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Abstract: Six novel Microbacterium phages belonging to the Tectiviridae family were isolated
using Microbacterium testaceum as a host. Phages MuffinTheCat, Badulia, DesireeRose,
Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by stu-
dents participating in the Science Education Alliance Phage Hunters Advancing Genomics
and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The
phages have linear dsDNA genomes 15,438–15,636 bp with 112–120 bp inverted terminal
repeats. Transmission electron microscopy (TEM) imaging analysis revealed that the six
novel phages have six-sided icosahedral double-layered capsids with an internal lipid mem-
brane that occasionally forms protruding nanotubules. Annotation analysis determined
that the novel Microbacterium phages all have 32–34 protein-coding genes and no tRNAs.
Like other Tectiviridae, the phage genomes are arranged into two segments and include
three highly conserved family genes that encode a DNA polymerase, double jelly-roll
major capsid protein, and packaging ATPase. Although the novel bacteriophages have
91.6 to 97.5% nucleotide sequence similarity to each other, they are at most 58% similar
to previously characterized Tectiviridae genera. Consequently, these novel Microbacterium
phages expand the diversity of the Tectiviridae family, and we propose they form the sixth
genus, Zetatectivirus.

Keywords: Microbacterium; tectivirus; actinobacteria; jelly-roll capsid

1. Introduction
Microbacterium spp. are high G + C%, gram-positive rod-shaped aerobes belonging

to the order Actinomycetales found throughout the environment in air, food, soil, plants,
and water [1–4]. They are often non-harmful or even beneficial to plants [1,5]. Once
thought to be rare in humans, Microbacterium infections have been identified with increasing
frequency in patients [6]. Microbacterium spp. have been associated with bacteremia in
immunosuppressed patients [7–10] and were even isolated from the sputum of a patient
with cystic fibrosis, leading to speculation that the species could be an emerging pathogen
of cystic fibrosis patients [11,12]. Although CRISPR-Cas9 evolved naturally as a defense
mechanism in bacteria and archaea, it has been reported that Microbacterium spp. do not
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use CRISPR-Cas9 systems [13,14]. Other host defense mechanisms such as alternative
restriction modification systems [15,16] have been identified.

Microbacterium testaceum is an endophytic bacterium that can be found in potato, rice,
corn, and other agriculturally important crops [17]. Many gram-negative plant pathogens
produce N-acylhomoserine lactone (AHL), a quorum sensing signaling compound, and
strains of M. testaceum have shown early promise as a biocontrol agent with the ability to
quench AHL-dependent quorum sensing by plant pathogens [17].

A diverse group of phages infect the Microbacterium spp. The genomes of these phages
range from 15 kb to almost 195 kb, typically with high GC content ranging from 50.1% to
71.4%, which is expected given their high GC content host (average 67%) (https://phagesdb.
org (accessed on 15 November 2024)) [1]. The list of phages that infect Microbacterium spp.
is growing quickly; the first Microbacterium spp. phage was discovered in 2007 [18] and at
current count, there are 5752 distinct phages that infect Microbacterium spp., most of which
have a lytic lifestyle [1]. Of these, 11 phages have been isolated using M. testaceum as a host
(https://phagesdb.org).

Over 26,000 bacteriophages have been isolated using bacterial hosts belonging to the
order Actinomycetales by students participating in the Science Education Alliance—Phage
Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program, an
inclusive research community (iREC) with programmatic and scientific support provided
by Howard Hughes Medical Institute (HHMI), the University of Pittsburgh, and James
Madison University [19]. As course-embedded research projects, undergraduate students
isolate, name, and characterize novel bacteriophages mostly from soil samples [19–21].
Phages infecting bacterial hosts within the phylum Actinobacteria are genetically highly
diverse, but the vast majority belong to the class Caudoviricetes having double-stranded
DNA genomes, isometric capsids, and tails. Of these, most have siphoviral morphology
with long, flexible non-contractile tails [1]. Very few podoviral bacteriophages have been
isolated which have short, non-contractile tails. Even rarer numbers of tailless phages have
been isolated and therefore do not belong to the class Caudoviricetes.

The Tectiviridae family is a diverse group of non-enveloped, tailless DNA phages be-
longing to the class Tectiliviricetes with both lytic and lysogenic members, including the well-
characterized Enterobacteria phage PRD1 [22]. Their genomes are linear, double-stranded
DNA approximately 15 kb in length [23]. Hallmarks of the Tectiviridae family genomes in-
clude approximately 100 bp inverted terminal repeats (ITRs) [24] that flank around 30 open
reading frames, including three conserved genes that encode (1) a DNA polymerase, (2) a
double jelly-roll major capsid protein, and (3) a packaging ATPase [23,25–27]. Tectiviridae
replicate their genomes using a protein-primed, strand-displacement mechanism [28] and
a family B DNA polymerase [29]. The major capsid protein forms around a lipid mem-
brane acquired from the host during assembly, creating an internal lipid membrane. Upon
receptor binding on a new cell, this lipid membrane forms a proteo-lipidic tube, which
allows passage of the phage genome into the host cell [30,31]. During assembly, an empty
capsid forms, into which the phage genome is injected by a FtsK-HerA packaging ATPase
integrated at one vertex [31].

Tectiviridae are structurally similar to several eukaryotic and archaeal viruses [32].
PRD1 is very similar to adenoviruses, members of the family Adenoviridae, which are non-
enveloped, linear, double-stranded DNA tailless viruses that typically cause respiratory
illnesses in vertebrates and belong to the class Tectiliviricetes (https://ictv.global/taxonomy).
Adenoviruses are best known for their potential as vectors and were used as SARS-CoV-2
vaccine vehicles [33]. Both viruses have similar major coat proteins and capsid architecture
in addition to linear genomes with inverted terminal repeats [34]. Tectiviridae are also
very similar to archaeaviruses. Due to the similarity, the Skuldviridae, a new family of
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archaeaviruses was placed in the class Tectiliviricetes (https://ictv.global/taxonomy) [35].
The similarity of tectiviruses to both eukaryotic and archaeal viruses suggests the viruses
may have a common ancestor, and tectiviruses may have played a very important role
evolutionarily as the precursors of large eukaryotic transposons known as Polintons which
are thought to have evolved into most eukaryotic dsDNA viruses [36,37].

Currently, the Tectiviridae family includes five genera and members (and proposed
members) that infect both gram-positive and gram-negative bacteria. Tectivirus hosts
include bacteria from the phyla Pseudomonatoda (infected by Alpha- and Gammatectivirus),
Firmicutes (infected by Betatectivirus), and Actinobacteria (infected by Deltatectivirus and
Epsilontectivirus) (https://ictv.global/taxonomy) [26,27]. Most of the phages belonging to
the Betatectiviridae, Deltatectiviridae, and Epsilontectiviridae that infect gram-positive hosts
are temperate [26,27,38] and presumably have a lysogenic lifestyle.

While lipid membrane-containing phages were once thought to be rare [39,40], ad-
vances in isolation and characterization have elucidated the pivotal role of these phages in
microbial ecology, playing roles in the food chain and as vehicles for gene transfer [41–43].
Yet, in relation to other types of phages, they remain underrepresented, potentially due
to the historical use of chloroform in culture-based studies to prevent bacterial contam-
ination [43]. Lipid membrane-containing bacteriophages are sensitive to chloroform; in
fact, sensitivity to chloroform is typically used as the first indicator of a lipid membrane.
Recent evidence suggests that they are more abundant in the environment than previously
believed and understanding them will pave the way for new innovations and applications,
as well as provide further insight into viral lineages and evolution [22].

This study presents the isolation and characterization of six rare new tailless Tectiviridae
members isolated from host M. testaceum by undergraduate students at Alliance University,
NY (formerly known as Nyack College) in the SEA-PHAGES program. These novel
tailless phages make up a monophyletic group which we propose represents a new sixth
genus of Tectiviridae: Zetatectivirus. Previously, all the Microbacterium phages identified
were members of the class Caudoviricetes and these are the first reported tectivirus phages
isolated and characterized from Microbacterium spp. With an average genome size of
15,498 bp, they are currently the smallest phages known to infect Microbacterium spp.
(https://phagesdb.org (accessed on 15 November 2024)).

2. Materials and Methods
2.1. Bacterial Strains

All the bacterial strains used in the study were obtained from the Agricultural Research
Service (https://nrrl.ncaur.usda.gov/) and grown in peptone-yeast extract-calcium (PYCa)
medium supplemented with 0.1% dextrose at 28 ◦C.

2.2. Isolation and Purification of Phages

Soil samples were collected in the United States in Nyack, NY, Baldwin, NY, Haskell,
NJ, and Seabrook, MD. To isolate the phage, the samples were washed with PYCa media
(1.0 g yeast extract, 15 g peptone, 2.5 mL 40% dextrose, and 4.5 mL 1M CaCl2 per liter)
supplemented with 0.1% dextrose and filtered through a 0.22 µm filter. The filtered soil
extracts were inoculated with mixed cultures including late exponential phase M. testaceum
NRRL B-59317 and incubated at 28 ◦C with shaking for 48 h. After incubation, the cultures
were filtered, and the filtrates plated in PYCa top agar lawn with M. testaceum. The plates
were incubated for 2 days at 28 ◦C, following which isolated phages were picked into phage
buffer with glycerol (10 mM Tris-HCl [pH 7.5], 10 mM MgSO4, 1 mM CaCl2, 68 mM NaCl,
and 10% glycerol) to plaque purify. Crude lysates were obtained after three rounds of
purification as previously described [44–46].
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2.3. Phage Amplification and Production of High Titer Lysates

Crude phage stocks were diluted and plated on a lawn of the bacterial host to produce
plates with near-confluent lysis. Plates were flooded with 8 mL phage buffer, and incubated
overnight at 4 ◦C. To purify, the lysates were harvested and filtered through a 0.22 µm filter.

2.4. DNA Sequencing, Annotation, and Sequence Analysis

DNA was isolated from a high titer lysate purified by using Promega Wizard
DNA extraction kits (http://www.promega.com/) or phenol-chloroform extraction using
Phase-Lock Gel (http://www.quantabio.com/) and resuspended in ddH2O. The phage
genomes were sequenced at the Pittsburgh Bacteriophage Institute where sequencing li-
braries were prepared from double-stranded phage genomic DNA using NEB Ultra II
FS Kits. These were run on an Illumina MiSeq using 150-cycle v3 Reagent Cartridges
yielding 150-base single-end reads representing between 106- and 4572-fold coverage
of each genome (Table 1). The raw reads were quality-controlled using Consed ver-
sion 29 and assembled using Newbler version 2.9. The assemblies were checked for
completeness, accuracy, orientation, and genomic termini as previously described [47].
Phage genomes were annotated as described previously [48] using DNA Master (http:
//cobamide2.bio.pitt.edu), PECAAN (v2021–2024) (https://discover.kbrinsgd.org), Glim-
mer 3.0 [49], GeneMark 2.5 [50], NCBI BLAST 2.7 and Conserved Domain Database
at NCBI [51], Starterator (http://phages.wustl.edu/starterator/) [52], Aragorn version
1.2.38 [53], tRNA-ScanSE 2.0 [54], HHPred (databases: PDB mmCIF70, Pfam-A, and NCBI
Conserved Domain databases) [55,56], SOSUI [57], TMHMM (http://www.cbs.dtu.dk/
services/TMHMM/) [58], DeepTMHMM [59], DNAbind [60], and Phamerator using
database Actinobacteriophage_2422 [61]. EMBOSS was used to verify the terminal repeat se-
quences initially identified by sequencing [62]. Pairwise average nucleotide identities (ANI)
were calculated using the Sequence Demarcation tool [63]. Default parameters were used
for all software. All complete genome sequences are publicly available at phagesdb.org
and in GenBank. Raw sequence reads are available at the Sequence Read Archive (SRA)
(Table 1).

Table 1. Phage discovery locations and general characterization of the novel tectiviruses.

Phage GenBank
Accession #

SRA
Accession # Yr Isolated Location Sequence

Coverage
Genome
Size (bp) %GC

Terminal
Repeats

(bp)
# Genes

DesireeRose OL455892 SRX27283292 2019 Nyack, NY,
USA 4572 15,488 55 112 32

MuffinTheCat MT952848 SRX27283295 2019 Nyack, NY,
USA 824 15,494 55.1 114 32

LuzDeMundo OP068334 SRX27283294 2021 Baldwin, NY,
USA 537 15,471 55 113 32

Bee17 OQ709213 SRX27283290 2019 Haskell, NJ,
USA 3019 15,636 54.6 119 34

Badulia MZ150790 SRX27283289 2019 Nyack, NY,
USA 4407 15,460 54.6 120 33

SCoupsA OQ709206 SRX27283296 2021 Seabrook,
MD, USA 106 15,438 54.8 120 33

2.5. Host Range Analysis

High titer lysates were diluted tenfold in phage buffer with glycerol and 3 µL of
each dilution was spotted on lawns of Microbacterium spp (M. testaceum NRRL B-59317,
M. arborescens NRRL B-59342, M. radiodurans NRRL B-24799, M. foliorum NRRL B-24224,
M. saperdae NRRL B-14833). Plates were incubated at 28 ◦C for 2 days and observed for
plaque formation.

http://www.promega.com/
http://www.quantabio.com/
http://cobamide2.bio.pitt.edu
http://cobamide2.bio.pitt.edu
https://discover.kbrinsgd.org
http://phages.wustl.edu/starterator/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
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2.6. Electron Microscopy

High titer phage lysates were concentrated by centrifugation as described previ-
ously [44–46]. For negative staining analysis, phage particles were spotted onto formvar
and carbon-coated 400 mesh copper grids, rinsed with distilled water, and stained with 1%
uranyl acetate. Grids were imaged with a JEOL JEM 1400 transmission electron microscope
at 100 kV acceleration voltage (JEOL, USA, Ltd., Peabody, MA, USA). Images were captured
on an EMSIS Veleta side-mounted 2K × 2K CCD camera (Olympus-SIS, Munich, Germany).

2.7. Phylogenetic Reconstruction

Whole genome comparison was carried out using tectivirus complete genome nu-
cleotide sequences retrieved from NCBI (accession numbers listed in Table 1) and Forthebois
was included as an outgroup (MK620900.1). Tectivirus protein sequences (DNA polymerase,
major capsid, and DNA packaging ATPase) were retrieved from NCBI Virus [64], omitting
those sequences that have not been assigned a genus or classified as a particular protein. A
T4 bacteriophage protein was included in each multiple alignment for an outgroup.

Within MEGA7 [65], MUSCLE [66] was used to construct multiple alignments of
the complete genome nucleotide sequences using the following parameters: gap open
penalty −400, gap extend penalty 0, max memory 4095 MB, max iterations 8, UPGMB
clustering method, min diag length 24. This alignment was used to generate a UPGMA tree
using the following parameters: bootstrap test of phylogeny (500 replicates) [67], amino
acid substitution type nucleotide, maximum composite likelihood method, substitutions
including transitions and transversions; rate of variation was calculated using a gamma
distribution shape parameter = 1, homogeneous pattern among lineages with a complete
deletion and including all codon positions. The tree was based on 13,980 positions.

MEGA7 [65] and MUSCLE [66] were used to construct multiple alignments of the
DNA polymerase, major capsid, and DNA packaging ATPase protein sequences using
the following parameters: gap open penalty −2.9, gap extend penalty 0, hydrophobicity
multiplier 1.2, max memory in MB 4095, max iterations 8, clustering method UPGMB,
minimum diag length 24. MUSCLE alignments were used to construct phylogenetic trees
using the UPGMA method [68] using the following parameters: bootstrap test of phylogeny
(500 replicates) [67], amino acid substitution using the Poisson correction method [69]; rate
of variation was calculated using a gamma distribution shape parameter = 1, complete
deletion. The DNA polymerase tree was based on 418 positions, the major capsid tree
was based on 276 positions, and DNA packaging ATPase tree was based on 150 sites. All
positions containing gaps and missing data were eliminated. Clades were collapsed by
genus. Sequences found in each condensed clade can be found in Table 2.

2.8. Genome Comparisons

Comparative genome maps were constructed using Phamerator [61] (https://phamerator.
org (accessed on 1 October 2024)) to display blastn alignments or an Observable notebook
(https://observablehq.com/@cresawn-labs/phamerator-map) to display tblastx alignments.

3. Results
3.1. Isolation and Characterization of Microbacterium testaceum Phages

Microbacterium phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and
LuzDeMundo were isolated from environmental samples using host M. testaceum NRRL
B-59317 by undergraduate students participating in the SEA-PHAGES program in 2019
and 2021. The phages were isolated from enriched soil samples collected at four discrete
locations in the eastern United States (Table 1). After 48 h at 28 ◦C, they form 2–5 mm
slightly turbid plaques on bacterial lawns of their isolation host (Figure 1).

https://phamerator.org
https://phamerator.org
https://observablehq.com/@cresawn-labs/phamerator-map
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Figure 1. Representative plaques observed on a lawn of M. testaceum. A dilution of a purified lysate
of SCoupsA was plated in a PYCa top agar bacterial lawn and grown for 48 h at 28 ◦C.

3.2. Host Range Determination

The host range of the novel Microbacterium phages was determined by spotting tenfold
dilutions of high titer lysate on lawns of several Microbacterium spp. available in the labo-
ratory including M. arborescens NRRL B-59342, M. radiodurans NRRL B-24799, M. foliorum
NRRL B-24224, M. saperdae NRRL B-14833 in addition to the isolation host, M. testaceum
NRRL B-59317 (Figure 2). Two sequenced Microbacterium phages with siphovirus-like
morphology, Cece isolated using M. radiodurans NRRL B-24799 (Genbank Accession #
OP068343) and Paschalis, isolated using M. foliorum NRRL B-24224 (Genbank Accession
# MH155873) were used as controls. Host range analyses demonstrate that the novel
Microbacterium phages have a narrow host specificity and only infect M. testaceum NRRL
B-59317 (Figure 2). Although Cece and Paschalis were unable to infect M. testaceum, both
infected their respective isolation hosts as expected. Interestingly, Cece also infects M.
arborescens NRRL B-59342 with an efficiency of plating (EOP) of 100% (Figure 2).

3.3. Virion Visualization

Transmission electron microscopy (TEM) imaging analysis revealed that the novel
Microbacterium phages have six-sided icosahedral double-layered capsids with a range of
57.8–66.3 nm and an average diameter of 60.6 nm (n = 14) (Bee17 n = 1; DesireeRose n = 3;
LuzDeMundo n = 8; MuffinTheCat n = 2) (Figure 3). Several of the virion particles have
nanotubes that protrude from a capsid vertex (Figure 3D, white arrow). Members of the
Tectiviridae family are non-enveloped viruses that have double-layered capsids with an
internal lipid membrane, and form protruding nanotubules at a low frequency [26]. Taken
together, the TEM analysis of the novel Microbacterium phages suggests that they are new
members of the Tectiviridae family.
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Figure 3. Transmission electron microscopy images of representative phages as observed after
negative staining with uranyl acetate; images taken with JEOL JEM 1400 TEM at 100 kV acceleration
voltage. (A) Bee17; (B) DesireeRose; (C) LuzDeMundo; (D) MuffinTheCat. Black arrow indicates the
internal lipid membrane. White arrow indicates the tail tube.

3.4. Genome Sequencing

To genetically characterize these phages, genomic DNA was extracted from high-titer
lysates, resuspended in ddH2O, and sequenced at the Pittsburgh Bacteriophage Institute.
Sequencing was performed using an Illumina MiSeq Next Generation Sequencer with
coverage ranging from 106 to 4572. Visualizing the assembled genomes revealed that the
reads of all the genomes ended at a specific base without any circularizing reads. No finish-
ing Sanger sequencing was required. The phage genomes are double-stranded and linear,
ranging from 15,438 to 15,636 bp in length. All the genomes have 112–120 bp perfect ITRs
(Table 1). Taken together, these data suggest that the phages are likely to have covalently
bound terminal proteins and are similar in length to other members of the Tectiviridae
family [70,71]. The GC content of the genomes ranges from 54.6 to 55.1% with an average
of 54.9% (Table 1). The phage genome sequences are unlike any other actinobacteriophage
sequence in PhagesDB (https://phagesdb.org/ (accessed on 15 November 2024)) and
therefore, they are the founding members of the GE phage cluster.

3.5. Annotation

Annotation analysis determined that the novel Microbacterium phages, MuffinTheCat,
Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo all have 32–34 protein coding
genes (Table 1, Figure 4). No tRNAs were identified using Aragorn version 1.2.38 [53] and
tRNA-ScanSE 3.0 [54]. Similar to other members of the Tectiviridae family, the highly
conserved DNA polymerase, DNA packaging ATPase, and major capsid genes were
identified (Figure 4, Table 2). In addition, the function of three other genes could be
ascertained with a high degree of probability using bioinformatic analysis: a peptidase,
phage membrane DNA delivery protein, and endolysin. Six transmembrane membrane

https://phagesdb.org/


Viruses 2025, 17, 113 9 of 18

proteins and a DNA binding protein were also identified. The other 19–21 genes have an
undetermined function (Figure 4, Table 2). All the genes in the genomes are homologs and
there are no other members of each pham besides the six novel Tectiviridae. LuzDeMundo
has one orpham, gp1, which is not present in any of the other novel phage genomes or
related to any known gene, indicated by the numbered white box (Figure 4). Bee17 has
two orphams, gp4 and gp34 (Figure 4). No integrase gene has been identified and it is
unclear if the phages can form lysogens. Other tectiviruses, such as Betatectivirus pGIL01
and pGIL16, that form lysogens do not contain integrases and are maintained in the host as
extrachromosomal replicating sequences [72].
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Figure 4. Phamerator genome maps of the six novel bacteriophages. The genomes are represented
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orpham, gp1, a gene not closely related to any other known gene and Bee17 has two orphams, gp4
and gp34, indicated by the white boxes. The ORFs with predicted functions are labeled. Predicted
transmembrane proteins are indicated by the red stars and DNA binding protein by the blue polygon.
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indicate sequences not shared across genomes. The other colored regions between genomes indicate
areas with intermediate similarity.
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Table 2. Assigned functions of genes in the genomes of the novel tectiviruses. The genes not included
have undetermined functions.

Product Functions Direction Desiree Rose Muffin TheCat LuzDe Mundo Bee17 Badulia SCoupsA

membrane protein R gp4 gp4 gp4 gp5 gp4 gp4

DNA binding protein R gp5 gp5 gp5 gp6 gp5 gp5

DNA primase/polymerase R gp7 gp7 gp7 gp8 gp7 gp7

DNA packaging ATPase F gp12 gp12 gp12 gp13 gp12 gp12

membrane protein F gp13 gp13 gp13 gp14 gp13 gp13

major capsid protein F gp14 gp14 gp14 gp15 gp14 gp14

membrane protein F gp15 gp15 gp15 gp16 gp15 gp15

membrane protein F gp16 gp16 gp16 gp17 gp16 gp16

peptidase F gp17 gp17 gp17 gp18 gp17 gp17

membrane protein F gp18 gp18 gp18 gp19 gp18 gp18

phage membrane DNA delivery protein F gp19 gp19 gp19 gp20 gp19 gp19

endolysin F gp30 gp30 gp30 gp31 gp30 gp30

membrane protein F gp32 gp32 gp32 gp33 gp32 gp32

3.6. Genome Organization

Genome organization of the Tectiviridae family is highly conserved and it has been
previously demonstrated that there is a family-wide conservation of three proteins: a
major capsid protein, DNA packaging ATPase, and DNA polymerase [23,25–27]. The
genomes of the six novel phages are organized with the first 9–10 genes on the left arm
being leftwards transcribed with the remainder rightwards transcribed (Table 2, Figure 4).
This two-segment genome organization is most similar to the Deltatectivirus (Wheeheim
and Forthebois) and Epsilontectivirus (Toil) which are also tectivirus actinobacteriophages
(Figure 5) [26,71]. The genome of Gammatectivirus (GC1) also has two segments with the
first three genes on the left arm being leftwards transcribed (Figure 5). In the novel genomes,
the highly conserved DNA polymerase is present on the left arm and transcribed leftwards
(Figures 4 and 5). The right arm contains structural genes and genes involved in cell lysis,
such as the major capsid protein and endolysin (Figures 4 and 5). Both genes are homologs
of the PRD1 major capsid protein and a LysM-like endolysin, respectively. Also present
on the right arm is a phage DNA delivery protein, a homolog of the PRD1 DNA delivery
protein, which assists with delivery of DNA to the host (Figure 4) [23]. The similarity of the
genome organization of the novel phages to the Deltatectivirus and Epsilontectivirus along
with the presence of several homologs of the well-studied Alphatectivirus PRD1 supports
the claim that they are tectiviruses.

3.7. Nucleotide Sequence Similarity

Whole genome comparison using average nucleotide identity (ANI) analysis is stan-
dard in species classification. This method is used by NCBI to evaluate the taxonomy
of genomes submitted to GenBank and to determine relatedness between species [73].
Similarly, ANI can be used to determine virus taxon demarcation with a high degree of
certainty [74]. ANI calculations show that the six novel bacteriophages have 91.6 to 97.5%
nucleotide sequence similarity to each other (Figure 6). They are at most 58% similar to
species within each of the current Tectiviridae genera. Therefore, the novel bacteriophages
are most similar to each other and distinct from the other tectiviruses. This meets the
criteria of these phages being members of a new species and a new genus separate from
the known tectiviruses.
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3.8. Sequence Analysis and Phylogenetic Reconstruction

To determine the evolutionary history of the six novel phages, the full nucleotide
genome sequences of Badulia, SCoupsA, Bee17, DesireeRose, LuzDeMundo, and MuffinTh-
eCat were aligned and compared using phylogenetic reconstruction. Although these phages
are closely related with over 90% pairwise nucleotide identity (Figure 6), they formed with
high confidence two distinct clades: clade 1 contained DesireeRose, LuzDeMundo, and
MuffinTheCat, while clade 2 contained Bee17, Badulia, and SCoupsA (Figure 7).
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Figure 7. Phylogenetic reconstruction of novel tectiviruses complete genome nucleotide sequences.
Trees were constructed using MEGA7 [65]. The UPGMA method [68] was used based on multiple
alignments generated by MUSCLE [66]. Bootstrap values are based on 500 replicates and are indicated
next to the branches [67]. First, second, third, and non-coding codon positions were included and
all positions containing gaps and missing data were eliminated. See Table 1 for accession numbers.
Deltatectivirus Forthebois was included as an outgroup (MK620900.1).
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We further compared each of the three conserved proteins (DNA polymerase, major
capsid, and packaging ATPase) of the six novel phages Badulia, SCoupsA, Bee17, De-
sireeRose, LuzDeMundo, and MuffinTheCat to previously characterized Tectiviridae, using
multiple alignment of amino acid sequences (see Tables 1 and 3 for accession numbers)
and phylogenetic reconstruction (Figure 8A–C). Each of the three trees showed clustering
of previously characterized tectiviruses into their expected genera (Alpha-, Beta-, Delta-,
Gamma-, and Epsilontectivirus). The six novel phages, clustered together in a distinct clade
for each of the three proteins. In each tree, this clade grouped most closely with Delta- and
Epsilontectivirus which were also isolated from Actinobacteria species. As known clades
were retained and bootstrap values were high, we have high confidence in the phylogenetic
reconstruction. There is a clear delineation between the novel phages and the previously
characterized genera, which, combined with the ANI data, suggests this clade should be
considered a new genus.

Table 3. NCBI accession numbers for phylogenetic reconstruction, retrieved from NCBI Virus [64]
and Genome Database (https://www.ncbi.nlm.nih.gov/genome/ (accessed on 31 January 2024)).
The bacterial strain each phage was originally isolated from is listed; this does not represent its
entire host range. When multiple strains have been sequenced, median GC content is listed. This
is organized according to NCBI taxonomy browser: https://www.ncbi.nlm.nih.gov/Taxonomy/
Browser/wwwtax.cgi?mode=Undef&id=10656&lvl=3&lin=f&keep=1&srchmode=1&unlock.

Subspecies Phage (%GC) Isolation Host (%GC) DNA Polymerase DNA Packaging
ATPase Major Capsid

Alphatectivirus

Alphatectivirus PR4 PR4 (48.3) Pseudomonas aeruginosa
(66.2)

AAX45594.1,
YP_337983.1

YP_337992.1,
AAX45618.1

AAA32442.1,
AAX45607.1,
YP_337995.1

Alphatectivirus PRD1

L17 (48.3)
Aeromonas hydrophila
(61.1)/Escherichia coli
(50.6)

AAX45532.1 AAX45556.1 AAX45545.1

PR3 (48.3) Pseudomonas aeruginosa
(66.2) AAX45563.1 AAX45587.1 AAX45576.1

PR5 (48.3) Escherichia coli
(50.4–50.8%) AAX45625.1 AAX45649.1

PR772 (48.3) Proteus mirabilis (38.8) AAX45656.1,
AAR99740.1

AAX45680.1
AAR99751.1
https://www.ncbi.
nlm.nih.gov/nuccore/
AY848688

AAX45669.1
AAR99754.1

PRD1 (48.1) Pseudomonas sp.
(P. aeruginosa 66.2%)

AAA32450.1,
AAA32452.1,
AAX45903.1,
YP_009639956.1

YP_009639965.1,
AAX45556.1,
AAX45649.1,
AAX45680.1,
AAX45927.1,
AAR99751.1, P27381.3

UDY80299.1,
AAA32445.1,
AAX45916.1,
YP_009639968.1,
P22535.2

Betatectivirus

Betatectivirus AP50 AP50 (38.7) Bacillus anthracis (35.2) YP_002302517.1 YP_002302526.1,
ACB54913.1 YP_002302529.1

Betatectivirus Bam35
Bam35c (39.7) Bacillus thuringiensis

(34.9) NP_943751.1 NP_943760.1 NP_943764.1

pGIL02 (39.7) Bacillus thuringiensis
(34.9) AND28856.1 Uncharacterized AND28851.1

Betatectivirus GIL16 GIL16c (39.7) Bacillus thuringiensis
(34.9) YP_224103.1 AAW33576.1,

YP_224111.1 YP_224110.1

Betatectivirus Wip1 Wip1 (36.9) Bacillus anthracis (35.2) YP_008433325.1 * Uncharacterized AGT13371.1

Deltatectivirus

Deltatectivirus forthebois Forthebois (53.6) Streptomyces scabiei
(71.3)

YP_010084034.1,
QBZ72843.1 QBZ72848.1 QBZ72850.1,

YP_010084041.1

Deltatectivirus wheeheim WheeHeim (54.6) Streptomyces scabiei
(71.3)

YP_010084070.1,
QAX92919.1 QAX92924.1 QAX92926.1,

YP_010084077.1

Unclassified RickRoss (54.4) Streptomyces scabiei
(71.3) UYL87501.1 UYL87506.1 UYL87508.1

https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=10656&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=10656&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/nuccore/AY848688
https://www.ncbi.nlm.nih.gov/nuccore/AY848688
https://www.ncbi.nlm.nih.gov/nuccore/AY848688
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Table 3. Cont.

Subspecies Phage (%GC) Isolation Host (%GC) DNA Polymerase DNA Packaging
ATPase Major Capsid

Epsilontectivirus

Epsilontectivirus toil Toil (54.5) Rhodococcus opacus
(67.1)

YP_010084103.1,
ARK07690.1

YP_010084108.1,
ARK07695.1

(coat) ARK07697.1,
YP_010084110.1

Gammatectivirus

Gammatectivirus GC1 GC1 (50.5) Gluconobacter cerinus
(55.6)

YP_009620046.1,
ATS92570.1

YP_009620053.1,
ATS92577.1

ATS92580.1,
YP_009620056.1

Outgroup

T4 (35.3) Escherichia coli (50.6) NP_049662.1 NP_049775.1 AAA32503.1

* There is an annotation error for Wip1; the accession number listed for the DNA polymerase is not the polymerase
protein. Wip1 was therefore omitted from the DNA polymerase tree.
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MEGA7 based on multiple alignments generated using MUSCLE [66]. Bootstrap values are based
on 500 replicates and are indicated next to the branches [67]. Branch lengths indicate evolutionary
distances, with units in amino acid substitutions per site, as computed using the Poisson correction
method [69]. The rate variation was calculated using a gamma distribution shape parameter = 1.
All positions containing gaps and missing data were eliminated. Clades were collapsed by genus.
Sequences found in each condensed clade can be found in Table 3.

4. Conclusions
This work demonstrates that based on viral morphology, genome size and organi-

zation, and the presence of the highly conserved DNA polymerase, major capsid, and
DNA packaging ATPase, the novel Microbacterium testaceum phages MuffinTheCat, Badulia,
DesireeRose, Bee17, SCoupsA, and LuzDeMundo are new members of the Tectiviridae
family. Although these novel microbacteriophages are tectiviruses, they lack significant
sequence similarity to other tectiviruses, and subsequent phylogenetic analysis revealed
that they are distinct from phages in the five previously described genera and therefore,
merits the formation of a sixth genus, Zetatectivirus. This expands not only the Tectivirdae
family, but also the diversity of actinobacteriophages.
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