Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Tissue Collection and Preparation
2.4. DESI Data Acquisition and Processing
2.4.1. Step to Get the Result of Imaging
2.4.2. Spatial Distribution Mapping of (R)-Salbutamol in the Rat Brain
2.4.3. Spatial distribution mapping of cleavage molecule of (R)-salbutamol in the Rat Brain
3. Results and Discussion
3.1. Step to Get the Result of Imaging
3.2. Spatial Distribution Mapping of (R)-Salbutamol in the Rat Brain
3.3. Spatial Distribution Mapping of Cleavage Molecule of (R)-Salbutamol in the Rat Brain
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katsunuma, T.; Fujisawa, T.; Maekawa, T.; Akashi, K.; Ohya, Y.; Adachi, Y.; Hashimoto, K.; Mizuno, M.; Imai, T.; Oba, M.S.; et al. Low-dose l-isoproterenol versus salbutamol in hospitalized pediatric patients with severe acute exacerbation of asthma: A double-blind, randomized controlled trial. Allergol. Int. 2019, 68, 335–341. [Google Scholar] [CrossRef]
- Mittal, S.; Bjørnevik, K.; Im, D.S.; Flierl, A.; Dong, X.; Locascio, J.J.; Abo, K.M.; Long, E.; Jin, M.; Xu, B.; et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science 2017, 357, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gronich, N.; Abernethy, D.R.; Auriel, E.; Lavi, I.; Rennert, G.; Saliba, W. β2-adrenoceptor agonists and antagonists and risk of Parkinson’s disease. Mov. Disord. 2018, 33, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Jat, K.R.; Khairwa, A. Levalbuterol versus albuterol for acute asthma: A systematic review and meta-analysis. Pulm. Pharmacol. Ther. 2013, 26, 239–248. [Google Scholar] [CrossRef]
- Mitra, S.; Ugur, M.; Ugur, O.; Goodman, H.M.; McCullough, J.R.; Yamaguchi, H. (S)-Albuterol Increases Intracellular Free Calcium by Muscarinic Receptor Activation and a Phospholipase C-Dependent Mechanism in Airway Smooth Muscle. Mol. Pharmacol. 1998, 53, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Farmer, P.; Pugin, J. beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am. J. Physiol. Cell. Mol. Physiol. 2000, 279, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, D.; Perini, A.; Lopes, F.; Arantes-Costa, F.; Martins, M.; Nunes, M. Effect of salbutamol on pulmonary responsiveness in chronic pulmonary allergic inflammation in guinea pigs. Braz. J. Med Boil. Res. 2005, 38, 723–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorley, B.N.; Li, Y.; Fang, S.; Park, J.A.; Adler, K.B. (R)-albuterol elicits antiinflammatory effects in human airway epithelial cells via iNOS. Am. J. Respir. Cell Mol. Biol. 2006, 34, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Diaz, B.L.; Serra, M.F.; Alves, A.C.; Cordeiro, R.S.; Martins, M.A.; Silva, P.M.E. Local exposure to salbutamol or Bt2 cyclic AMP inhibits pleural exudation and leukocyte influx caused by antigen in rats. Eur. J. Pharmacol. 1996, 296, 173–180. [Google Scholar] [CrossRef]
- Page, C.P.; Morley, J. Contrasting properties of albuterol stereoisomers. J. Allergy Clin. Immunol. 1999, 104, S31–S41. [Google Scholar] [CrossRef]
- Abdelmotilib, H.; West, A.B. Breathing new life into an old target: pulmonary disease drugs for Parkinson’s disease therapy. Genome Med. 2017, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Caccia, S.; Fong, M.H. Kinetics and distribution of the β-adrenergic agonist salbutamol in rat brain. J. Pharm. Pharmacol. 1984, 36, 200–202. [Google Scholar] [CrossRef]
- Illum, L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2000, 11, 1–18. [Google Scholar] [CrossRef]
- Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.-P.; Fenart, L. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 2007, 6, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, M.; Bergman, U.; Jansson, B.; Björk, E.; Brittebo, E. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm. Res. 2000, 17, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Timperley, D.; Schlosser, R.J.; Harvey, R.J. Chronic rhinosinusitis: An education and treatment model. Otolaryngol. Neck Surg. 2010, 143, 3. [Google Scholar] [CrossRef]
- Patil, K.; Yeole, P.; Gaikwad, R.; Khan, S. Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J. Pharm. Pharmacol. 2009, 61, 669–675. [Google Scholar] [CrossRef]
- Serralheiro, A.; Alves, G.; Fortuna, A.; Falcão, A. Intranasal administration of carbamazepine to mice: A direct delivery pathway for brain targeting. Eur. J. Pharm. Sci. 2014, 60, 32–39. [Google Scholar] [CrossRef]
- Hussain, A.A.; Dakkuri, A.; Lai, Y.-L.; Traboulsi, A.; Hussain, M.A. Nasal administration of albuterol: An alternative route of delivery. J. Pharm. Pharmacol. 2004, 56, 1211–1215. [Google Scholar] [CrossRef]
- Wiseman, J.M.; Ifa, D.R.; Zhu, Y.; Kissinger, C.B.; Manicke, N.E.; Kissinger, P.T.; Cooks, R.G. Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues. Proc. Natl. Acad. Sci. USA 2008, 105, 18120–18125. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zeng, J.; Liu, S.; Zhao, T.; Wu, J.; Lai, W.; He, M.; Xu, B.; Qu, S.; Xu, L.; et al. Study on the determination and chiral inversion of R-salbutamol in human plasma and urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2015, 1002, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, T.; Pardridge, W.M. Targeted drug delivery to the brain; (blood-brain barrier, efflux, endothelium, biological transport). J. Drug Target. 2000, 8, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Thorne, R.; Pronk, G.; Padmanabhan, V.; Frey, W. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004, 127, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Liu, S.; Yang, Y.; Zhao, T.; Li, S.; Zhou, T.; Tan, W. Identification of the major metabolites of (R)-salbutamol in human urine, plasma and feces using ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2019, 42, 3200–3208. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Wu, J.; Liu, S.; Deng, L.; Hu, J.; Chen, X.; Tan, W. Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS. Pharmaceutics 2020, 12, 35. https://doi.org/10.3390/pharmaceutics12010035
Zhang R, Wu J, Liu S, Deng L, Hu J, Chen X, Tan W. Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS. Pharmaceutics. 2020; 12(1):35. https://doi.org/10.3390/pharmaceutics12010035
Chicago/Turabian StyleZhang, Rui, Jie Wu, Siyu Liu, LiangJun Deng, Junhua Hu, Xi Chen, and Wen Tan. 2020. "Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS" Pharmaceutics 12, no. 1: 35. https://doi.org/10.3390/pharmaceutics12010035
APA StyleZhang, R., Wu, J., Liu, S., Deng, L., Hu, J., Chen, X., & Tan, W. (2020). Spatial Distribution of (R)-salbutamol in Rat Brain Following Nasal and Intravenous Administration Using DESI-MS. Pharmaceutics, 12(1), 35. https://doi.org/10.3390/pharmaceutics12010035