in 1975 by electron microscopy of feces collected from children
with diarrhea [7]. Since then, astroviral enteric infections causing gastroenteritis in infants
and children have been reported worldwide [8–10]. Similar to humans, PAstV is commonly
considered a cause of gastroenteritis in swine [3,11]. Recently, AstVs have been suggested as
novel viral pathogens outside the gastrointestinal (GI) tract [12,13]. After the first discovery
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of the association between AstV infection and human gastroenteritis, subsequent findings
included duck AstV hepatitis in 1984 [14], avian nephritis virus nephritis in 2000 [15], and
AstV VA1/HMO clade encephalitis in 2010 [16,17]. Moreover, AstV was suspected to be
a cause of a respiratory disease [13], AstV MLB2 febrile respiratory disease in 2012 [17],
and PAstV4 of pigs in 2016 [18]. In 2010, both neurological signs and central nervous
system (CNS) infections of AstV were reported in humans and minks [16,19]. Following the
first report of neuro-invasive astroviruses (Ni-AstVs), more evidence of Ni-AstVs strains
has been reported in cattle [20], sheep [21], pigs [22,23], musk oxen [24], and alpaca [25].
In 2021, an infection of bovine AstV causing nonsuppurative meningoencephalitis was
confirmed in cattle in South Korea [26]. Furthermore, in 2023, AstV was detected in the
brains of raccoon dogs of South Korea [27]. Based on current knowledge, AstVs causing
neurological symptoms in mammals mainly belong to the VA/HMO clade of Mamastrovirus
genogroup II. Human AstVs of MLB clade (Mamastrovirus genogroup I) with neurological
symptoms have also been reported [28].

AstVs demonstrate high genetic diversity across various hosts, with frequent reports
of high diversity even within a single host [29]. This tendency is particularly pronounced
in densely populated or domesticated hosts such as pigs, humans, bats, and bovines [6]. A
study conducted in the USA reported a 13.9% rate of co-infection of multiple PAstV geno-
types in pigs [3]. Diverse genotypes of co-infection were thought to increase the opportunity
for genetic recombination [3]. The original PAstV has been known as an enteric virus. Inves-
tigations have mainly been conducted using fecal samples. However, a study reported in
2014 raised concerns about the association between encephalitis and PAstV2 and 5 detected
in the brain [30]. Several evidence supported the association of PAstV with cases of extrain-
testinal infections, including CNS infections of pigs [28,30–33]. In 2017, neuro-invasive
PAstV (Ni-PastV) 3 was detected in the CNS of pigs with encephalomyelitis in Hungary
and the USA [22,23]. Infected pigs exhibited clinical signs of astasia and knuckling, with a
fatality rate of 75–100% [22]. Ni-PAstV3 also belongs to the genogroup II of Mamastrovirus
in phylogenetic analysis. Since the discovery of Ni-PAstV3 in pigs in 2017, examinations
using central nervous system samples have been actively conducted [33–37]. In South
Korea, PAstV2 and PAstV4 were reported in both domestic pigs and wild boars [38–40].
However, previous studies in Korea have only analyzed fecal samples without considering
CNS infection or disease signs. In this study, the presence of Ni-PAstV in South Korea was
investigated using samples collected from domestic pigs showing neurological signs.

2. Materials and Methods
2.1. Sample Collection

Carcasses of five pigs with neurological signs (astasia, knuckling, and pedaling with
hind limb stretching) from three farms were submitted to Jeonbuk National University
Veterinary Diagnostic Center (JBNU-VDC) from August to September 2020. The pigs ranged
in age from 4 to 8 weeks, including both suckling and weaned piglets, with symptoms
primarily appearing among littermates. The main symptom observed was the inability to
stand; affected piglets that had fallen over would repeatedly exhibit paddling movements
but were unable to rise easily. Case numbers 20-0983 and 20-0932-1 (8-week-old) and
20-1295 (4-week-old) pigs were from farms in Jeongeup, Jeollabuk-do, Korea. The pig with
case number 20-1006-1 and 20-1006-2 (4-week-old) was from a farm located in Hamyang,
Gyeongsangnam-do, Korea. Each case exhibited a sporadic outbreak pattern within the
farm, with several instances of mortality observed. The specimens were transported
immediately after the animals were slaughtered for prompt examination. Autopsy was
conducted for each pig on different days. Tissue samples from various parts of the central
nervous system, including cerebrum and cerebellum and spinal cord, were collected from
each pig. These tissues were stored at −80 ◦C until further study or fixed in 10% neutral
buffered formaldehyde to prepare formalin-fixed paraffin-embedded (FFPE) blocks.
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2.2. RNA Extraction and cDNA Synthesis

Tissue samples were washed twice with 5 mL of phosphate-buffered saline and ho-
mogenized in 1 mL of phosphate-buffered saline using TissueLyser II (Qiagen, Hilden,
Germany). Homogenized samples were then centrifuged at 16,000× g for 10 min. RNA
extraction and cDNA synthesis were performed. Briefly, 255 µL of homogenate super-
natant was mixed with 30 µL of 10× DNase buffer and 150 U DNAse I (Roche, Basel,
Switzerland) to have a total volume of 300 µL. The mixture was then incubated at 37 ◦C
for 2 h. Next, 500 µL of TRIzol Reagent (Ambion, Austin, TX, USA) was added to the
sample mixture and incubated at room temperature for 5 min. Subsequently, 200 µL of
chloroform was added to the mixture and incubated at room temperature for 3 min. The
sample mixture was centrifuged at 16,000× g for 10 min at 4 ◦C. RNA was extracted from
the RNA contained aqueous phase using an RNeasy Mini Kit (Qiagen, Hilden, Germany),
and cDNA was synthesized using an AccuPower RocketScript RT PreMix (Bioneer, Daejeon,
Republic of Korea) and a universal reverse adaptor primer (AP) with 17 dT at the 3′ end.

2.3. PCR Screening and Sequencing

For detecting PAstV, partial RdRp sequence of AstV was amplified using published
primer sets [41,42] with hemi-nested PCR (Table 1). For the first-round PCR, AstV Pol F1,
AstV Pol F2, and AstV Pol R1 were used. For the second-round PCR, AstV Pol F3, AstV
Pol F4, and AstV Pol R1 were used. PCR was performed under the following conditions:
94 ◦C for 1 min; 40 cycles of 94 ◦C for 30 s, 50 ◦C for 30 s, and 68 ◦C for 30 s; and a final
extension at 68 ◦C for 5 min. ORF2 sequences were amplified using PAstV1-5 ORF2 F
as the forward primer and the conserved stem–loop II-like motif (s2m) at the 3′ end of
PAstV1, 3, and 5 [3] with AstV s2m R as the reverse primer, while PAstV2 and 4 were
amplified using the 3′ RACE method with AP. PCR products in different length were
separately purified and sequenced using next-generation sequencing-based technology
on the illumina MiSeq platform, barcode-tagged sequencing (BTSeqTM Services; Celemics,
Seoul, Republic of Korea). All ORF2 sequences were deposited in NCBI database by
accession no. OP643769.1 to OP643782.1.

Table 1. Primers used in PCR.

Primer Sequence (5′→3′) Target Region Position Position Reference
(GenBank No.)

AstV Pol [41]

F1: GARTTYGATTGGRCKCGKTAYGA

ORF1b
(RdRp)

3498–3916 KF787112
F2: GARTTYGATTGGRCKAGGTAYGA

F3: CGKTAYGATGGKACKATHCC 3513–3916
F4: AGGTAYGATGGKACKATHCC
R: GGYTTKACCCACATNCCRAA

ORF2

ORF2 F F: CTSYATGGGAAACTCCT

ORF2

4065–6597 KF787112
s2m R: CCCTCGATCCTACTCGG

AP-dT17 R: GGCCACGCGTCGACTAGTAC-Oligo(dT)17
AP R: GCCACGCGTCGACTAGTAC

2.4. Sequence Analysis

Phylogenetic analyses were performed based on ORF2 amino acid sequences. These
sequences were edited using BioEdit v. 7.2.5 [43] and aligned using Clustal Omega [44].
Phylogenetic trees were constructed using the neighbor-joining method and the p-distance
model with 1000 bootstrap replicates with the MEGA X program [45]. Nucleotide and
amino acid sequence identities were calculated using BioEdit using the sequence identity
matrix method (p-distance).
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2.5. Other Laboratory Diagnostics

Samples were tested for the presence of eight viral pathogens and six bacterial
pathogens, including those causing neurological diseases according to diagnostic manuals
of the JBNU-VDC (porcine circovirus type 2 virus (PCV2) and porcine reproductive and
respiratory syndrome virus (PRRSV); Prime-Q PRRSV/PCV2 Detection Kit (Genet Bio,
Daejeon, Republic of Korea), porcine epidemic diarrhea virus (PEDV) and transmissible
gastroenteritis virus (TGEV); Prime-Q PEDV/TGEV Detection Kit (Genet Bio, Daejeon,
Republic of Korea), Aujeszky’s disease virus (ADV); PCR [46], classical swine fever virus
(CSFV); RT-PCR [47], Japanese encephalitis virus (JEV); RT-PCR [48], swine influenza virus
(SIV); RT-PCR [49], (Brachyspira hyodysenteriae (swine dysentery); PCR [50,51], Escherichia
coli (E. coli); PCR [52,53], Haemophilus parasuis (Glasser’s disease); PCR [54], Lawsonia
intracellularis; PCR [55], Listeria spp.; PCR [56], and Salmonella spp.; real-time PCR [57]).

Bacterial cultivation was conducted to identify additional infectious pathogens. Subdu-
ral swab samples from the brains were cultured on MacConkey agar (MB-M1028; MB-cell,
Gyeonggi-do, Republic of Korea) and blood agar plates (AM601-02; Asan Pharm, Gyeonggi-
do, Republic of Korea). Each colony was identified by sequencing the 16S rRNA gene.

2.6. Histopathology

FFPE blocks were sectioned to 4 µm in thickness and used for hematoxylin and
eosin (H&E) staining. H&E staining was conducted using a standard protocol [58]. A
histopathological examination was conducted at the JBNU-VDC.

3. Results and Discussion

Partial RdRp sequences of PAstV were successfully amplified using a heminested PCR
from brain tissue samples of four pigs, except the 20-0983-02 pig. The possibility of co-
infection of multiple genotypes of PAstV was suggested by partial RdRp sequence analysis.
ORF2 sequence analysis from three pigs identified the presence of PAstV genotypes 1, 3,
4, and 5 with multiple genotypes coexisting within 20-1006-2 and 20-1295 (Table 2). In
South Korea, the prevalence of PAstV in domestic pigs was reported to be 20.1% and 9.2%
in wild boars [38,40]. PAstV4 was dominant (94.6%) in swine, with a few PAstV2 present
(5.4%) [38–40]. The detection of PAstV1, 3, and 5 genotypes represents the first detection
in South Korea in this study. Six sequences including complete capsid protein encoded
ORF2 sequence with lengths ranging from 2247 to 2937 nucleotides and one sequence
(PAstV4 KOR/1006-2/2020 Brain (OP643774)) with partial ORF2 sequence with a length
of 3104 nucleotides were obtained. A phylogenetic tree (Figure 1A) was constructed
with PAstV genotypes 1–5, Avastroviruses 1–3, and reported Ni-AstV and PAstV using
ORF2 amino acid sequences. Seven sequences obtained from brain samples of Korean
pigs were closely related to known PAstV genotypes 1, 3, 4 and 5. PAstV 1, 4, and 5 were
classified into the Mmastrovirus genogroup I, along with the MLB clade. PAstV3, on the
other hand, was classified into genogroup II with the VA/HMO clade, which included the
majority of Ni-AstV strains.

In molecular analysis, the obtained sequences showed high genetic diversity. Phyloge-
netic analysis and sequence comparison of the ORF2 sequence of PAstV1 were conducted
using seven reference sequences (Figure 1B). Although PAstV1 represents the earliest geno-
type discovered among PastVs, reported sequence data are limited. The highest amino
acid sequence identity with the PAstV1 KOR/1006-2/2020 brain was 80.6% (KF787112.3;
China), while the lowest identity recorded was 70.6% (MW504546.1; USA) (see Supple-
mentary Table S1). A comparison with Porcine/South Africa/BSF2/2021 (OM105035.1)
sequence in the conserved acidic amino acid-rich region located at the C-terminal part of
the ORF2 sequence revealed that the PAstV1 KOR/1006-2/2020 brain contained deletions
of 10 amino acids at true positions 645–646 (see Supplementary Figure S1).
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Table 2. Identified PAstV genotypes from PCR results and sequence analysis.

Samples Target
Sequence (Accession No.) Length (CDS)

No. Location Organ ORF1b
(RdRp)

ORF2
(Capsid)

20-0983 Jeollabuk-do, jeongeup † Brain + 5

PAstV5 KOR/0983/2020
Brain1 (OP643779) 2247 (2226)

PAstV5 KOR/0983/2020
Brain2 (OP643780) 2265 (2208)

20-1006-2
Gyeongsangnam-do,

hamyang Brain + 1, 4, 5

PAstV1 KOR/1006-2/2020
Brain (OP643769) 2496 (2313)

PAstV4 KOR/1006-2/2020
Brain (OP643774) 3104 (2465)

PAstV5 KOR/1006-2/2020
Brain (OP643781) 2937 (2208)

20-1295 Jeollabuk-do, jeongeup † Brain + 3, 5

PAstV3_KOR/1295/2020
Brain (OP643772) 2788 (2298)

PAstV5_KOR/1295/2020
Brain (OP643782) 2437 (2238)

†; The two samples were obtained from two separate farms in the same region. +; PCR positive. CDS; coding region.
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within the extended conserved region of the N-terminal portion of the ORF2 sequence of
the PAstV4 KOR/1006-2/2020 brain (see Supplementary Figure S2). Similar motifs were
observed in group A.

Phylogenetic analysis of PAstV5 was conducted with four Korean sequences and 42 ref-
erence sequences (Figure 1E). The highest amino acid identity in each sequence was ob-
served as follows: 97.0% between PAstV5 (MW504545.1; USA) and PAstV5 KOR/0983/2020
brain1, 98.9% between PAstV5 (KP747574.1 China) and PAstV5 KOR/0983/2020 brain2,
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98.5% between PAstV5 (KP747574.1 China) and PAstV5 KOR/1006-2/2020 brain, and 89.9%
between PAstV5 (MW504545.1; USA) and PAstV5 KOR/1295/2020 brain (see Supplemen-
tary Table S3). Two different PAstV5 sequences were obtained from KOR/0983/2020. They
were separated into two distinct groups in the phylogenetic analysis, with PAstV5 sequences
detected in 20-1006-2 and 20-1295, each. They shared 66.5% of nucleotide identities and
73.6% of amino acid identities. Meanwhile, PAstV5 KOR/0983/2020 brain2 with the PAstV5
KOR/1006-2/2020 brain shared 93.7% of nucleotide identities and 99.0% of amino acid
identities. In addition, PAstV5 KOR/0983/2020 brain1 with the PAstV5 KOR/1295/2020
brain shared 83.8% of nucleotide identities and 89.9% of amino acid identities.

Phylogenetic analysis of the PAstV3 KOR/1295/2020 brain with 40 reference sequences
showed an interesting feature. A distinct cluster comprising the PAstV3 KOR/1295/2020
brain and two reference sequences (KY933399.1; Uganda, LC201598.1; Japan) was observed,
contrasting with the group containing previously reported Ni-PAstV3 strains (Figure 1C).
Amino acid sequence comparisons of the PAstV3 KOR/1295/2020 brain showed the
highest amino acid identities of 91.8% (KY933399.1; Uganda), whereas it showed amino
acid identities ranging from to 59.2% to 60.5% with Ni-PAstV3 strains reported in the
USA and Hungary in 2017, respectively (KY940545.1; USA and KY073230.1–KY073232.1;
Hungary) (see Supplementary Table S4). The majority of Ni-AstVs in the HMO clade
are known to possess the Q(I/L)QxR(F/Y) motif [59]. The function of this motif re-
mains unknown; however, interestingly, a similar motif (EIQRRF) was also identified
in the PAstV3 KOR/1295/2020 brain (see Supplementary Figure S3). This sequence was
even more similar to the Ni-AstV sequence reported in minks (AIQRRF) (GU985458;
Sweden) than to the reported Ni-PAstV3 sequence (QIQQRF). Remarkably, it exhibited
a closer resemblance to the sequence detected in the brain tissue of Korean raccoon
dogs (VIQRRF) [6,19,23,27]. Cases of interspecies transmission of AstVs have been re-
ported [12,13], and traces of interspecies transmission associated with PastVs have also
been identified [60]. The Q(I/L)QxR(F/Y) motif of PAstV3 identified in this experiment, al-
though found in pigs, may exhibit higher identity sharing with AstVs from different species
(raccoon dogs and minks) than with previously reported PAstV3. These observations may
also signal instances of interspecies transmission that have occurred with PAstVs.

The low sequence identities with <95% identity at the nucleotide sequence level could
lead to significant serological differences [61,62]. The amino acid sequence identity of
PAstV5 below 95% could also induce significant serological differences. In ICTV, within
each Mamastrovirus genogroup, capsid protein amino acid genetic distances (p-dist) be-
tween genotypes range from 0.338 to 0.783 [63]. Interestingly, Korea PAstV4, 5 and 3 with
Ni-PAstV sequences were divided into at least two small clades (Figure 1A–E). Observed
differences in sequence similarity in amino acid and the tendency of grouping within the
genotype in phylogenetic analysis suggest a potential for further subtyping within the
genotype of PAstV.

The JBNU-VDC performed PCR for viral and bacterial pathogens and bacterial culti-
vation to identify the cause of neurological symptoms and encephalitis (see Supplementary
Table S5). The lung sample from the 20-0983 pig was PCR-positive for PRRSV. Strepto-
coccus suis was isolated from brain tissues. The lung sample from the 20-1295 pig was
PCR-positive for PRRSV. Streptococcus suis and Clostridium perfringens type A were isolated
from the brain and intestine, respectively. In the case of specimen 20-1006-2, major tests for
the causative agent of encephalitis yielded negative results.

When Ni-AstV infects CNS regions such as the brainstem, cerebellar/cerebral cortex,
hippocampus, and spinal cord, it appears to infect various types of neurons, including Purk-
inje cells, interneurons, and CA pyramidal neurons, as well as glial cells such as astrocytes.
This infection is associated with pathological conditions such as neuronal degeneration,
necrosis, neuronophagia, and gliosis [59]. Various CNS inflammations such as encephalitis,
meningitis, and meningoencephalomyelitis have been observed depending on the ani-
mal species infected with Ni-AstV [16,22,23,25,59,62–64]. CNS histopathology detected
inflammation in both the brain and spinal cord (Figure 2). Meningitis was detected in the
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cerebrum and cerebellum of 20-0983 and 20-1295 (Figure 2A,E; 20-0983, Figure 2O,P; 20-
1295). Non-suppurative inflammation, encephalitis with perivascular cuffing (Figure 2C,G;
20-0983), and neuronal necrosis of Purkinje cells in the brain with degeneration were de-
tected (Figure 2I; 20-0983). The spinal cord showed myelitis with perivascular cuffing
(Figure 2K; 20-0983) and neuronal degeneration with necrosis (Figure 2M; 20-0983).
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Figure 2. Tissue sections of brain (A–J,O,P) and spinal cord (K–N) stained with hematoxylin and
eosin (A,C,E,G,I,K,M; 20-0983. O,P; 20-1295. B,D,F,H,J,L,N; negative control (NC)). (A,O) Cerebrum
with meningitis and (B) NC; (C) cerebrum with perivascular cuffing (black arrowhead) and (D) NC;
(E,P) cerebellum with meningitis and (F) NC; (G) cerebellum with perivascular cuffing (black arrow-
head) and (H) NC; (I) Purkinje cell necrosis and degeneration of cerebellum (black arrowhead) and
(J) NC; (K) spinal cord with perivascular cuffing (black arrowhead) and (L) NC; (M) necrosis and
degeneration of neurons of spinal cord (black arrowhead) and (N) NC. Scale bar, 500 µm (A,B,E,F),
200 µm (N), and 100 µm (C,D,G–N,P).

In pigs, the predominant CNS pathology found in Ni-PAstV3 infection was en-
cephalomyelitis. However, previous studies have shown that in addition to encephalomyeli-
tis, meningitis is also seen in Ni-PAstV3 infection [36]. On the other hand, Streptococcus
suis is also characterized by meningitis as the main manifestation [65]. In 20-0983 and
20-1295, PAstV and Streptococcus suis were detected together in the brain. Meningitis was
also observed. Thus, the cause of morbidity and mortality in pigs could not be clearly
linked to PAstV infection. However, in 20-0983, histopathological examination of the spinal
cord showed perivascular cuffing and neuronal degeneration, suggesting viral myelitis.
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In addition, PCR detected PAstV. Previous studies have detected PAstV5 in the brains
of pigs [33]. Based on these results, the PastV5 detected in this study is likely to be a
Ni-PAstV strain. Based on the results of this study and previous studies that have de-
tected PAstV2 and PAstV5 in the brain [30], it is likely that other PAstVs, in addition to
Ni-PAstV3, have the potential to cause central nervous system infections. However, the
relationship between the detected PAstV in the brain and clinical symptoms could not be
clearly established. Additional analysis of full genome sequence and type-specific ISH
and/or in vivo experimental infection may help us further elucidate the pan-infection of
PAstVs in the CNS.

4. Conclusions

In this study, PAstV genotype 1, 3, 4, and 5 were detected in three brain samples with
the coexistence of multiple genotypes. The results of the histopathological examination
confirmed signs of encephalitis, myelitis, and meningitis. These findings suggest that, in
addition to PAstV3, other genotypes of PAstV can also infect the CNS of pigs, although
further experiments are needed to confirm the neurotropism of these viruses. From a
different perspective, this study is significant in that it represents the first detection of
PAstV1, PAstV3, and PAstV5 genotypes, which have not been previously reported in
South Korea.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16091372/s1, Figure S1: PAstV1 ORF2 amino acid, Figure S2:
PAstV4 ORF2 amino acid, Figure S3: Ni-AstVs amino acid, Figure S4: RdRp 2nd PCR; Table S1:
PAstV1 ORF2 identity, Table S2: PAstV4 ORF2 identity, Table S3: PAstV5 ORF2 identity, Table S4:
PAstV3 ORF2 identity, Table S5: other laboratory diagnostics, Table S6: Ni-AstVs ORF2 identity.
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