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S1. Additional Figures

(a) BKPyV (b) Creatinine

(c) All states (d) Susceptible cells (model 2)
Figure S1. Model fits to EHR patient #4947 data. a) Model 2 fits to the peak of BKPyV data better than model 1. b) Model 1 
and 2 fit the creatinine data equally w ell. c) The unobservable states help determine the effect of  BKPyV in fection. The top left 
panel indicates the susceptible cells are in steady decline for model 1 due to the infection. With an approximate loss of 66% of these 
cells for model 1, there is likely graft impairment. d) A zoomed in plot of susceptible cells for model 2 due to the lower estimated 
initial value of HS . The susceptible cells plateau indicating the stabilization of the graft once the infection is under control.



(a) BKPyV (b) Creatinine

(c) All states
Figure S2. Model 2 fit to CTOT patient #287779 BKPyV data. a) Model 2 captures both the growth and decline of the patient’s 
BKPyV data. The slow decline of BKPyV indicates the infection is not under control. b)Creatinine data is sparse but captured well 
c) Most important is the state HS (top left panel) with a noticeable decline likely due to the persistent infection.



(a) BKPyV (b) Creatinine

(c) All states
Figure S3. Model 2 fit to CTOT patient #287660 data. a) The model 2 fit to BKPyV data grows slightly quicker than the data 
and misses the high peak (106 copies/mL) but captures the decline of the virus very well. b) Creatinine data is too sparse to show if 
creatinine rises due to the loss of kidney around day 100 post transplant c) Susceptible cells (top left panel) decline significantly due 
to the excessive peak of BKPyV. The decline in HS by 80% indicates almost total loss of kidney function which is supported by 
creatinine (bottom right panel) growing to 2 mg/dL.

S2. Model Improvements
We obtained our refined model using the sensitivity analyses and the method of

model fitting described in the paper. The original model (model 0) was initially verified
qualitatively by gathering and calculating parameters from literature, see [1] and [2]. There
are 21 parameters in the mathematical model which include source and loss rates (δEV ,
ρV , etc.), half saturation constants (κEH , κV , κCH) and an immunosuppression efficacy
value (ϵ). The model includes a set of characteristic functions, χ(V >V ∗), χ(EK>E∗

K
), and

χ(EV >E∗
V
), with threshold parameters V ∗, E∗

K , and E∗
V (see model 0 in Equations (1) -

(6)). Certain elements of the model stood out as contrary to the biology or potentially
unnecessary. We have examined this model and removed several parameters in the interest
of making a simpler, more accurate model.



Immune Response Model: Model 0 [3]

ḢS = −χ(V >V ∗)βHSV − χ(EK>E∗
K
)β̃HSEK (1)

ḢI = χ(V >V ∗)βHSV − δHIHI − χ(EV > EV ∗)δEHEV HI (2)

V̇ = ρV δHIHI − δV V − χ(V >V ∗)βHSV (3)

ĖV = (1 − ϵ)

(
λEV +

ρEV V

V + κV
EV

)
− δEV EV (4)

˙EK = (1 − ϵ)

(
λEK +

ρEKHS

HS + κKH
EK

)
− δEKEK (5)

Ċ = λC − δC0
HS

HS + κCH
C (6)

Initially, characteristic functions are removed. The V ∗, E∗
V , and E∗

K characteristic
functions set the minimum quantities of BKPyV copies and CD8+ T cells in the blood
before they could affect the body. In the case of BK virus, this was implemented as a
representation of BKPyV in the latent state before reactivating when the threshold for
viral copies in the blood (V ∗) was met [2]. Instead, reactivated virions can be addressed
in the estimated growth term for BKPyV so modeling BKPyV latency is unneeded. In
the comprehensive account of BKPyV by Alcendor, et. al., we note there is no notion
of a threshold to determine activation of BKPyV [4]. Similarly, the other characteristic
functions, for E∗

K and E∗
V , indicate the effector cell populations will not attack their targets

(susceptible cells and infected cells, respectively) until high enough concentrations were
present in the blood. This is also not suggested in the literature [5]. By removing these
expressions, CD8+ T cells are effective at controlling their targets immediately which would
occur in the biological system when the cells come in contact. Previously, low viral data
paired with the viral threshold parameter led to biologically unrealistic behavior in the
dynamics and difficulty fitting parameters using OLS on account of the discontinuity from
crossing the threshold. By removing the characteristic functions from the model, we remove
this complication and are able to work with the low viral load and low effector cell levels
common in many patients.This change also improved the model’s performance numerically
and reduced the size of the parameter space.

After removing the characteristic functions, we are left with model 1 in Equations (7)-
(12) which could be compared to other refinements of the model. The estimated parameter 
values for model 1 are listed in Table S1. The model dynamics due to this change are
shown in model 1 and for patient #4947 in Figure S4. Figure S4 is the result of the OLS
fitting process outlined in section 2.3. (Note this change to the model was made before the
decision to adjust the fixed values of κV and κKH as described in section 3.3.)

Even though this change allowed for better model fitting of viral data, some issues still
exist in other states. Most important is that the susceptible renal tubule cell population
declines severely with significant loss of kidney function being likely; see top left panel
of Figure S4. In addition, bottom left panel shows the almost instantaneous growth of
allo-specific effector cells to a carrying capacity of 50 cells and seems biologically unrealistic.



Table S1. Parameter estimates for model 1

Parameter Value Description Units
β 8.22x10−8 Infection rate of HS by V mL/(copies· day)
β̃ 0.0001 Attack rate on HS by EK mL/(cells· day)

δHI 0.085 Death rate of HI by V /day

δEH 0.0018 Elimination rate of HI by
EV

mL/(cells· day)

ρV 15000 Virions produced by HI

before death copies/cells

δV 0.05 Natural clearance rate of V /day
λEV 285 Source rate of EV cells/(mL· day)

ρEV 0.36 Maximum proliferation rate
for EV

/day

κV 107 Half saturation constant copies/mL
δEV 0.17 Death rate of EV /day
λEK 285 Source rate of EK cells/(mL· day)

ρEK 0.137 Maximum proliferation rate
for EK

/day

κKH 105 Half saturation constant cells / mL
δEK 0.09 Death rate of EK /day
λC 0.01 Production rate for C mg/(dL· day)

δC0 0.2 Maximize clearance rate for
C /day

κCH 104 Half saturation constant cells/mL
Parameters highlighted in grey are not estimated, parameters highlighted in red are fit to creatinine data
separately, and other parameters and initial value for HS are fit to BKPyV data.

Immune Response Model: Model 1

ḢS = −βHSV − β̃HSEK (7)
ḢI = βHSV − δHIHI − δEHEV HI (8)
V̇ = ρV δHIHI − δV V − βHSV (9)

ĖV = (1 − ϵ)

(
λEV

+
ρEV V

V + κV
EV

)
− δEV

EV (10)

˙EK = (1 − ϵ)

(
λEK

+
ρEKHS

HS + κKH
EK

)
− δEK

EK (11)

Ċ = λC − δC0
HS

HS + κCH
C (12)



Figure S4. Model 1 fit to EHR patient #4947 data without characteristic functions. The model 
fit captures the data while V and E V to get close to 0  since the characteristic functions are removed.

Given the less than desired outcomes, further adjustments to the model are necessary.
The second model improvement pertains to the constant source terms, λEV and λEK in
the equations of the effector cells, (10) and (11) respectively. These terms are part of
the original model in [1] and regarded as small source terms. The constant λEV had no
explanation. Similarly, λEK was intended to be related to HLA matching also without
explanation, but HLA matching can be accounted for with the maximal growth rate ρEK

in the allo-specific effector cell equation, (11). Removing λEV and λEK is plausible since
they are not biologically necessary for the model.

Examining the sensitivity analysis in Figure 3ab, the viral state is sensitive to λEV

and only locally toλEV but not ρEK and ρEV (the growth rates based on the magnitude
of the threat). This indicates that λEV and λEK are driving the growth of the CD8+
T cell populations. In our view, it is more important that the threat dependent growth
rates of the effector cells are the factors driving the immune response while also being
easier to estimate. Hence, λEK and λEV are removed from the model in order to make
the viral state sensitive to ρEK and ρEV . In Figure 3d, the viral state is sensitive to ρEV

but not ρEK . Although, ρEK is the only growth rate in Equation (11) and estimation is
necessary to adjust the allo-specific immune response based on patient data. Thus both
parameters are estimated, see Table S1. This adjustment provides the benefit of reducing
the size of the parameter space and also can be observed in model 1.1 Equations (16) and (17).



Immune Response Model: Model 1.1

ḢS = −βHSV − β̃HSEK (13)
ḢI = βHSV − δHIHI − δEHEV HI (14)
V̇ = ρV δHIHI − δV V − βHSV (15)

ĖV = (1 − ϵ)

(
ρEV V

V + κV
EV

)
− δEV

EV (16)

˙EK = (1 − ϵ)

(
ρEKHS

HS + κKH
EK

)
− δEK

EK (17)

Ċ = λC − δC0
HS

HS + κCH
C (18)

When first fitting model 1.1 to the data from patient #4947 (solid blue trajectory in
Figures S5a and S5b), the dynamics attempt to capture the trend of the BKPyV data,
and the desired improvements in states HS and EK are recognized: HS was stable with
reasonable allograft loss and EK did not immediately jump from 0 to a carrying capacity.
Since the BKPyV dynamics do not fit the data as well as previous models, another model
change is necessary. Of the estimated parameter values, there is over a magnitude of
difference between the values of the natural loss rates of the effector cells, δEV and δEK .
This leads to the final model change.

(a) BKPyV (b) All states
Figure S5. Model 1.1 fit to EHR patient #4947 BKPyV data with no linear source terms in effector cell equations. a) Restricting δEV 
and δEK to similar magnitudes (red trajectory) fit the patient data better than allowing these parameters to differ by 1 or more 
orders of magnitude (blue trajectory). b) The other model states show that HS (top left panel) plateaus as desired for both trajectories 
while HI (top right panel) and EV (middle right panel) react more realistically when the delta parameters are restricted.

Just as model 1.1 saw changes in the effector cell dynamics, the change in δ’s also
occurs in Equations (16) and (17). model 1.1 assumes that the BKPyV-specific and the
allo-specific cells have different death rates δEV and δEK respectively. Specific T cells
originate from naive T cells indicating that specific T cells are similar in structure. Following
other mathematical modeling of T cells, we adopt the assumption that all T cells have
identical properties other than the pathogens they are specific to [6–9]. Furthermore it
would be unlikely that the natural death rate for two unique specific T cells would differ by
orders of magnitude. Instead we assume they lie within a relatively small range [10].

The red trajectory in Figure S5 is the result of estimating the parameters of model 1.1
where δEV and δEK are constrained to within an order of magnitude of each other. The



red trajectory displays a better fit to the BKPyV data addressing the concern of the blue
trajectory. In the top right panel of Figure S5b, the infected cells increase with the BKPyV
infection as expected and BKPyV-specific CD8+ T cells demostrate a stronger response.
All indications of a more biologically realistic model solution.

For the updated immunosuppression model in the interest of simplicity, we assume
that the death rates, δEV and δEK , are equal and therefore we label the joint death rate as
δEJ in both Equations (22) and (23). This assumption does not apply to the proliferation
rate of these equations because CD8+ T cell response to pathogens occurs in relation to the
particular threat [6]. We assume the growth rates are unique to the BKPyV and allograft
responses. This change to a joint death rate for effector cells further simplifies model and
again reduces the parameter space. The Updated Immune Response Model (model 2) is
described in the Equations (19) - (24) and the model flow chart, Figure S6.

Updated Immune Response Model: Model 2

ḢS = −βHSV − β̃HSEK (19)
ḢI = βHSV − δHIHI − δEHEV HI (20)
V̇ = ρV δHIHI − δV V − βHSV (21)

ĖV = (1 − ϵ)

(
ρEV V

V + κV
EV

)
− δEJEV (22)

˙EK = (1 − ϵ)

(
ρEKHS

HS + κKH
EK

)
− δEJEK (23)

Ċ = λC − δC0
HS

HS + κCH
C (24)
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Figure S6. Diagram of the model 2 state interactions

We have refined and simplified this model into the Updated Immune Response Model
(model 2). This model contains no characteristic functions or linear source terms for immune
cells. We have also combined the natural death rate of the effector cells since it is unlikely
two types of CD8+ T cells would die at significantly different rates. With these modifications,



the Banks et. al. immune response model has been reduced to 14 parameters from 20, not
including the immunusuppression parameter ϵ. The updated model is verified qualitatively
by gathering parameters from literature similar to model 0 [1,3] and also by estimating
a subset of the parameters which the viral and creatinine states have sensitivity to. The
parameter descriptions and default values are found in Table 2 in the section 2.

S3. Sensitivity Analysis
Morris screening is a one-at-a-time method which means that to calculate an elementary

effect only one parameter value will be changed while all others remained fixed. Finite
differences can be used in the calculation of elementary effects by using model states
calculated with both the original sample parameters and the new perturbed sample parameter.
For example, suppose the parameter space is 3-dimensional with sample vector (q1, q2, q3).
A perturbation, ∆, will be applied to each element in a random order (that changes for each
sample vector). For example, (q1, q2, q3) is the original sample and q2 will be perturbed
yielding sample (q1, q2 + ∆, q3). Consider that your model output is described by y(q), then
the elementary effect for parameter qi is

Elementary Effect i = y(q1, . . . qi + ∆ . . . , qn) − y(q1, . . . qi . . . , qn)

∆
(25)

where i = 1, . . . , n is the parameter index and n is the number of parameters. All of the
elementary effects for parameter i will be averaged together to obtain the ranking value.
For a deeper explanation of the Morris screening method, see [11,12].

Our application of Morris screening to the immunosuppression model used a sample
set of 10,000 points and ∆ = 0.5556 following from the formula in [11]. Our sample set was
generated using the random number generator in Matlab with seed 50. The results of the
initial screening for state BKPyV in the original model are in Figure 3a where we see that
the subset of parameters including κV , β̃, λEK , δEK , λC , δC0, κCH , ρEK , κKH , and ρEV

have little to no effect on the BK virus state. Hence, the remaining 8 sensitive parameters
should be considered for estimation using real patient data.

For local sensitivity analysis, a derivative-based method is used which calculates partial
derivatives at a point in the parameter space which we will call q∗, the nominal values of
q. Consider our general set of parameters to be the vector q with j = 1, . . . , 18 different 
parameters and our state space as x(q) with i = 1, . . . , 6 states. The partial derivatives
∂xi/∂qj represent the local sensitivities of the states with respect to the parameters as the
change in the model state xi over the small change in the parameter qj . This method is
inherently local since the partial derivatives are evaluated at q∗.

The sensitivity coefficients, as defined in [13], are derived from the partial derivatives
and used as a metric for comparison between sensitivities of a state with respect to each
parameter. The parameter spaces for different parameters can vary by many orders of
magnitude and the calculation of the sensitivity coefficient normalizes each sensitivity. The
sensitivity coefficients can be calculated using the formula:

Si(q) =

[
1

tf − t0

∫ tf

t0

∣∣∣∣ ∂y

∂qi

qj

maxt y

∣∣∣∣2dt

]1/2
(26)

where t0 and tf are the initial and final times respectively over which the model is run
and maxt y is the maximum value the state of our model takes on this time interval. The
sensitivity, ∂y(t)/∂qi, is calculated using the central difference formula with a step size
hi =

√
Relative Tolerance ∗ qi [14]. Integration in time is solved numerically with the

composite Simpson’s rule. The results of this method are shown in Figure 3bd.



S4. Identifiability
To determine the identifiability of the sensitive parameters, eigenvalues of the sensitivity  

matrix are calculated. The sensitivity matrix consists of the partial derivatives found in the  

local sensitivity analysis arranged in a matrix as follows: 

S̃ij =
∂y

∂qj
(ti, q∗)

q∗
j

y(ti, q∗)
. (27)

˜We note that small eigenvalues of the S̃T S are problematic for identifying parameters so a  

small cutoff value of e = 10−4 is used following [13,15]. This algorithm determines the set  of 
identifiable parameters given e: 

1. Compute the eigenvalues of S̃T S̃ and order them:

|λ1| ≤ |λ2| ≤ · · · ≤ |λn|. (28)

2. If |λ1| ≤ e, conclude this parameter is not identifiable, otherwise exit the algorithm.
3. Examine eigenvector v1 for the largest component, E, which corresponds to the  

parameter that is least identifiable. 
4. Remove the column of S̃ that corresponds to the position of E in v1. Return to step 1 and 

repeat. 

At the conclusion of the algorithm, the qi’s that correspond to the remaining eigenvalues
consist of the set of identifiable parameters.

S5. Standard Errors
Standard errors and subset selection are determined using the Fisher information

matrix and following the procedure demonstrated in [16]. Subset selection is implemented
using the algorithm developed in [17], [18]. Figures S7 and S8 show the results of the
subset selection in terms of normalized standard errors for the patients #4947, #287779,
#287915, and #287660. The red threshold in the figures signal when the standard error
matches the value of the parameter. Standard errors below the threshold are considered
reasonable because the error is less than parameter value indicating a level of confidence in
the parameter value. Parameters with standard errors above the threshold indicate there
is not enough information present in the data to be confident in the estimated value of
parameter or that the parameter is correlated with another. A way to interpret each figure
is to focus on each column of standard errors where those reported are for the best set of
parameter estimates for the group size indicated on the independent axis. From this point
of view, the parameters in the set can be split between those above and below the threshold.

Two primary takeaways from these results are shown in the Figures S7 and S8
collectively. The first relates to obtaining the most parameter estimates with reasonable
standard errors. For each patient estimating only three of the model parameters together
can yield reasonable standard error for all three of them. Any other number of estimated
parameters together produces at best two estimates with reasonable standard errors. The
second takeaway stems from estimating eight parameters (final column in the figures) where
seven or eight of the parameters have unreasonable standard errors. This result suggests
that the model parameters are highly correlated with each other. This is not uncommon in
nonlinear differential equations. Our goal in this work is not to determine nominal values
(estimates with low standard error) of all of parameters in the model but rather produce
acceptable model fits to patient data which the model achieves.



(a) Patient #4947 (b) Patient #287779
Figure S7. Parameter estimate subset selection based on standard errors for a) #4947 and b) #287779. Each number of 
parameters indicates the best standard errors for a subgroup of the size. The red line indicates where standard errors are greater 
then their respective parameter values. For patient #4947, at best two parameters can be estimated with acceptable standard 
errors, while for patient #287779 three parameters fit that c riteria. Estimating a ll e ight parameters as show in Table ?? shows that 
almost all estimates have high standard error and are likely correlated for both patients.

(a) Patient #287915 (b) Patient #287660
Figure S8. Parameter estimate subset selection based on standarad errors for a) #287915 and b) #287660. Each number of 
parameters indicates the best standard errors for a subgroup of the size. The red line indicates where standard errors are greater 
then their respective parameter values. For patient #287915, three parameters can be estimated with acceptable standard errors, 
while for patient #287660 only two parameters fit that c riteria. Estimating all eight parameters as show in Table ?? shows that 
almost all estimates have high standard error and are likely correlated for both patients.

S6. Stability Analysis
S6.1. Equilibria

For exploring the general long term dynamics of an ODE model, stability analysis is a
useful tool that couples these dynamics to model equilibria. Equilibria of the model can
be determined by examining the system of equations that describe the model and utilizing
some assumptions to separate them into cases. Each equilibrium of model can be described
as attracting, repelling, or as a saddle point which is related to the long term model behavior
near equilibrium. An equilibrium is a point in the solution space where given the model
inputs there will be no change in the model output and the model output will remain at



that point for the remainder of the simulation. An equilibrium that is attracting finds that
over time all model solutions near the equilibrium will approach and achieve the equilibrium.
When the equilibrium is repelling, any model solution that is not the equilibrium as the
starting point will move away from the equilibrium and the model output will never achieve
the equilibrium. Finally, a saddle point is an equilibrium where some solutions attract
to and achieve the equilibrium while other solutions actively move away from the equilibrium.

Updated Immune Response Model: Model 2

ḢS = −βHSV − β̃HSEK (29)
ḢI = βHSV − δHIHI − δEHEV HI (30)
V̇ = ρV δHIHI − δV V − βHSV (31)

ĖV = (1 − ϵ)

(
ρEV V

V + κV
EV

)
− δEJEV (32)

˙EK = (1 − ϵ)

(
ρEKHS

HS + κKH
EK

)
− δEJEK (33)

Ċ = λC − δC0
HS

HS + κCH
C (34)

The first step in stability analysis is determining the equilibria of the model. For
reference, model 2 has been included in this section. An equilibrium is a point where the
model solution is constant and the solution will remain at the equilibrium for all time in the
future. This is true for model solutions that begin at the equilibrium and are also attracted
to the equilibrium. A constant solution can be described mathematically by setting each
model equation, (29) - (34), equal to zero representing that there are no changes in the
state of that equation. For example, making Equation (29) constant requires setting the
equation to zero as shown here:

0 = −βHSV − β̃HSEK . (35)

There are a couple core assumptions from the design of the model that influence the
process of finding the equilibria after setting the ODE’s equal to zero. The first model
assumption states that all model parameters are greater than zero in all cases since the use
of addition and subtraction in the model are all based on positive parameter values. In
addition, efficacy is regarded as a fixed, positive parameter. The second assumption states
all state variables (e.g., HS , HI , etc.) must be non-negative since negative quantities are
not reasonable biologically. For example, there cannot be negative amounts of susceptible
and infected renal cells. Since these are true to the model, they will be true and combined
with other assumptions when determining the equilibria.

Core Assumptions for Stability Analysis:
1) All model parameters are > 0
2) All model variables are non-negative

S6.2. Case 1: There is No Trivial Solution
Now for the first case, we assume that HS = 0 which is not terribly interesting  since it 

represents the allograft being completely non-functioning. This choice is based  on the fact 
that setting HS to zero immediately sets Ḣ 

S to zero, see Equation (36). Sub-  stituting zero 
in for each HS term in the system of equations results in the following changes. 



Model 2 - Assuming HS = 0

ḢS = 0 (36)
ḢI = 0 − δHIHI − δEHEV HI = 0 (37)
V̇ = ρV δHIHI − δV V − 0 = 0 (38)

ĖV = (1 − ϵ)

(
ρEV V

V + κV
EV

)
− δEJEV = 0 (39)

˙EK = 0 − δEJEK = 0 (40)
Ċ = λC − 0 = 0. (41)

Examining Equation (40), it is clear that EK must be zero for ˙EK = 0. Thus we have
that HS = EK = 0 based on our assumptions. In Equation (37), setting HI = 0 is the only
way to not violate core assumption # 1. Since HI = 0 now, Equation (38) will change so
that V must also be 0. Substituting V = 0 into Equation (39) now forces EV = 0. Hence
we have that HS = HI = V = EV = EK = 0. The final equation, (41), indicates that there
is no trivial equilibrium of the model. Instead this analysis indicates that if all susceptible
renal cells are lost (HS = 0) then the remaining states will also go to zero while state C

continues constant growth of creatinine in the blood stream which is realistic biologically.

Case 1 Assumptions:
1) HS = 0
2) HI = 0
Result: There is no trivial equilibrium.

S6.3. Case 2: Biologically Reasonable (BR) Equilibrium
For the second case, we consider Equation (35) again. In case 1, HS was assumed to

be zero but for case 2 the initial assumption is that V = EK = 0 to satisfy (35) which
implies there are infinitely many possible static values for HS that also satisfy this equation.
The static value for the equilibrium will be designated H̄S . We denote the state values that
satisfy the constant equations in bar notation, e.g., for state HS the value of H̄S satisfies
the constant equations and is the value in the equilibrium. Substituting these values into
model 2 produces the following constant equations for finding the equilibrium.

Model 2: Assuming V = EK = 0

ḢS = −βH̄S ∗ 0 − β̃H̄S ∗ 0 = 0 (42)
ḢI = −δHIHI − δEHEV HI = 0 (43)
V̇ = ρV δHIHI = 0 (44)

ĖV = −δEJEV = 0 (45)
˙EK = 0 (46)

Ċ = λC − δC0
H̄S

H̄S + κCH
C = 0 (47)

Now given this initial assumption, EK = 0 indicates that ĖK is constant as shown in (46). 
Next the assumption implies that EV = 0 for Equation (45) to be true. Now with EV = 0  

then HI = 0 given Equations (43) and (44). To conclude the process, the constant equation 



for C, (47), can be simplified so that the equilibrium state C̄ can be described as a function 
S as shown here,of the steady state value H̄ 

C̄(H̄S) =
λC(H̄S + κCH)

δC0H̄S
. (48)

Case 2 Assumptions:
1) V = 0
2) EK = 0
Result: BR equilibrium has the form (H̄S , 0, 0, 0, 0, C̄).

S6.4. Case 3: Biologically Unrealistic (BU) Equilibrium
To find the second equilibrium of the model, we start with Equation (35) again but

relax core assumption 2 therefore model states can be negative. The reason for this is
obvious when simplifying (35) to the form:

EK = −β

β̃
V (49)

From Equation (49), it is clear that both V and EK cannot be positive while core assumption
1 (model parameters are positive) is maintained. Since by design all parameters must be
positive, this assumption is unalterable. Given that case 2 already addressed when V and
EK are both zero, case 3 focuses only on non-zero values of V and EK . Ultimately, the
result will be an equilibrium solution with a negative valued state V̄ or ĒK which creates a
biologically unreasonable solution.

By setting the model equations to zero to find the equilibrium, simplifying the model
equations in the following order(32),(33),(29), (31),(30),(34) generates the following equilib-
rium solution (given that EV and EK do not equal zero),

V̄ =
κV δEJ

ρEV (1 − ϵ) − δEJ
(50)

H̄S =
κKHδEJ

ρEK(1 − ϵ) − δEJ
(51)

ĒK = −β

β̃
V̄ (52)

H̄I =
δV + βH̄S

ρV δHI
V̄ (53)

ĒV =
βH̄S V̄

δEHH̄I
− δHI

δEH
(54)

C̄ =
λC(H̄S + κCH)

δC0H̄S
. (55)

Case 3 Assumptions:
1) Model States can be negative.
2) V ̸= 0 and EK ̸= 0 for Equation (35)
3) HS ̸= 0, EV ̸= 0, and EK ̸= 0 for division in (35), (32), and (33)
4) HI ̸= 0 for substitution and simplification
Result: BU equilibrium has the form (H̄S , H̄I , V̄ , ĒV , ĒK , C̄).



S6.5. Stability Dynamics
There are 2 equilibria for this model. One is biologically unrealistic while the other 

falls in the biologically reasonable solution space, i.e., all model states are non-negative. To 
examine their long term dynamics, a local linear stability analysis is performed to determine 
if long term outcomes will attract to or repel from the given equilibrium. Evaluating the 
Jacobian of the model is the first s tep i n l ocal l inear s tability a nalysis. T he values for 
the Jacobian matrix elements are calculated by using the equilibrium state values and the 
parameter values associated with determining that equilibrium. The next step in the linear 
stability analysis is to examine the eigenvalues for the Jacobian matrices which are shown 
in Table S2. Since a Jacobian matrix can be calculated for each equilibrium, there are two 
sets of eigenvalues to observe.

Table S2. Eigenvalues and equilibria: CTOT patient #287660

BR Eigenvalues BU Eigenvalues BR Equilibrium BU Equilibrium
λ1 -0.1933 -0.2284 H̄S 100 501.3
λ2 -0.0306 -0.0095 H̄I 0 3.151
λ3 -0.0223 0.0023 V̄ 0 3125.3
λ4 0.0076 -0.0023 ĒV 0 28.90
λ5 -0.0020 0.001 + 0.0214i ĒK 0 -2.577
λ6 0 0.001- 0.0214i C̄ 5.05 1.047

Since both sets of eigenvalues have elements with positive real parts and others with
negative real parts, these equilibria are classified as saddle points. Real positive eigenvalues
indicate a repelling nature from the equilibrium while real negative eigenvalues indicate an
attracting nature to the equilibrium. Saddle points are unstable since there exist solutions
that repel from the equilibrium, but despite the instability there also exist solutions that
attract to the equilibrium. Dominant eigenvalues can help predict the behavior of solutions
along the eigenvectors over time [19].

Consider CTOT patient 660 and the dominant eigenvalue associated with the BU
equilibrium. The dominant eigenvalue, -0.2284, far exceeds the only positive eigenvalue of
0.0023 indicating a strong attraction to the BU equilibrium. Since the dominant eigenvalue
is much larger, many model solutions will attract towards this equilibrium quickly in the
direction of the dominant eigenvector. The two complex eigenvalues with very small positive
real parts indicate that the solution will never achieve the equilibrium point. Instead
solutions will approach the equilibrium and then oscillate around it. The only exception is
if the initial state of the model solution is on an eigenvector associated with a real valued
eigenvalue, then it will attract to or repel from the equilibrium based on the sign of the
eigenvalue. Since this is a local analysis, the extent of the attraction to this saddle points
is unknown. The elements in the BU equilibrium indicate that the BR and BU equilibria
are far apart. Hence it is unclear if the attraction of BU equilibrium may attract some
trajectories of solutions in the biologically reasonable space and prevent them from attracting
to the BR equilibrium.

In the case of the BR equilibrium for patient 660, -0.1933 is the dominant eigenvalue
while 0.0076 is the only positive eigenvalue. These values are not close in magnitude to
each other indicates a strong attraction in the direction of the dominant eigenvector. If we
allowed the model to run to infinite time eventually most solutions sufficiently close to the
BR equilibrium will attract to it. The repelling quality of the second dominant eigenvalue
may play a part in preventing some of the model solutions from getting close enough to
attract to the BR equilibrium. The BR equilibrium that these eigenvalues are drawn from
is (100, 0, 0, 0, 0, 5.05) and could represent a transplant patient that fought off a BKPyV



infection which follows from the fact that HS and V need to drop to very low values to
eliminate EV and EK . Here H̄S is so low that nephropathy would have occurred and the
allograft would not be functioning. Hence this is not an equilibrium we want the model to
approach.

Furthermore, the BR equilibrium is a relation between the two states H̄S and C̄ and
it’s value can shift based on the initial value of all model states. For instance, if we assumed
a healthy individual without foreign kidney tissue, i.e., HI = V = EV = EK = 0, then
the BR equilibrium would be based on the initial volume of healthy kidney cells HS0. An
example would be (5000, 0, 0, 0, 0.15) which has a dominant eigenvalue of -0.3836 and a
second most dominant eigenvalue of 0.1975 which are somewhat close in magnitude. Here
the dominant eigenvalue would attract model solutions while the second dominant would
repel them a significant amount. This requires model solutions to be close to this equilibrium
in order to attract to it. Realistically this equilibrium would be incredibly unlikely for a
renal transplant patient with BKPyV reactivation to achieve. The use of a control theory
framework would help guide model solutions toward a BR equilibrium with a high H̄S value
of 5000 or more, but would most likely fall short where C > C̄.

In the following tables of eigenvalues and equilibria for other patients, similar conclusions
can be drawn to those above.

Table S3. Eigenvalues and equilibria: CTOT patient #287915

BR Eigenvalues BU Eigenvalues BR Equilibrium BU Equilibrium
λ1 -0.1828 -0.2284 H̄S 100 501.3
λ2 -0.1064 -0.0095 H̄I 0 3.151
λ3 -0.0936 0.0023 V̄ 0 3125.3
λ4 0.0124 -0.0023 ĒV 0 28.90
λ5 -0.0020 0.001 + 0.0214i ĒK 0 -2.577
λ6 0 0.001- 0.0214i C̄ 5.05 1.047

Table S4. Eigenvalues and equilibria: CTOT patient #287779

BR Eigenvalues BU Eigenvalues BR Equilibrium BU Equilibrium
λ1 -0.0748 -0.5984 H̄S 100 -7494.99
λ2 -0.0689 0.3715 H̄I 0 2.916
λ3 -0.0292 -0.0015 + 0.0331i V̄ 0 1858.85
λ4 0.0043 -0.0015 - 0.0331i ĒV 0 -5.69
λ5 -0.0020 0 + 0.0013i ĒK 0 -1.53
λ6 0 0- 0.0013i C̄ 5.05 -0.0167

Table S5. Eigenvalues and equilibria: EHR patient #4080

BR Eigenvalues BU Eigenvalues BR Equilibrium BU Equilibrium
λ1 -0.0422 0.0396 H̄S 100 -1029.9
λ2 -0.0421 0.0230 H̄I 0 1.445
λ3 -0.0296 -0.0115 + 0.0279i V̄ 0 724.6
λ4 0.0036 -0.0115 - 0.0279i ĒV 0 -1597.0
λ5 -0.0020 0 + 0.0092i ĒK 0 -0.5956
λ6 0 0 - 0.0092i C̄ 5.05 -0.4355



Table S6. Eigenvalues and equilibria: EHR patient #4947

BR Eigenvalues BU Eigenvalues BR Equilibrium BU Equilibrium
λ1 -0.1447 -0.1506 H̄S 100 377.2
λ2 -0.0300 -0.0073 H̄I 0 3.261
λ3 -0.0200 -0.0011 V̄ 0 691.9
λ4 -0.0020 0.0011 ĒV 0 1804.5
λ5 0.0016 0.0005 + 0.012i ĒK 0 -0.5687
λ6 0 0.0005 - 0.012i C̄ 5.05 1.376
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