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Abstract: Interactions between bacteriophages with mammalian immune cells are of great
interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue,
or protein structure) that is recognizable to the immune system through pathogen asso-
ciated molecular pattern (PAMP) receptors (i.e., TLRs). Given that phages reside in the
same body niches as bacteria, they share the propensity to stimulate or quench immune
responses depending on the nature of their interactions with host immune cells. While
most in vitro research focuses on the outcomes of direct application of phages to immune
cells of interest, the potential impact of their transcytosis through the intestinal barrier has
yet to be considered. As transcytosis through intestinal cells is a necessary step in healthy
systems for access by phage to the underlying immune cell populations, it is imperative to
understand how this step may play a role in immune activation. We compared the activa-
tion of macrophages (as measured by TNFα secretion) following direct phage application
to those stimulated by incubation with phage transcytosed through a polarized Caco2
epithelial barrier model. Our results demonstrate that phages capable of activating TNFα
secretion upon direct contact maintain the stimulatory capability following transcytosis.
Furthermore, activation of macrophages by a transcytosed phage is enhanced as compared
to that occurring with an equivalent multiplicity of directly applied phage.
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1. Introduction
Bacteriophages (phages) are viruses that target bacteria specifically and require them

for propagation (reviewed in [1]). As such, phages can be found in every ecological niche
where bacteria thrive, including bacteria-containing microenvironments of mammalian
hosts such as the oral cavity and the gastrointestinal system (reviewed in [2]). While phage
multiply only in the presence of their bacterial hosts, they still have the propensity to
be influenced by, and in turn, influence mammalian cells. Along these lines, the phage
interactions in the gastrointestinal system with both the epithelial barrier and, potentially,
the underlying immune cells, are ideal for studying the mechanisms by which phage may
stimulate immune reactivity.

The effects of phage on the bacteria within the gastrointestinal tract have long been
studied both in the context of how they are influenced by their microenvironment to
regulate the surrounding bacterial populations [3,4] as well as how they may be applied
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therapeutically to compete against bacterial pathogens (reviewed in [5,6]). Even though
phages do not infect eukaryotic cells, the interest in the potential effects of phages on
immune cells arose when capsid proteins on the coliphage T4 were found to contain
immunoglobulin-like domains [7,8] capable of binding the β3 integrins of mammalian
cells [9] or to mucin glycoproteins [4]. These findings led to the work behind bacteriophage
adherence to mucin (BAM)-associated immunity [4,10] and it is now more apparent that
there are a variety of ways and places where phage can modulate mammalian immune
responses (reviewed in [11–14]). While evidence has been collected for several types of
phages interacting with immune cells or driving specific immune responses in the context
of disease [15–20], the body of literature on T4 coliphage is the most extensive.

T4 coliphage is a commensal, lytic phage of the gastrointestinal microbiome that
infects Escherichia coli by initially binding to the bacterial lipopolysaccharide structure [21].
While the infective life cycle of T4 has been worked out [21], the interactions and effects of
this phage on host cells are more complicated and less clear. Phages have been found in
the bloodstream and extraintestinal sites in healthy and unhealthy individuals indicating
their ability to access these sites [22–27]. This is supported by in vitro data demonstrating
the ability of a multitude of phage types, including T4, to translocate across several types
of cellular barriers [28,29]. Furthermore, in vivo data have demonstrated that specific
adaptive immune responses may be triggered by T4, including the generation of T4 specific
antibodies and the contribution to T-cell specific immunity [30–34]. However, in vitro
application of T4 to specific immune cells (PBMCs and dendritic cells) with either an intact
phage or its most immunogenic extracellular proteins (Hoc, Soc, and gp23) have shown that
neither a pro- nor an anti-inflammatory response is triggered [32,35]. Since luminal phages
can only access immune cells in the lamina propria by first crossing the intestinal barrier by
transcytosis, whether a phage activates immune cells differently following transcytosis is
not known.

To understand how interactions of phage with intestinal cells might drive immune
responses, we utilized TNFα secretion from mammalian macrophages (RAW264.7 cells)
as our outcome to assess the phage activation of a host’s innate immune response. We
established this readout utilizing T4r+ bacteriophages to compare their stimulation of
macrophages either directly applied or transcytosed across polarized Caco2 cells.

2. Materials and Methods
Bacteriophage and cell lines. The coliphage T4r+ (T4) and its host bacteria (Escherichia

coli B; EcB) were purchased from Carolina Biological Supply, Burlington, NC and ATCC,
Manassas, VA, respectively. Limisilactobacillus plantarum (L. plantarum) phage 8014-B2 and
its host bacteria, L. plantarum, were purchased from ATCC. Phage stocks were generated as
previously described [36]. Briefly, outgrowth on the host strain was followed by purification
via filtration and cesium chloride gradient centrifugation. Phage were dialyzed and stored
in an SM Buffer (200 mM NaCl2, 10 mM MgSO4, 50 mM Tris-HCl, pH 7.5) and enumerated
using plaque overlay assay [37]. A polarized Caco2 and RAW264.7 cell lines (ATCC) were
used for testing the effect of transcytosis across the small intestinal epithelial barrier and
for measuring immune activation (TNFα production in response to phage stimulation),
respectively. Caco2 cells were maintained in Caco2 medium (Dulbecco’s Modified Eagle
Medium (DMEM), 20% Fetal Bovine Serum (FBS), 1% Penicillin-Streptomycin (P/S), 1%
non-essential amino acids; ThermoFisher, Waltham, MA, USA) and RAW264.7 cells were
grown in RAW medium (DMEM, 10% FBS, 1% P/S).

Transcytosis across intestinal cells. Barriers mimicking the small intestine were generated
by growing differentiated and polarized Caco2 cells as described by Natoli et al. [38].
Briefly, Caco2 were seeded on 0.4 µm transwells (Corning, Corning, NY, USA) at a density
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of 2.5 × 105 cells/transwell (500 µL medium in apical well and 1mL in basolateral well)
and grown for 18–21 days with media exchange every 3–4 days. The final Caco2 cell
number after polarization was determined by trypsinizing cells from the filter surface and
performing a cell count with hemacytometer. Average of these counts (n = 3) showed
approximately 1 × 106 cells/filter at day 21. Antibiotics were removed from the cells when
the media was changed prior to assays. T4 was added to the apical surface of barriers at a
multiplicity of 10 or 100. After 24 h incubation with phage, basolateral supernatants were
collected and separated for subsequent use in macrophage stimulation (800 µL), or plaque
overlay assays (200 µL).

Macrophage stimulation. For testing the immune response to phage stimulation,
RAW264.7 cells were seeded in 12 well plates at a density of 0.5 × 106 cells/well in
RAW medium (for direct stimulation) or antibiotic free Caco2 medium (for stimulation
with transcytosed phage) for overnight incubation. The media was removed and replaced
with a fresh RAW medium or 800 µL of basolateral medium, and cells were incubated for
24 h at 37 ◦C, 5% CO2. Supernatants of the RAW medium were collected and the concen-
tration of secreted TNFα was measured using ELISA MAX Deluxe Set Mouse TNFα kits
(Biolegend, San Diego, CA, USA). A total of one hundred µL of macrophage supernatants
following stimulation were assayed in triplicate alongside a standard curve to quantify
the concentration of TNFα present. Colorimetric readings were taken on a plate reader at
450 nm. Values are presented as mean ± standard error of the mean (SEM).

Intestinal barrier function. Before and after the addition of a phage, transepithelial elec-
trical resistance (TEER) was measured for all wells using the EVOM Epithelial Volt/Ohm
Meter 3 (World Precision Instruments, Sarasota, FL, USA). After basolateral supernatants
were collected, the media was replaced and transwells were exposed to 0.2 mg/mL Fluo-
rescein isothiocyanate-dextran (4kDa Fluorescein isothiocyanate (FITC)-dextran, Millipore-
Sigma, Burlington, MA, USA) solution (in Caco2 medium) for 1 h at 37 ◦C, 5% CO2. After
incubation, 100 µL of basolateral medium was assayed in duplicate within a fluorescence
microwell plate (Corning) on a plate reader with reads taken at 450 nm.

Immunofluorescence. A T4 phage was labeled with either SYBR Gold (SG, nucleic acid,
ThermoFisher) or both SG and Alexa647-NHS ester (A647, capsid, ThermoFisher). Briefly,
T4 stocks were quantitated using plaque overlay assays and incubated with a 1x concentra-
tion of SYBR Gold in the dark for 30 min with occasional gentle agitation. For reactions
where both nucleic acid and capsids were labeled, phage solutions were exchanged to
40 mM HEPES buffer, pH 8 using 10,000 (10K) molecular weight cutoff (MWCO) centrifugal
filters (MilliporeSigma) and incubated with 1x SG and an A647 concentration to allow for a
degree of labeling of 1–5 dye molecules/phage particle. Labeling reactions were incubated
in the dark for 30 min with occasional, gentle agitation. Free dye removal and washes were
performed with 10K MWCO centrifugal filters with final, cleaned concentrate brought up to
original volume in an SM Buffer. After 24 h incubation with labeled phage, polarized Caco2
filters were fixed with 4% paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield,
PA, USA), washed with PBS, and mounted with DAPI-containing ProLong Gold (Ther-
moFisher). Samples were imaged on a Fluoview Olympus confocal microscope (Olympus
Life Science, Center Valley, PA, USA) using a 63x objective.

Image processing and Data analysis. Confocal microscopy images were processed and
analyzed using FIJI freeware (ImageJ, [39]). To determine the number of cells within a field
of view containing phage, Z-stacks were z-projected with max intensity and channels were
overlaid (cyan- nuclear stain (DAPI), green- SG, phage nucleic acid, red- phage capsid).
The total number of nuclei and the number of nuclei with close proximity to phage material
were counted, and the percent which were phage positive was determined.
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Data analysis. Data processing, graphing, and statistical analyses were conducted
using GraphPad Prism software v.10.4.1 (GraphPad, San Diego, CA, USA). Descriptive
statistics (mean and standard error of mean (SEM)) and Brown–Forsythe and Welch one-
way ANOVA tests with Dunnett’s multiple comparisons test were performed to identify
statistical significance.

3. Results
3.1. Directly Applied T4 Stimulated TNFα Production Macrophages in a Concentration-Dependent
Fashion

To determine if a directly applied T4 phage could stimulate TNFα secretion from
RAW264.7 macrophages (RAW cells), phages were added to RAW cells at a multiplicity
of 10 or 100 and incubated for 24hr to give maximal time for response (Figure 1A). The
concentration of TNFα in supernatants in response to phage exposure was quantitated with
ELISA. A standard curve was generated at the same time. Direct application of intact T4
resulted in high levels of TNFα secretion at both multiplicities tested with multiplicity of 10
inducing 1922 ± 366 pg/mL (p = 0.001) and multiplicity of 100 inducing 2180 ± 248 pg/mL
(p < 0.0001) TNFα as compared to media only controls (31.6 ± 7.3 pg/mL) (Figure 1B, T4
columns). As macrophages possess several receptors capable of recognizing pathogen
associated molecular patterns (PAMPs) such as viral nucleic acid, we also examined if
purified T4 DNA was able to stimulate TNFα secretion in RAW cells in a manner similar to
an intact phage. With the known concentration of DNA within a single T4 capsid, ~57 ng,
multiplicity of 10 and 100 DNA equivalents were calculated and added to RAW cells for
24 h incubation. Analysis of RAW supernatants after direct DNA application demon-
strated that TNFα secretion was not significantly different than media only controls with
23.9 ± 3.2 pg/mL for multiplicity of 10 equivalent and 34.3 ± 4.4 pg/mL for multiplicity
of 100 equivalent (Figure 1B, T4 DNA columns).
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Figure 1. T4 bacteriophage activates TNFα secretion in murine macrophages. (A) Experimental
diagram of application of either intact T4 or T4 DNA to RAW264.7 cells with TNFα secretion as
evidence of activation. (B) Quantitation of TNFα secreted by RAW264.7 in response to multiplicity
of 10 or 100 T4 (left two columns) and multiplicity of 10 or 100 equivalents of T4 DNA (middle
two columns) as compared to RAW264.7 alone (Cntl). (C) Quantitation of TNFα from RAW264.7
incubated with a titration of intact T4 as compared to RAW264.7 alone (Cntl). Multiplicity of 100 was
highest concentration used (108). Columns represent mean values with standard error of the mean
(SEM). **** = <0.00001, ** = 0.001–0.009, * = 0.01–0.09.

These results, in combination with the literature suggesting the importance of phage
titer in stimulation of mammalian immune responses [12,14,20,40], prompted an examina-
tion to determine the cutoff concentration of T4 for activation. Volumes of serially diluted
T4 starting at a high concentration of multiplicity 100 (108) were directly applied to RAW
cells for 24 h incubation. Supernatants were again analyzed with ELISA and demonstrated
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a titration of activation with increased dilution (Figure 1C). The stimulation of TNFα se-
cretion by intact T4 was significantly above control values until dilution of phage reached
105 phages/mL, which corresponds to a multiplicity of 0.1 (108 = 2180 ± 247.9 pg/mL,
p < 0.0001; 107 = 1922 ± 366.4, p = 0.004; 106 = 643.7 ± 70.8 pg/mL, p = 0.03; and
105 = 24.9 ± 1.8 pg/mL, p = ns (not significant) vs. control (Cntl) = 23.26 ± 5.2).

3.2. T4 Transcytosis Occurred at Low Level with No Effect on Intestinal Barrier

T4 has been shown to transcytose through several models of epithelial barriers
in vitro [28], and the expectation was that this phage would also transcytose across a
monolayer of polarized Caco2 cells, which mimics the small intestinal epithelium. T4
at a multiplicity of 10 or 100 was applied to the apical surface of polarized Caco2 cells
(days 18–21) grown on transwell filters (Figure 2A). To ensure that T4 application was
not detrimental to the Caco2 barriers, measurements of both TEER and FITC-dextran flux
were performed. The resistance of barriers, as measured by TEER, is correlated to the
impermeability of cellular tight junctions. In our experiments, TEER remained high after
incubation with T4, on par with control barriers that were not exposed to T4 (Figure 2B).
Barriers exposed to T4 had a mean measure of 1393 ± 29.7 Ω•cm2 prior to incubation and
1401.4 ± 14.1 Ω•cm2 after incubation as compared to control barriers (no T4) which started
with 1493 ± 26.1 Ω•cm2 and ending at 1523 ± 44.7 Ω•cm2.
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Figure 2. Application of T4 does not affect barrier function. (A) Diagram of in vitro application
of T4 to transwells containing small intestinal barrier models (polarized Caco2). (B) Comparison
of TEER measurements pre- and post-experiment from transwells with T4 applied (+ columns)
or barriers alone (− columns). Columns represent mean values with standard error of the mean
(SEM). (C) Results from FITC flux assay with mean relative fluorescence measures ± SEM from
the basolateral media of barriers with (+T4) or without (−T4) phage application and the calculated
percent of flux occurring for each group of samples.

To determine whether T4 caused increased permeability in treated intestinal barriers,
allowing for paracellular flux (movement through junctional spaces), we followed up
with the use of a FITC flux assay. After 24 h T4 incubation, diffusion of 4 kDa FITC-
dextran from the apical portion of the transwell through the barrier to the basolateral
portion was monitored by detection of relative fluorescence (RFU) within the basolateral
medium where increased RFU would indicate a “leaky” barrier. Results of FITC flux assays
showed that barriers retained their tight junctions despite incubation with T4 (Figure 2C).
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To determine the percent of fluorescence that diffused through the barrier, the positive
control value (highest amount of FITC that could diffuse through; mean RFU = 48414) was
set to 100%. The media alone value (mean RFU = 261.7) was subtracted from the sample
means with (+T4) and without (−T4) phage added, and then the percent RFU relative
to the positive control was determined. Calculations showed that untreated, polarized
barriers allowed 0.01% of the total FITC through the barrier, and treated, polarized barriers
allowed a passage of 0.1%. These data, taken in conjunction with the TEER data, showed
that incubation with a multiplicity of 100 of T4 phage for a 24 h period was not detrimental
to the barrier integrity.

3.3. T4 Transcytosed Across Polarized Caco2 Cells at a Low Level

Previously, active T4 transcytosis through an in vitro cell model of the colonic epithe-
lium (Caco2, 3–4-day confluency) found approximately 0.1% of the apically applied phage
transcytosed to the basolateral side [28]. To determine the % of active T4 that transcytosed
across polarized Caco2 cells (small intestinal model, 21-day confluency), we enumerated
active phages applied to the apical surface and the active phages within the basolateral
media by performing plaque overlay assays (Figure 3A). We found that active T4 tran-
scytosed at an even lower level than that seen in the colonic model; specifically, T4 at
a multiplicity of 100 (108) resulted in transcytosis of 0.04 ± 0.02% of the applied phage
and T4 at a multiplicity of 10 (107) resulted in transcytosis of 0.01 ± 0.004%. Confocal mi-
croscopy was performed to visualize labeled T4 within the polarized Caco2 cells (Figure 3B)
demonstrating that the uptake of T4 was not uniform, with some cells appearing to have
a higher affinity for uptake than others. Calculation of the number of cells containing
labeled T4 DNA after 24 h incubation found that only 29 ± 5.3% of cells within a field of
view contained phage (Figure 3C). Furthermore, cells positive for transcytosis tended to be
clustered together suggesting these cells may have a physiological difference that increased
the likelihood for transcytosis.
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Figure 3. Low percentage of applied T4 transcytose through a limited number of barrier cells.
(A) Calculated percentage of applied, active T4 that is transcytosed through polarized Caco2 after
24 h as measured by plaque overlay assay. (B) Representative overlayed Z-projection microscopy
image (60×) of Caco2 barrier cells containing labeled T4 (nuclei = DAPI, pseudocolored cyan;
T4 nucleic acid = SG, pseudocolored green; T4 capsid = AF647, pseudocolored red). Yellow pixels
indicate colocalization of T4 labels. Image has been brightness/contrast enhanced, and scale bar is
20 µm. (C) Comparison of the mean number (± SEM) of Caco2 cells within a field of view found
with labeled phage (+T4) to the number of Caco2 cells with no phage (−T4). Calculations include
12 fields of view across five experiments.

3.4. Transcytosed T4 Stimulate More TNFα Secretion than Directly Applied T4

While stimulation of TNFα secretion from RAW cells by T4 occurred after direct appli-
cation, it does not match the steps that must take place in vivo; specifically, gastrointestinal
phages need to traverse the epithelial barrier (in healthy individuals) prior to interacting
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with immune cells in the lamina propria. As such, we questioned whether transcytosis
across intestinal cells might influence the effectiveness of phage stimulation of macrophages.
To investigate this, we applied T4 at either a multiplicity of 10 or 100 to the apical surface
of a polarized monolayer of Caco2 cells, allowed 24 h for transcytosis to occur, and then
applied the basolateral medium to RAW cells for an additional 24 h before screening the
supernatant for TNFα secretion (Figure 4A). A time of twenty-four hours was selected to
allow for transcytosis of a measurable amount of T4 and for a response by RAW cells.
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Figure 4. Transcytosed T4 induces TNFα secretion from murine macrophages better than an equiva-
lent concentration of directly applied T4. (A) Experimental diagram of application of T4 for transcyto-
sis followed by application of basolateral medium to macrophages for TNFα induction. (B) Compari-
son graph of mean (± SEM) concentration of TNFα quantitated from RAW 264.7 cells treated with
the basolateral (BL) medium from barriers with T4 applied as compared to RAW 264.7 cells alone
(-Control) or within the BL medium itself of T4-treated Caco2 barriers (Caco BL). (C) Comparison of
the mean (± SEM) secreted TNFα (pg/mL) from RAW 264.7 cells treated with directly applied T4
(108 through 104) to that of RAW cells treated with the BL fraction from barriers with a multiplicity of
100 T4 applied (blue bar; transcytosed concentration equivalent to 104). The control medium was
from untreated RAW 264.7 cells (Cntl). *** = 0.0001–0.0009 and ** = 0.001–0.009.

Analysis of the RAW supernatant (Figure 4B) revealed that transcytosed material
from the application of T4 at a multiplicity of 10 stimulated low levels of TNFα secretion
(37 ± 9.5 pg/mL), as compared to what is secreted by RAW cells upon exposure to basolat-
eral medium from untreated Caco2 barriers (-Control; 12.32 ± 2 pg/mL). This difference
was not found to be statistically significant (p = 0.3). In comparison, exposure to basolateral
medium from barriers with a multiplicity of 100 T4 applied stimulated significantly higher
TNFα secretion from the RAW cells (213.2 ± 40.2 pg/mL; p = 0.003). This measurable
amount of TNFα is strictly from the RAW cells as the basolateral media from treated Caco2
cells (Caco BL) did not contain TNFα in response to incubation with T4 at a multiplicity of
100 (5.579 ± 0.5 pg/mL). The calculation of active T4 found to transcytose polarized Caco2
barriers at a multiplicity of 100 (0.04% of applied phage) is equivalent to 105 T4 found
within the basolateral media, and this is the concentration of phage to which the RAW cells
are subsequently exposed. As such, we compared the TNFα secretion by the RAW cells
upon direct exposure to 105 T4 vs. exposure to 105 transcytosed T4 and found that the
amount of TNFα secreted by the RAW cells incubated with basolateral media is signifi-
cantly higher than that produced from direct application of the comparable amount of T4
(213.2 ± 40.2 pg/mL vs. 24.9 ± 1.8 pg/mL; p = 0.002) (Figure 4C). These data demonstrate
that transcytosis of T4 through an in vitro model of the small intestinal epithelium enhanced
T4 activation of the immune response by RAW cells, as measured by TNFα secretion.
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3.5. Transcytosis Does Not Change Macrophage Response to Non-Immunostimulatory Phage

While transcytosis through polarized Caco2 cells enhanced activation of the RAW
macrophages by T4, we questioned whether transcytosis alone was sufficient to function-
ally change any transcytosed phage to be more immunostimulatory. We found during
testing of several different phages that, unlike T4, the Limosilactobacillus plantarum bacte-
riophage, 8014-B2, does not induce TNFα secretion by RAW macrophages when directly
applied (Figure 5; 8014-B2Direct vs. Cntl= 56.5 ± 6.4 pg/mL vs. 47.4 ± 5.6 pg/mL). To
see whether transcytosis might modify this non-immunostimulatory phage to make it im-
munostimulatory, a multiplicity of 100 of 8014-B2 was applied to polarized Caco-2 barriers
and allowed to incubate for 24 h. Similar to the T4 experiments, the basolateral medium
was collected and applied to RAW macrophages for an additional 24 h incubation period.
RAW supernatants were then tested for TNFα with ELISA. Transcytosis of 8014-B2 did
not result in an increased secretion of TNFα by the treated RAW cells (Figure 5; 8014-B2BL;
60.9 ± 17 pg/mL) suggesting that transcytosis is not sufficient to change a phage from
non-stimulatory to stimulatory.
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4. Discussion
Despite early belief that bacteriophages were innocuous from a clinical standpoint, as

they specifically infect bacteria rather than mammalian cells [41], it has instead turned out
that the dynamics of interactions between bacteriophages and mammalian host cells are
much more complex. In vitro assays have demonstrated both pro- and anti-inflammatory
responses (reviewed in [12,14,42]), while in vivo administration has shown the develop-
ment of anti-phage antibodies [32,43], the induction of T-cell responses [44,45], and the
modulation of the immune response to both the benefit and detriment of the phage’s
bacterial host [46–49]. Indeed, it has even been demonstrated that response to any given
phage may be further modulated by the specific species of bacterial host and the phage
titer involved [50–52]. But, prior to an interaction with the immune system, a critical step
exists in that any gastrointestinal bacteriophage needs to move past the epithelial barrier
(small intestinal or colonic) in order to access the niches where immune cells reside.

The structure of the gastrointestinal barrier differs between the large intestine and the
small intestine, descriptions of which can be found in several thorough reviews [53–55].
Herein, we focus our research on dynamics of a representative intestinal phage (T4) with
an in vitro model of the small intestinal barrier consisting of polarized Caco2 cells grown
on transwell filters for 18–21 days. Within the distal small intestine, phages, which have
no means for self-propulsion, exist in a context of high bacterial density (on the order of
109 bacteria/mL) [56] and thinner mucin coverage [57] allowing for the potential of close
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proximity with the epithelial barrier, more so than would be possible within the colonic
microenvironment [58,59]. However, the tight junctions of the epithelial barrier in the
distal ileam are such that only particles that are <13 nm are capable of moving between
cells (paracellularly) [60], meaning that transcytosis (or movement through the epithelial
barrier) is the more likely mechanism for phages, which are larger than 13 nm, to access
the underlying tissues. Indeed, several reports have described transcytosis of a variety
of phages through in vitro epithelial and endothelial barriers [28,29,61], suggesting that
this is a likely route for phage access to extraintestinal niches in vivo. These reports have
described a number of factors concerning bacteriophage transcytosis including: Phages
of different shapes and sizes are transcytosed preferentially in an apical to basolateral
direction [28]. Uptake of phage occurs early after exposure with surface adherence within
30 s and internalization visualized within 10 min [29]. Endosomal trafficking involves
Golgi-associated vesicles and some breakdown of phage [28]. A majority of internalized
phage remain intact and functional [29]. And, a phage that is transcytosed to the basolateral
represents a fraction of what was applied in a dose dependent manner, meaning that if
more phage is present apically, more will be found transcytosed over time [28,29].

Our data are supported by these findings, although it is possible that phage transport
through the polarized Caco2 cells occurs through different pathways than those previously
described. What is particularly intriguing is that our results demonstrate that transcy-
tosed T4 displays enhanced immunostimulatory properties (initiating TNFα secretion in
macrophages) as compared to an equivalent concentration of non-transcytosed T4. How-
ever, transcytosis alone was insufficient to make a non-stimulatory phage (i.e., 8014-B2)
more stimulatory, suggesting either that there are certain structural differences between
phages that result in modification during transcytosis or that modification occurs regardless
but is only stimulating in the context of other phage-specific motifs.

In a clinical context, we posit that the modification of certain phages through transcy-
tosis for enhanced immune reaction could serve to benefit the host. It has been reported
that the T4 phage does not induce a proinflammatory response [32,35], but does induce
antibody production [30–32]. In the healthy gastrointestinal system, the bacteria to phage
ratio is reported to be low (1:1) [62] and the number of phages that are immunostimulatory
are also likely to be limited given the literature that supports anti-inflammatory phage-
driven responses [14]. Thus, the concentration of transcytosed-immunostimulatory phage
would be even lower meaning that interaction events with tissue resident macrophages
would be likely limited and potentially drive the more beneficial effects associated with
TNFα secretion (e.g., increased barrier integrity) [63,64]. If the intestinal system becomes
disrupted, such as occurs with dysbiosis (e.g., Small Intestinal Bacterial Overgrowth, Ir-
ritable Bowel Syndrome, or bacterial infection), the disease state can be associated with
significant increases in any given phage [65–67], including those that are proinflammatory.
In these instances, the higher titers of proinflammatory phages in the lumen would be
reflected in the transcytosed levels, and the induction of TNFα secretion by intestinal
macrophages would be more frequent as the likelihood of interaction between transcytosed
immunostimulatory phages and macrophages is increased. Given the potency of TNFα to
further drive inflammation, it is possible that the induction of peritoneal macrophages in
the context of the expansion of a proinflammatory phage population would work to initiate
and enhance inflammation associated with dysbiosis/disease. Better understanding of the
mechanisms of increased immunostimulation by transcytosed phages and the potential
contributions to intestinal homeostasis or disease progression require both in vitro and
in vivo follow-on studies with clear consideration as to the complexity and nature of the
potential interactions.
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