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Abstract: JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection
in most of the population. However, JCPyV can reactivate in immunocompromised individ-
uals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating
disease with no approved treatment. Mutations in the hypervariable non-coding control
region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropatho-
genesis, yet few metanalyses document these associations. Many online sequence entries,
including those on NCBI databases, lack sufficient sample information, limiting large-scale
analyses of NCCR sequences. Machine learning techniques, however, can augment avail-
able data for analysis. This study employs a previously compiled dataset of 989 JCPyV
NCCR sequences from GenBank with associated patient PML status and viral tissue source
to train multilayer perceptrons for predicting missing information within the dataset. The
PML status and tissue source models were 100% and 87.8% accurate, respectively. Within
the dataset, 348 samples had an unconfirmed PML status, where 259 were predicted as
No PML and 89 as PML sequences. Of the 63 sequences with unconfirmed tissue sources,
eight samples were predicted as urine, 13 as blood, and 42 as cerebrospinal fluid. These
models can improve viral sequence identification and provide insights into viral mutations
and pathogenesis.

Keywords: JC polyomavirus; non-coding control region; k-mer; machine learning; neural
network; multilayer perceptron; classification; singular value decomposition

1. Introduction
JC polyomavirus (JCPyV) is a ubiquitous human pathogen that infects most of the

adult population with a greater seroprevalence among men [1–3] by establishing a persis-
tent infection and can cause a fatal, incurable disease [4,5]. In immunocompetent patients,
JCPyV establishes an asymptomatic infection of the kidneys and can be detected in the
urine [6–10]; however, in immunosuppressed individuals, the virus can reactivate and
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spread within the central nervous system (CNS) to cause progressive multifocal leukoen-
cephalopathy (PML), a fatal demyelinating disease characterized by the lysis of astrocytes
and oligodendrocytes [11–14]. PML has been found to occur in patients with HIV, those
taking immunomodulatory therapies for immune-mediated diseases such as multiple scle-
rosis, organ transplant recipients, and those with hematological diseases [15–18]. There
are no currently approved therapies for JCPyV infection or PML, including a prophylactic
vaccine [19], requiring treatment methods to address the underlying immunocompromised
status of the patient to restore the immune system [15]. However, understanding the
genomic signatures of JCPyV in relation to disease outcomes could provide additional
information for disease prognosis or clinical management.

JCPyV is a nonenveloped virus with a circular double-stranded DNA genome that is
~5100 base pairs (bp) with divergently encoded arms of early and late genes separated by
the non-coding control region (NCCR) [14]. The early genes are responsible for establishing
an environment conducive to viral replication in the host cell and consist of the large tumor
antigen (TAg) with TAg splice variants and the small tumor antigen (tAg) [10]. The late
genes encode the agnoprotein, followed by the structural proteins viral protein (VP) 1,
VP2, and VP3 [10]. Genetic variations throughout the JCPyV genome, such as within the
structural proteins or intergenic region between VP1 and TAg, can be used to classify
the virus into seven major geographic genotypes (Types 1 through 8, excluding 5) that
correspond with distinct human populations [20]. Generally, genotypes 1 and 4 are associ-
ated with European populations, types 2 and 7 with Asian and Amerindian populations,
types 3 and 6 with African populations, and type 8 with Oceanic populations [21–23].
The NCCR is roughly 400 bp and contains highly conserved genomic features, including
the origin of replication and transcriptional elements of early genes [6,24,25]. The NCCR,
situated between the early and late genes, is roughly 400 bp and is defined as the region
between the start codons of the T antigen and agnoprotein, which harbors sequences for
regulating viral replication [6,24].

As with other DNA viruses, JCPyV relies on the host transcriptional machinery for
replication. The early proximal portion of the NCCR is highly conserved as it contains
the origin of replication and elements for the transcription of early genes [6,25]. The late
proximal region of the NCCR is a highly variable region that can undergo frequent recom-
bination and consists of six unique blocks labeled “a” through “f” [14]. The archetypal,
or non-pathogenic, strain contains all six blocks in alphabetical order and is primarily
found in the kidneys and urine of healthy patients but can also be isolated from PML
patients [9,12,26]. The archetypal strain is the predominant strain isolated from urine,
though other rearranged NCCR sequences have been found [27–29]. Viral isolates in PML
patients from sources other than urine, such as the blood or cerebrospinal fluid (CSF), often
contain highly mutated NCCR sequences and exist in a quasispecies population [29,30].
The prototypal JCPyV isolate Mad-1 was the first to be isolated from a PML patient and is
composed of tandem repeats of blocks “a”, “c”, and “e” with a final “f” block [12,30,31].
Rearrangements of the NCCR frequently occur in patients with PML, which can increase or
decrease the occurrence of transcription factor binding sites that orchestrate viral transcrip-
tion and subsequent replication [20,30,32,33]. Moreover, NCCR rearrangements have been
suggested to expand JCPyV cellular tropism, promote neuropathogenesis, and increase
viral replication [28,34]; however, it remains unclear whether NCCR rearrangements are
required for or are a result of neuroinvasion [35].

Although a relationship between NCCR mutations and PML has been established
and documented [29,30], few comprehensive analyses relate NCCR sequences to clinical
manifestations and tissue location. A meta-analysis from the Maginnis laboratory pre-
viously compiled 989 published NCCR nucleotide sequences isolated from deidentified
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patient samples from the NCBI Nucleotide database to explore how host transcription
factor binding sites in the NCCR are influenced through rearrangements [32]. The NCCR
sequences were defined by the tissue from which the sequence was isolated and the PML
status of the patient [32], yet many of the samples either lack or report imprecise labels,
which complicates further analysis into the connection between NCCR mutations and the
patient’s PML status or viral tissue source.

To address the challenges associated with classifying large volumes of biological
data, many have employed machine learning (ML) techniques to process information
and apply relevant predictions, such as using a neural network (NN) [36–48]. Previous
research has shown that NNs are more capable of learning expressive and accurate data
representations than traditional machine learning methods [49]. Given the prevalence
of image-based data in the biomedical field, many studies integrating NN capabilities
focus on the implementation of convolutional neural network (CNN) architectures for data
classification due to computational efficiency, scalability, and ability to analyze data with
spatial dependencies [50], either by using raw images or developing image representations
of biological data [40–46]. However, there exist other NN architectures capable of accurate
classification, such as a multilayer perceptron (MLP), which is a class of flexible networks
capable of learning many different types of data [51] and does not inherently rely upon
local spatial relationships within the data.

When using an NN to analyze nucleotide sequence data, there is a challenge be-
tween nucleotide sequences and NN functionality. Neural networks require numerical
data of uniform dimensions as input, while nucleotide sequences consist of a variable-
length string of letters [51–53]. To overcome the barrier between biological data and
NN learning, the features of the nucleotide sequence are mapped into a numerical space
using an encoding method to make the information comprehensible to machines. One
possible option for encoding genomic data is to one-hot encode nucleotides. Although
this process directly converts nucleotide sequences into NN-comprehensible informa-
tion, the sequence length remains variable [54]. Another common technique is to con-
vert the nucleotide sequence into k-mer representations, which can be used to construct
highly dimensional numerical data [36,39,41,43,44]. This can include creating image
representations [42], k-mer tokenization [36], and semantically embedded vectors [55],
which produce uniform length but do not retain positional information. Though the infor-
mation on the nucleotide sequence can then be transmitted through the NN, it remains
obfuscated in terms of visualization due to the highly dimensional nature of the data. Using
a tool such as singular value decomposition (SVD), the dimensionality of the data can be re-
duced while retaining key variance, facilitating the visualization of the data to elucidate the
underlying features [56].

Machine learning also comes with the obstacle of ensuring the model can adequately
learn the relationships within the training data and generalize to new data. Machine
learning models, including NNs, can suffer from overfitting, where the model learns the
noise in the training data, resulting in highly accurate predictions of training data but an
inability to generalize to new data [57]. Causes of model overfitting can include using a
small training dataset [58], imbalanced classes in the training data [59], and model com-
plexity [60]. There are several strategies to prevent models from overfitting, including
early stopping, node dropout, and dataset balancing [61–63]. Early stopping can prevent
models from overfitting to training by using a stop criterion to cease model fitting, such
as a growing disparity in evaluation metrics between training and validation data [61].
Node dropout refers to the random dropping of nodes and their connections to other
layers in a model to produce a “thinned” network and prevent overfitting [62]. Strate-
gies for combatting imbalanced training data often involve either the random repetition
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of minority class samples, known as oversampling, or the random elimination of sam-
ples in the majority classes, known as undersampling [63]. Oversampling is beneficial
in small datasets as it retains all unique samples but can increase the chance of overfit-
ting, whereas undersampling reduces the dataset size and, thus, the number of available
unique samples [63].

The goal of this study was to develop effective NN models that can predict patient
PML status and identify the tissue source from which the virus was isolated using the
already established NCCR dataset created by Wilczek et al. [32]. Given the selected feature
encoding methods of this research (k-mer frequency, text frequency-inverse document
frequency, and Word2Vec) do not preserve spatial data, the MLP architecture was chosen as
the basis for predictive networks. Several techniques were used to create MLP models that
reduced overfitting and improved generalizability to accurately predict missing sequence
data from the dataset. These techniques included using repeated k-fold cross-validation to
determine the optimum k-mer size and vectorization methods for encoding NCCR sequence
information, node dropout, and early stopping. The most effective model was then used
to predict missing PML status and tissue isolation information in the NCCR dataset. The
dimensionality of the 6-mer frequency matrix was then reduced using singular value
decomposition (SVD) to visually understand the relationships between NCCR mutations
and clinical manifestations. Ultimately, the MLP models yielded accurate predictions for
the disease status and tissue source associated with NCCR sequences, which aided in
determining how JCPyV NCCR sequences vary by patient PML status and viral tissue
source. This data will provide additional context to understand how the role of machine
learning can be utilized in clinical analysis and how the hypervariable region of the JCPyV
genome is implicated in viral pathogenesis and tissue tropism throughout infection.

2. Materials and Methods
2.1. Query and Acquisition of JCPyV NCCR Sequences

JCPyV NCCR sequences with associated GenBank accession numbers, patient PML
status, and viral tissue source were previously acquired from NCBI as described by
Wilczek et al. [32]. Briefly, a custom Perl script retrieved sequences and isolated the
NCCR from each GenBank accession number based on this nucleotide sequence [32].

2.2. Vocabulary of k-mers

NCCR sequences were transformed into various k-mers or substrings of the genetic
sequence. An NCCR sequence of B base pairs and a k-mer length of k using a stride length
of one nucleotide will generate a collection of L = B − k + 1 k-mers with a theoretical 4k

unique k-mers, as there are four unique nucleotide monomers. Each unique k-mer can
be indexed by natural numbers in the set K =

{
1, 2, 3, . . . , 4k

}
. Because the number of

nucleotides B varies with each NCCR sequence, so does the size of each k-mer collection L.
An NN relies on numerical input of uniform length, which requires the input xi ∈ KL, or
the collection of L k-mers in the i-th NCCR, to be mapped into a vector of features hi ∈ RW

of uniform length W features through feature extraction before NN processing. The impact
of k-mer sizes 4-, 6-, and 8-mer on NN performance was measured to determine the k-mer
size that maximized model accuracy while minimizing computational costs.

2.3. Bag-of-Words Normalized Frequency

The bag-of-words (BoW) model was used to construct a k-mer count matrix based on
the corpus of nucleotide sequences decomposed into k-mer collections. First, the corpus of
N k-mer collections x = [x1, x2, . . . , xN ]

T , where xi denotes the collection of k-mers in the
i-th NCCR, is used to construct an unordered set of vocabulary of length W representing
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all available k-mers in the corpus. The model then generates a count matrix C where
C ∈ NN×W

0 , in which the (i,j)-th entry, indicated as ci,j, denotes the number of occurrences
of the j-th k-mer in the i-th NCCR sequence. The BoW feature encoding was performed
using CountVectorizer from the Python scikit-learn library v1.3.2 [64]. To prevent bias
based on the length of the NCCR sequence or the total number of k-mers included in each
sequence, k-mer frequencies were normalized across each NCCR. Let ⊘ denote elementwise
division and JW the all-ones matrix of dimensions W × W, then:

Ĉ = C ⊘ CJW , (1)

where Ĉ denotes the row-normalized BoW matrix, meaning the sum of each row is one and
each value ĉi,j can be alternatively represented as:

ĉi,j =
ci,j

∑W
j=1 ci,j

. (2)

2.4. Text Frequency-Inverse Document Frequency

Like the BoW model, the text frequency-inverse document frequency (TF-IDF) is a
feature extraction method that takes a corpus of texts and generates a term importance
matrix D ∈ RN×W using the term count, or term frequency, matrix C. The inverse document
frequency vector f = [ f1, f2, . . . , fW ], where the j-th element f j ∈ R reports the uniqueness
of k-mer j across the corpus of N NCCR sequences, is defined as

f j = log

(
N + 1
Nj + 1

)
+ 1, (3)

where Nj is the number of NCCR sequences that contain the j-th k-mer. The TF-IDF term
for each k-mer is then calculated. Let ⊙ denote element-wise multiplication and JW,1 the
all-ones matrix of dimensions W × 1, then:

D = C ⊙ (JW, 1 f ). (4)

TF-IDF calculations were performed using the TfidfVectorizer from the Python scikit-learn
library v1.3.2 [64]. As with the BoW model, the rows of D must be normalized such that
the elements sum to one, which can be achieved by:

D̂ = D ⊘ DJW , (5)

where D̂ is the row-normalized TF-IDF matrix.

2.5. Word2Vec

The Google-developed NLP feature extraction tool Word2Vec embeds each word
into dense vector space representations from a provided corpus based upon semantic
similarities using stochastic gradient descent and backpropagation [65]. For embedding,
the following parameters in the Word2Vec model were used for analysis: a word minimum
count of one (min_count = 1), a vector size of 300 (vector_size = 300), a window size of
24 (window = 24), and a skip-gram model enabled (sg = 1). The parameters were previously
determined by Ren et al. [55] and confirmed through exploratory experiments to optimize
the efficacy of the Word2Vec model using k-mer information. The Word2Vec model was
employed in Python using gensim v4.3.2 [66].
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2.6. Dataset Preparation

Before model training, the dataset of NCCR sequences (n = 989) was subset to remove
sequences with missing or irrelevant observations pertaining to the model. For models
trained on classifying PML status, 348 sequences had imprecise or no PML status labels
(i.e., “Suspect of PML” or missing disease status) and were excluded from model training.
A total of 641 sequences were included for PML prediction models, of which 437 were
labeled “PML”, 179 were labeled “Healthy”, and 25 were labeled “No PML”. The “No PML”
samples are NCCR sequences from the urine of patients who received kidney transplants.
To increase the accuracy and validity of the training sample, the “Healthy” and “No PML”
were pooled into a single “No PML” label of 204 samples.

For models trained for predicting tissue sources, a total of 926 sequences were included
for evaluation. Within the dataset, there were 566 samples labeled “Urine”, 217 labeled
“CSF”, 42 labeled “PBMC”, 39 labeled “Plasma”, 32 labeled “Brain”, and 30 labeled “serum”.
Samples labeled “CSF” and “Brain” were pooled into a single “CSF” group containing
249 samples. Likewise, sequences labeled “PBMC”, “Plasma”, and “serum” were pooled
into a single “Blood” class containing 111 samples.

2.7. Multilayer Perceptron Network Architecture

Preliminary studies into JCPyV NCCR sequence classification indicated an MLP model
performs slightly better in predictive performance than a CNN given the same training data
and similar parameters. The MLP networks were constructed using the input, dense, and
dropout layers from the Keras framework v2.12.0 [67] and the TensorFlow backend [68].
Each network possessed an input layer of nodes equal to the number of features in the
input data. The input layer was followed by two hidden dense layers, each consisting of
32 fully connected nodes with rectified linear unit (ReLU) activation and a 25% node
dropout rate. The output dense layer with softmax activation consisted of two nodes (PML
and No PML) to predict PML status or three for tissue sources (Urine, Blood, and CSF).
Models were trained for a maximum of 50 epochs but would stop after five epochs of
unimproved validation data loss and will restore to the best weights to prevent overfitting.
The loss was calculated using categorical cross-entropy for PML status and tissue source
prediction. The chosen optimization function was Adam, using default values established
by Kingma and Ba [69] and implemented in Keras [67].

2.8. Evaluation of Encoding Method Using Repeated k-Fold Cross-Validation

The predictive accuracy of MLP models trained on varying k-mer sizes and encoding
methods was assessed using repeated k-fold cross-validation (CV). The process of k-fold
CV consists of splitting the dataset into k equally sized subsets (or folds) for k rounds
of training, where one fold is used for model validation and the remaining k-1 folds are
used to train the model [58,70]. A fold number of five repeated ten times was used for
analysis. Minority classes in the training data of each fold were oversampled to balance
the dataset. Each fold was used to train a new MLP built using the described architecture
above. Model training was evaluated based on accuracy. Accuracy (Acc) can be described
using the number of true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) predictions as:

Acc =
TP + TN

TP + TN + FP + FN
. (6)

This process was repeated for ten iterations for all combinations of k-mer size and
encoding method, resulting in nine unique combinations of k-mer size and encoding
method for comparison for each model predicting PML status and tissue source. Pairwise
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Wilcoxon rank sign tests were performed to determine statistical significance between the
accuracies, and p-values were adjusted using the Bonferroni method [71].

2.9. Predictive Model Training

For each model predicting PML status and tissue source, a randomized selection of
10% of the data was withheld from training as a test set. An additional randomized 10% was
reserved as validation during training, and the remaining 80% was used as training data for
the models. Minority classes in the training dataset were randomly oversampled to match
that of the majority class to prevent poor training on unbalanced data [63]. Oversampling
was performed using the imbalanced-learn v0.12.2, an open-source Python toolbox [72].
The most effective k-mer size and encoding method determined from k-fold CV were used
to encode NCCR sequences to train the model. The maximum predicted value determined
data classification labels for the test dataset. Model metrics, including accuracy, precision,
recall, and F1 score using the testing dataset, were used. The precision (Pr) of a model
classification can be described as:

Pr =
TP

TP + FP
, (7)

the recall (Re) as:

Re =
TP

TP + FN
, (8)

and the F1 score as:
F1 =

2 × Pr × Re
Pr + Re

. (9)

As each metric measures model performance in single-class prediction, metrics were
averaged across classes for model-wide reporting.

2.10. Prediction of Missing Dataset Information

After determining the most efficacious combination of k-mer size and encoding
method, the trained model was employed to predict missing information present in the
original dataset. PML status predictions were provided using the most accurate model
for predicting disease status for 307 samples that had no associated PML status and an
additional 41 with labels not included in model training, including “GCN”, “JCPyVAN”,
“JCVE”, “Suspected of PML”, and “neurological disorder which could be consistent with
PML”, for a total of 348 PML status predictions. There were 49 samples with no known
tissue source and an additional 14 with ambiguous sources such as “Plasma, Urine, CSF,
Kidney”, “Kidney; Urine”, “CSF; Plasma”, and “Brain; Kidney”, for a total of 63 tissue
source predictions. The NCCR sequences were converted into 6-mer representations and
vectorized using the CountVectorizer trained on the whole dataset to ensure consistent
input dimension size. The encoded data were then fed to models for prediction. Classifica-
tion and confidence from NN predictions were recorded and added to the dataset under
predicted information sections.

2.11. Singular Value Decomposition Dimensionality Reduction in Count Matrix

All 989 NCCR sequences were converted to k-mer collections with the most efficacious
k-mer size of six, and a normalized frequency matrix was generated as described above, as
the combination yielded the highest accuracy. The dimensionality of the resulting matrix
was reduced to 30 dimensions through singular value decomposition (SVD) using the
Python scikit-learn library v1.3.2 TruncatedSVD and the percent variance for each singular
value were recorded [64]. The two singular values that explained the most variance were
used to plot the k-mer information, and the PML status and tissue source information
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were used for data visualization. Disease status and tissue source determined by MLP
prediction were labeled as ML to understand how these data points fell in relation to the
known disease and tissue status. Figures were generated using the R package ggplot2 [73].

3. Results
3.1. Predictive Performance of Multilayer Perceptrons by Varying k-mer Size and Encoding Method

To determine to what extent the MLP architecture can train on the provided data,
the model accuracy of PML status and tissue source prediction models trained on each
permutation of 4-, 6-, and 8-mer encoded using normalized k-mer count frequency, normal-
ized TF-IDF, and Word2Vec were recorded (Table 1), resulting in nine total combinations
for each model type. Models were trained on the data using a five-fold CV repeated ten
times, resulting in 50 folds per k-mer and encoding method combination. The resulting
model accuracies for each combination were recorded, and the statistical significance of
each combination was determined (Figure 1). The results were then used to select the
encoding method for models trained to predict missing PML status and tissue source in the
original dataset.

Table 1. Accuracy of disease and tissue prediction models using varying k-mer sizes and encoding
methods determined by repeated five-fold cross-validation repeated ten times.

k-mer Size Encoding Method
% Accuracy (std)

Disease Model Tissue Model

4-mer

Count frequency 97.36 (1.49) 84.87 (1.90)

Text frequency-inverse
document frequency 97.41 (1.48) 84.96 (2.22)

Word2Vec 82.79 (6.12) 75.15 (14.10)

6-mer

Count frequency 97.94 (1.32) 86.87 (1.97)

Text frequency-inverse
document frequency 97.36 (1.59) 86.29 (1.83)

Word2Vec 77.66 (6.95) 63.39 (23.10)

8-mer

Count frequency 98.06 (1.25) 87.06 (1.74)

Text frequency-inverse
document frequency 97.50 (1.64) 86.76 (1.76)

Word2Vec 75.85 (8.84) 56.27 (24.49)

In both the PML and tissue source models, the Word2Vec encoding method yielded sig-
nificantly lower accuracy than the normalized count and TF-IDF methods for all k-mer sizes
(Table 1, Figure 1). Larger k-mer sizes encoded using Word2Vec yielded lower PML status
and tissue source model accuracies (Table 1). The 4-mer Word2Vec model predicting PML
status model exhibited significantly higher accuracy than the 6- and 8- counterparts, while
the 4-mer Word2Vec tissue source model was significantly more accurate than the corre-
sponding 8-mer model (Table 1, Figure 1). Among the PML status models, there was no ap-
preciable difference in accuracy between the normalized count and TF-IDF methods across
k-mer sizes (Table 1, Figure 1a). Additionally, there was no significant difference between k-
mer sizes within the normalized count and TF-IDF encoding methods (Figure 1a). In the tis-
sue source models, the 4-mer count and TF-IDF data performed significantly worse than the
6- and 8-mer counterparts among the tissue source models (Table 1, Figure 1b). There
was no significant difference in accuracy between 6- and 8-mers within normalized count
and TF-IDF data, nor a difference between the normalized count and TF-IDF using 6- and
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8-mers (Figure 1b). From these results and the reduced computational costs, the 6-mer
normalized count data was used as the encoding method for MLP models to predict the
missing PML statuses and tissue sources in the original dataset.
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Figure 1. Pairwise comparison of model accuracy using varying k-mer size and encoding method.
The heatmaps indicate the Bonferroni-adjusted p-values comparing the accuracy of varying k-mer
sizes and encoding methods within multilayer perceptron model types from the pairwise Wilcoxon
signed-rank test. The legend illustrates the p-values, where the darker red colors are p-values closer to
zero. Accuracy was measured from ten times repeated five-fold cross-validation for each k-mer size
and encoding method. (a) Statistical comparison of each k-mer size and respective encoding methods
for PML status prediction. (b) Statistical comparison of each k-mer size and respective encoding
methods for tissue source prediction. The figure was generated using the ggplot2 R package.
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3.2. Multilayer Perceptrons Are Capable of Accurately Predicting PML Status and Tissue Source

After k-fold CV, new instances of each model type were established and trained on
the normalized count frequency-encoded 6-mer data and evaluated using the testing data
described above. The model-predicted labels based on the test dataset for each model (PML
dataset, n = 65; tissue dataset, n = 93) were compared to the corresponding true labels for
PML status (Figure 2a) and tissue source (Figure 2b). Results were used to determine the
classic specific and macro-averaged accuracy, precision, recall, and the F1 score for each
model (Table 2). Diagonal values denote the number of model predictions that were the
same as the true labels, whereas off-diagonal values are test points incorrectly classified by
the model. The PML model yielded an average accuracy of 100% and an F1 score of 1.00 in
predicting the patient PML status for samples in the test dataset (Table 2), where the model
correctly identified 45 PML sequences and 20 No PML sequences (Figure 2a). The tissue
source prediction model achieved an overall accuracy of ~88% and an average F1 score of
0.709 (Table 2). While there was little variability in the accuracy among the different tissue
sources, the F1 score varied greatly by class, ranging from 0.893 in the urine to 0.421 in the
blood (Table 2). Of the 49 urine samples, 10 blood samples, and 34 CSF samples included
in the test set, the model correctly identified 46 urine samples, four blood samples, and
26 CSF samples (Figure 2b).

Viruses 2025, 17, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 2. Confusion matrix of model predictions. Multilayer perceptrons (MLPs) test data classifi-
cations were recorded for model evaluation. The y-axis represents the real label associated with the 
testing data, the x-axis indicates the MLP-predicted labels, and the numeric value denotes the num-
ber of samples in each combination of true and MLP-predicted labels. Off-diagonal values within 
the same row indicate false negative predictions, while those within a column indicate false positive 
predictions. Darker blue values indicate greater counts of values, while lighter blue indicates fewer 
counts. (a) MLP predicts the PML status associated with a given sample. (b) MLP predicts the tissue 
source associated with a given sample. The figure was generated using the seaborn Python package. 

3.3. Predicting Missing Dataset Information for Visualization 

Models trained to predict PML status and tissue source were employed to predict 
missing information in the original dataset for further analysis. High-confidence label pre-
dictions were defined as predictions with a greater than 0.9 expectancy value. There were 
348 of the original 989 samples (35.2%) that had no or imprecise PML status labels. Of the 
348 sequences, 259 (74.4%) were predicted to be No PML, with 214 being high confidence, 
and the remaining 89 sequences (25.6%) were predicted to be PML samples, with 66 of 
which being high confidence (Table 3). There were 63 samples from the 989 sequences 
(6.4%) with either no label or an imprecise tissue source label. Of those 63 sequences, 8 
were predicted as urine samples (12.7%), with 3 being high confidence, 13 as blood sam-
ples (20.6%), with no sequences being high confidence, and 42 as CSF (66.7%), with 17 
being high confidence (Table 3). 

Table 3. Predictions of PML status and tissue source for missing information. 

Missing Labels Predictions (N, %) High Confidence (%) 

PML status (N = 348) 
No PML (N = 259, 74.4%) 214 (82.6%) 

PML (N = 89, 25.6%) 66 (74.2%) 

Tissue source (N = 63) 
Urine (N = 8, 12.7%) 7 (87.5%) 

Blood (N = 13, 20.6%) 0 (0%) 
CSF (N = 42, 66.7%) 17 (40.5%) 

An SVD of the normalized 6-mer frequency was conducted to understand the bio-
logical significance and relevance of the newly predicted information. The two singular 
values explaining the greatest variance, 21.2% and 9.7% of the total variance, were used 
to plot the data (Figure 3). Points were labeled using the PML status (Figure 3a) or tissue 
source (Figure 3b). Labels used to train neural networks were used to construct 95% con-
fidence ellipses and overlaid on the plot to compare how the neural network predicted 
labels of missing information spatially compared to true labels. The SVD depicts a greater 

Figure 2. Confusion matrix of model predictions. Multilayer perceptrons (MLPs) test data classifica-
tions were recorded for model evaluation. The y-axis represents the real label associated with the
testing data, the x-axis indicates the MLP-predicted labels, and the numeric value denotes the number
of samples in each combination of true and MLP-predicted labels. Off-diagonal values within the
same row indicate false negative predictions, while those within a column indicate false positive
predictions. Darker blue values indicate greater counts of values, while lighter blue indicates fewer
counts. (a) MLP predicts the PML status associated with a given sample. (b) MLP predicts the tissue
source associated with a given sample. The figure was generated using the seaborn Python package.

Table 2. Class-specific and macro-averaged multilayer perceptron evaluation metrics.

Model Type Class Accuracy Precision Recall F1 Score

PML status
No PML 1.000 1.000 1.000 1.000

PML 1.000 1.000 1.000 1.000

Model average 1.000 1.000 1.000 1.000

Tissue source

Urine 0.882 0.852 0.939 0.893
Blood 0.882 0.444 0.400 0.421
CSF 0.871 0.867 0.765 0.812

Model average 0.878 0.631 0.701 0.709
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3.3. Predicting Missing Dataset Information for Visualization

Models trained to predict PML status and tissue source were employed to predict
missing information in the original dataset for further analysis. High-confidence label
predictions were defined as predictions with a greater than 0.9 expectancy value. There
were 348 of the original 989 samples (35.2%) that had no or imprecise PML status la-
bels. Of the 348 sequences, 259 (74.4%) were predicted to be No PML, with 214 being
high confidence, and the remaining 89 sequences (25.6%) were predicted to be PML sam-
ples, with 66 of which being high confidence (Table 3). There were 63 samples from the
989 sequences (6.4%) with either no label or an imprecise tissue source label. Of those
63 sequences, 8 were predicted as urine samples (12.7%), with 3 being high confidence,
13 as blood samples (20.6%), with no sequences being high confidence, and 42 as CSF
(66.7%), with 17 being high confidence (Table 3).

Table 3. Predictions of PML status and tissue source for missing information.

Missing Labels Predictions (n, %) High Confidence (%)

PML status (n = 348)
No PML (n = 259, 74.4%) 214 (82.6%)

PML (n = 89, 25.6%) 66 (74.2%)

Tissue source (n = 63)

Urine (n = 8, 12.7%) 7 (87.5%)

Blood (n = 13, 20.6%) 0 (0%)

CSF (n = 42, 66.7%) 17 (40.5%)

An SVD of the normalized 6-mer frequency was conducted to understand the biologi-
cal significance and relevance of the newly predicted information. The two singular values
explaining the greatest variance, 21.2% and 9.7% of the total variance, were used to plot
the data (Figure 3). Points were labeled using the PML status (Figure 3a) or tissue source
(Figure 3b). Labels used to train neural networks were used to construct 95% confidence
ellipses and overlaid on the plot to compare how the neural network predicted labels of
missing information spatially compared to true labels. The SVD depicts a greater degree
of variation in the PML samples (red points) as opposed to the no PML samples (blue
points), and the PML confidence ellipse almost entirely encapsulates the no PML ellipse
(Figure 3a). Many predicted no PML samples (blue triangular points) fell within or near the
95% confidence ellipse, and most predicted PML samples (red triangular points) fell within
the PML confidence ellipse, validating the ML predictions. When examining the SVD of
the tissue data points, the urine confidence ellipse overlaps with the blood and CSF ellipses;
however, the urine data points were distinct from the other two tissue types (Figure 3b).
Similarly, there is a significant overlap between the blood and CSF confidence ellipses,
and compared to the urine populations, these two class samples are more interspersed
(Figure 3b). Overall, many of the NN-predicted PML and tissue source labels fell inside
of or within proximity to their corresponding confidence ellipse, suggesting the similarity
of unknown sequences to known labeled sequences and high model fidelity in predicting
clinical information for NCCR sequences lacking proper labeling (Figure 3b).
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Figure 3. Singular value decomposition (SVD) of JC polyomavirus (JCPyV) non-coding control region
(NCCR) 6-mer normalized frequency data. SVD was performed on the 6-mer normalized frequency
data of the 989 JC polyomavirus non-coding control region. The two singular values explaining
the greatest variance within the data were used to plot the data. Square points indicate sequences
included in the training of neural network models. Circular points indicate those not included in
model training, and triangular points indicate neural network-predicted labels for samples with
no associated label. The sequences, including neural network training, were used to establish 95%
confidence ellipses, which were overlaid on the plots. (a) SVD of 6-mer normalized frequency data
labeled with PML status information; ellipses indicate a 95% confidence interval of training labels:
No PML (blue) and PML (red). (b) SVD of 6-mer normalized frequency data labeled with tissue
source information. Ellipses indicate a 95% confidence interval of training labels: urine (yellow),
blood (red), and CSF (purple).

4. Discussion
Mutations in the NCCR of the JCPyV genome have been associated with the fatal

demyelinating disease, PML [30], yet few studies have explored the implications of NCCR
mutations in disease due to small sample sizes [74] and nonuniformity of sample label-
ing. This study addresses this gap using machine learning to predict the missing patient
PML status and viral tissue source in a previously compiled dataset of 989 JCPyV NCCR
sequences from GenBank [32], some of which possessed insufficient sample metadata that
limited the scope of inquiry. A few samples lacked the patient’s PML status or viral tissue
source, while others had other information missing, such as the patient sex or geographical
location. Though previous studies have demonstrated the difference in seroprevalence
between sexes and the variability of genomic sequences across human populations, these
variables were not included in the analyses as a result of incomplete data. Missing PML
status and viral tissue source of the NCCR sequence were classified using various k-mer
representations and encoding methods, resulting in varying degrees of accuracy depending
on the selected k-mer size and the feature encoding method. Ultimately, the normalized
6-mer frequency was selected for feature encoding because of its high performance in
predicting patient PML status and viral tissue source while reducing the computational
complexity of encoding the NCCR sequences.

Mutations in the NCCR primarily consist of large duplications, deletions, or rearrange-
ments of the block code sequences [29,30]; thus, the goal of feature embedding was to
capture these events in some capacity. In generating k-mers for the BoW model, a stride
length of one bp preserves some local ordinality between combinations of nucleotides,
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which may be useful in detecting unique sequences near rearrangement sites at the end
of the NCCR blocks (“a” through “f”). However, the BoW model does not preserve larger
or global ordinality of k-mer sequences and thus cannot derive inferences from the entire
NCCR structure when embedding features. Though larger k-mer sizes would preserve
greater ordinality within the NCCR sequences, there would be exponentially more possible
k-mers, resulting in greater model complexity and computational costs. The Word2Vec
method included some larger ordinality of NCCR sequences using a sliding window of
k-mers for feature encoding, yet the process yielded significantly lower accuracy than the
normalized count and TF-IDF BoW models (Table 1, Figure 1). Differences in k-mer size
within the normalized count and TF-IDF encoding methods did not lead to any significant
difference in model performance in predicting patient PML status (Figure 1a) but did have
a substantial impact on predicting viral tissue sources (Figure 1b). This disparity may
indicate some NCCR recombination or mutation events occur in specific tissues at a greater
frequency and require greater ordinality for association, given that larger k-mer sizes were
generally associated with improved accuracy. Tissue sources may be more difficult to
associate due to the disseminated viral quasispecies undergoing frequent mutations [29].

Our results of assessing model accuracy using an MLP network in predicting patient
PML status using NCCR sequences were highly accurate, sensitive, and precise (Table 2).
Though the average model accuracy was 100% using the test dataset of unseen sequences,
the perfect prediction score may be due to a small testing size, and the true accuracy of the
model is likely to be lower than reported. The high success rate of the model can likely be
attributed to the fact that almost all NCCR isolates from PML patients contain mutations
and rearrangements [8]. In contrast, sequences from the urine of non-PML patients closely
resemble the archetypal strain [9,12]. The prediction of samples missing PML status yielded
many sequences with high confidence results (Table 3), and many of the predicted labels
for NCCR sequences missing PML status information fell within or near their respective
confidence ellipse (Figure 3a), providing further assurance in the classifications.

The viral tissue prediction model exhibited high fidelity in identifying urine samples
(Figure 2b, Table 2), likely because of the uniformity of NCCR sequences (i.e., the lack of sig-
nificant rearrangement events) isolated from urine and variability in NCCR sequences from
other tissues [9,12,29]. The model exhibited difficulty correctly classifying blood samples,
as more than half of the blood samples from the test dataset were falsely labeled as urine or
CSF samples (Figure 2b), though it still performed better than the 33% random chance of
correct classification. This difficulty in labeling the samples resulted in comparatively low
precision, recall, and F1 scores (Table 2) and coincided with low-confidence predictions in
samples missing viral tissue sources (Table 3). The blood class had an elevated accuracy
compared to the other class metrics (Table 2), which likely arose from the inclusion of TN
samples in the calculation (Equation (6)), where the TN includes the correctly classified
urine and CSF samples. A more representative model accuracy may be derived from a
test set with a balanced sampling from each class, increasing the number of blood and
CSF sequences. Given the overall model performance, there is some indication that NCCR
k-mer composition coincides with the tissue or origin. However, it is difficult to deter-
mine which features, or k-mers, provide the greatest contributions to model classification
due to the black-box nature of NNs, making further insights into model classification
decisions difficult [75].

Features of the NCCR sequences were further explored using spatial visualization
of the dimensionally reduced 6-mer normalized frequency matrix via SVD, revealing
distinct groupings by patient PML status and viral tissue source (Figure 3). From the
SVD plot depicting PML status, there is an apparent tight grouping of No PML sequences
and a resulting small 95% confidence ellipse (Figure 3a), indicating that the No PML
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NCCR sequences exhibit minimal k-mer variation. This clustering corroborates with NCCR
sequences of healthy individuals undergoing infrequent mutation [9,12]. Conversely, the
PML sequences were much more spread out, and this greater variation was reflected in a
larger 95% confidence ellipse (Figure 3a). The greater variation in NCCR k-mer composition
aligns with detecting mutations in PML-associated NCCR sequences [25,29,30]. Combined
with the tissue classifications, there appears to be a population of sequences from the urine
of PML patients within the urine 95% confidence ellipse adjacent to, yet distinct from,
sequences from the urine of No PML patients (Figure 3), suggesting the emergence of
quasispecies in the urine of PML patients.

The SVD plot also revealed the grouping of NCCR sequences according to the as-
sociated viral tissue source. A small grouping of urine sequences encircled within the
95% confidence ellipse (Figure 3b) coincides with the stable genetic architecture of the
archetype sequence isolated from the urine of PML and non-PML patients [9,12]. There is
also a significantly more extensive, yet narrow, confidence ellipse that almost completely
encapsulates the urine ellipse, though there are relatively few blood and CSF samples in
this area (Figure 3b). The CSF 95% confidence ellipse shares a sizeable intersection with
the blood 95% confidence ellipse (Figure 3b), which appears to relate to the increased
mutations associated with PML patients [29,30]. The shared variation between blood and
CSF samples may be related to the model confusion in falsely classifying blood samples as
CSF (Figure 2b). However, the smaller diversity and variation in the k-mer composition of
blood sequences appear distinct from CSF samples (Figure 3b), suggesting a progression of
mutational events in the NCCR from the urine to the blood to the CSF tissue types.

The results of this research were constrained by the nature of NNs, and specifically
the MLP architecture, alongside the chosen methods for feature encoding. The MLP
architecture was selected over other established NN architectures, primarily the CNN, as
the vectorization methods chosen in this study do not preserve the ordinality of nucleotides
in the original NCCR sequences. However, previous work by Câmara [42] et al. established
an accurate CNN that used image representations of genomic 6-mer data to classify viral
sequences, primarily SARS-CoV-2 sequences, by family, genera, and subgenus. Although
the CNN achieved high accuracy, the architecture was not selected for this current study as
the network relies on shared weights and local connections in the data [76], yet converting
nucleotide sequences into k-mer representations discards the ordinality of information.

Conversely, Miao et al. [47] produced DeePhaier, an NN that was capable of using
bacteriophage genomic sequences to predict phage lifestyle. The network consisted of
parallel multilayer self-attention neural networks trained using one-hot encoded 300 bp
segments of sequential nucleotide sequences. Although the one-hot encoding method
preserves local ordinal features in sequences, one-hot encoding requires sequences to be
of a fixed and consistent length. Likewise, the self-attention network architecture greatly
benefits from data with ordinality and relevant sequential information. Given that the
JCPyV NCCR undergoes frequent rearrangement in PML patients, resulting in variable
NCCR sequence length, one-hot encoding would not serve as a viable option for sequence
feature encoding.

To determine, predict, and classify SARS-CoV-2 genomes with respect to spatial and
temporal changes, Sung et al. [48] created AutoCoV, a NN that leverages an auto-encoder
to extract features from preprocessed genomic k-mer data before producing predictions
on viral sequence geographic location and time period using a fully connected NN. Viral
sequences were converted into k-mer frequency representations, considering each possible
k-mer nucleotide combination. An entropic filter was applied to exclude k-mers with a low
entropy value from analysis, as many k-mer counts will be nearly identical across genome
samples. The BoW model employed in this current study only includes k-mers detected in a
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sequence within the collection, thereby automatically screening k-mers that are insignificant
for analysis. Due to the hypervariable nature of the NCCR, differences in k-mer composition
between sequences are inherently diverse, limiting the value of screening that has already
included k-mers from analysis.

As several limitations remain with this approach to analysis and evaluation, future
studies will be required to understand further the connections between the natural poly-
morphisms in the JCPyV NCCR and viral pathogenesis. NNs require a large volume of
balanced training data to produce accurate predictions and provide adequate assessments,
and using a small, unbalanced training dataset for predictive MLP models, such as the one
employed in this study, offers several constraints. First, a relatively small dataset affects the
generalizability of a model as the number of available unique cases in training is limited
and may not adequately represent the diversity within the problem domain. As a result,
the model may not recognize underlying patterns within the underrepresented classes,
which can impact the sensitivity of the model. Second, using a small dataset increases
the risk of the model overfitting to the provided training samples rather than developing
generalizations, limiting the applicability of the model to provide predictions on novel
samples. Third, a small dataset can limit model size and complexity as a measure to pre-
vent overfitting, which may ultimately diminish the analytical power of the model. PML
remains a rare disease, and JCPyV samples are not always sequenced or published online,
further limiting the data available to train models.

Though the MLP models included in this study could achieve accurate predictions,
further refinement of the models would require a larger body of well-documented, consis-
tently formatted NCCR sequences with parity in class representation for model training to
improve the predictive power. Model evaluation would also benefit from a larger testing
dataset with greater representation, as small class sample sizes, such as the blood class in
the tissue model test dataset, may not be entirely representative of model performance. In
this study, model metrics were reported using macro-averages where class-specific metrics
were weighed equally when averaging to prevent the number of class samples from biasing
the resulting model averages. Additionally, online viral sequence entries capture only a
portion of the metadata and can lack critical data for further analysis, such as the sex of the
patient or the geographic location associated with the sample, which could be leveraged to
improve the understanding of viral pathogenesis in a broader context.

Generally, NNs lack transparency in the decisions behind classifying data due to
their black-box nature, making deeper analysis of the model complex. To unravel model
decisions in PML and tissue classification, feature importance can indicate the relative
importance of k-mers, allowing for the interpretation of which specific subsequences
correlate with PML status and tissue source prediction. Additionally, this research described
predictions using only an MLP network trained on sequence k-mer data, but other emergent
network architectures, such as the Kolmogorov-Arnold Network [77] or the forward-
forward algorithm [78], may provide the framework for networks with improved accuracy
and more innate interpretability. Lastly, alternative natural language processing encoding
methods, including autoencoders such as BERT [79], can be considered to preserve both
global and local patterns within the NCCR sequence data.

5. Conclusions
JCPyV establishes a persistent, asymptomatic infection of the kidneys in most of the

population and, in cases of immunosuppression such as those with HIV/AIDS or those
taking immunomodulatory therapies, can cause the fatal disease PML for which there is
no approved treatment. The NCCR within the JCPyV genome is a hypervariable region
where rearrangements are associated with disease prognosis. Though connections between
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mutations in the NCCR of the JCPyV genome and PML pathogenesis have previously
been established, relatively few extensive studies address the effect of NCCR mutations on
PML pathogenesis and tissue tropism. This study aimed to establish MLP models capable
of reliably classifying JCPyV NCCR sequences as being derived from PML or non-PML
patients, identifying the tissue from which the virus was isolated, and visualizing sequence
similarity through dimensional reduction techniques using a previously compiled and
curated dataset of 989 JCPyV NCCR sequences [32]. Various k-mer sizes (4, 6, and 8)
and encoding methods for feature extraction (count frequency, TF-IDF, and Word2Vec)
were evaluated using the accuracy of repeated k-fold CV to determine the most efficacious
combination for PML status and tissue source prediction (Table 1, Figure 1), and the
6-mer normalized frequency was selected for performance in both PML status and tissue
source prediction. Using a test dataset, the resulting PML status and tissue source MLP
models achieved a final average accuracy of 100% and 87.8%, respectively (Table 2), which
were then employed to predict missing information from the original dataset for further
evaluation. Using SVD for dimensional reduction in the 6-mer normalized frequency
matrix, NCCR sequences generally cluster depending on the PML status of the patient,
and sequences from PML patients exhibit greater variability in k-mer composition than
those from patients without PML (Figure 3a). Additionally, the NCCR sequences from the
urine of patients with or without PML were less variable and more consistent in k-mer
composition than sequences from the blood or CSF of PML patients, which displayed
a greater degree of k-mer variability (Figure 3b). These findings further highlight the
connection between NCCR mutations and viral pathogenesis. The models developed in
this research outline the functionality of NNs to produce clinically relevant information and
improve the understanding of viral infections from mutated viral sequences where whole
sequences may not be available. Such a process would invariably benefit understanding
readily transmissible and mutable viruses with large repositories of collected sequences,
such as respiratory viruses, including SARS-CoV-2 and influenza virus. Ultimately, this
research explores the connection between the hypervariable nature of the JCPyV NCCR
and the clinical manifestations of infection through the lens of machine learning techniques.
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