Enhanced Water Solubility and Oral Bioavailability of Paclitaxel Crystal Powders through an Innovative Antisolvent Precipitation Process: Antisolvent Crystallization Using Ionic Liquids as Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PTX Crystal Powders
2.3. Optimization of the Antisolvent Precipitation Process
2.4. Characterization of the PTX Crystal Powders
2.4.1. Scanning Electron Microscopy (SEM) and Mean Particle Size (MPS) Detection
2.4.2. Fourier Transform Infrared Spectroscopy (FT–IR)
2.4.3. High-Performance Liquid Chromatography–Mass Spectrometry (HPLC–MS)
2.4.4. X-Ray Diffraction (XRD)
2.4.5. Differential Scanning Calorimetry (DSC)
2.4.6. Thermogravimetric (TG) Analysis
2.4.7. Raman Spectroscopy
2.4.8. Solid-State Nuclear Magnetic Resonance (SSNMR)
2.5. Dissolution Study
2.5.1. Preparation of the Tablets Containing the PTX Crystal
2.5.2. Kinetic Solubility Test
2.6. Bioavailability Study of Paclitaxel Crystal Powders in Rats
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Antisolvent Precipitation Process
3.2. Morphology
3.3. Chemical Structure
3.4. The Crystal Structure
3.5. Dissolution Results
3.6. Bioavailability Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarma, B.; Chen, J.; Hsi, H.-Y.; Myerson, A.S. Solid forms of pharmaceuticals: Polymorphs, salts and cocrystals. Korean J. Chem. Eng. 2011, 28, 315–322. [Google Scholar] [CrossRef]
- Freitas, E.T.F.; Stroppa, D.G.; Montoro, L.A.; De Mello, J.W.V.; Gasparon, M.; Ciminelli, V.S. Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention. Chemosphere 2016, 158, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.; Cuan-Guerra, A.D.; Barriga-Castro, E.D.; Núñez, N.O.; Mendoza-Reséndez, R. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals. Mater. Res. Bull. 2016, 80, 44–52. [Google Scholar] [CrossRef]
- Tan, L.; Davis, R.M.; Myerson, A.S.; Trout, B.L. Control of Heterogeneous Nucleation via Rationally Designed Biocompatible Polymer Surfaces with Nanoscale Features. Cryst. Growth Des. 2015, 15, 2176–2186. [Google Scholar] [CrossRef]
- Davey, R.J.; Dent, G.; Mughal, R.K.; Parveen, S. Concerning the Relationship between Structural and Growth Synthons in Crystal Nucleation: Solution and Crystal Chemistry of Carboxylic Acids As Revealed through IR Spectroscopy. Cryst. Growth Des. 2006, 6, 1788–1796. [Google Scholar] [CrossRef]
- Allesø, M.; Berg, F.V.D.; Cornett, C.; Jørgensen, F.S.; Halling-Sørensen, B.; De Diego, H.L.; Hovgaard, L.; Aaltonen, J.; Rantanen, J. Solvent Diversity in Polymorph Screening. J. Pharm. Sci. 2008, 97, 2145–2159. [Google Scholar] [CrossRef]
- Allesø, M.; Bar-Shalom, D.; Aaltonen, J.; Cornett, C.; Berg, F.W.J.V.D. Solvent subset selection for polymorph screening. J. Chemom. 2008, 22, 621–631. [Google Scholar] [CrossRef]
- Moribe, K.; Tozuka, Y.; Yamamoto, K. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Adv. Drug Deliv. Rev. 2008, 60, 328–338. [Google Scholar] [CrossRef]
- Kratochvil, B. Crystallization of pharmaceutical substances. Chem. Listy 2007, 101, 3–12. [Google Scholar]
- Chang, X.; Ding, T.; Tian, H.; Wang, T. Antisolvent crystallization and solid-state polymerization of bisphenol-A polycarbonate. J. Appl. Polym. Sci. 2016, 133, 27. [Google Scholar] [CrossRef]
- Araya-Sibaja, A.M.; Soldi, V.; Campos, C.; Cardoso, S.G.; Cuffini, S.L. Crystal growth of progesterone metastable and stable polymorphs by polymer induced herteronucleation (PIHn) method. Cryst. Res. Technol. 2015, 51, 49–57. [Google Scholar] [CrossRef]
- Hsu, H.; Adigun, O.O.; Taylor, L.S.; Murad, S.; Harris, M.T. Crystallization of acetaminophen on chitosan films blended with different acids. Chem. Eng. Sci. 2015, 126, 1–9. [Google Scholar] [CrossRef]
- Takeda, Y.; Mafuné, F. Induction of protein crystallization by platinum nanoparticles. Chem. Phys. Lett. 2016, 647, 181–184. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Ahmed, E.; Breternitz, J.; Groh, M.F.; Isaeva, A.; Ruck, M. [Sb7Se8Br2]3+and [Sb13Se16Br2]5+- Double and Quadruple Spiro Cubanes from Ionic Liquids. Eur. J. Inorg. Chem. 2014, 2014, 3037–3042. [Google Scholar] [CrossRef]
- Smith, K.B.; Bridson, R.H.; Leeke, G.A. Crystallisation control of paracetamol from ionic liquids. CrystEngComm 2014, 16, 10797–10803. [Google Scholar] [CrossRef]
- Liang, H.; Wang, W.; Xu, J.; Zhang, Q.; Shen, Z.; Zeng, Z.; Li, Q. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food Bioprod. Process. 2017, 104, 57–65. [Google Scholar] [CrossRef]
- Shekaari, H.; Zafarani-Moattar, M.T.; Mirheydari, S.N. Thermodynamic study of aspirin in the presence of ionic liquid, 1-hexyl-3-methylimidazolium bromide in acetonitrile at T=(288.15 to 318.15) K. J. Mol. Liq. 2015, 209, 138–148. [Google Scholar] [CrossRef]
- Li, S.; Li, S.-N.; Zhai, Q.; Jiang, Y.-C.; Hu, M. Phase behavior of ionic liquids-cesium carbonate-water aqueous two-phase systems and their extraction of L-tryptophan. Chem. Res. Chin. Univ. 2018, 34, 127–131. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Wang, Y.; Qin, Y.; Liu, B.; Bai, M. Two green approaches for extraction of dihydromyricetin from Chinese vine tea using β-Cyclodextrin-based and ionic liquid-based ultrasonic-assisted extraction methods. Food Bioprod. Process. 2019, 116, 1–9. [Google Scholar] [CrossRef]
- Kowacz, M.; Groves, P.; Esperança, J.M.S.S.; Rebelo, L. On the Use of Ionic Liquids to Tune Crystallization. Cryst. Growth Des. 2011, 11, 684–691. [Google Scholar] [CrossRef]
- An, J.-H.; Kim, W.-S. Antisolvent Crystallization Using Ionic Liquids as Solvent and Antisolvent for Polymorphic Design of Active Pharmaceutical Ingredient. Cryst. Growth Des. 2012, 13, 31–39. [Google Scholar] [CrossRef]
- Huizing, M.T.; Misser, V.H.S.; Pieters, R.C.; Huinink, W.W.T.B.; Veenhof, C.H.N.; Vermorken, J.B.; Pinedo, H.M.; Beijnen, J.H. Taxanes: A New Class of Antitumor Agents. Cancer Investig. 1995, 13, 381–404. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Igishi, T.; Kawasaki, Y.; Yamamoto, M.; Kato, K.; Matsumoto, S.; Kotani, M.; Sako, T.; Shigeoka, Y.; Sugitani, A.; et al. Phase II trial of weekly paclitaxel in previously untreated advanced non-small-cell lung cancer. Oncology 2003, 65, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Winegarden, J.D.; Mauer, A.M.; Gajewski, T.F.; Hoffman, P.C.; Krauss, S.; Rudin, C.M.; Vokes, E.E. A phase II study of bryostatin-1 and paclitaxel in patients with advanced non-small cell lung cancer. Lung Cancer 2003, 39, 191–196. [Google Scholar] [CrossRef]
- Liggins, R.T.; Cruz, T.; Min, W.; Liang, L.; Hunter, W.L.; Burt, H.M. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: Biocompatibility and efficacy determinations in rabbits. Inflamm. Res. 2004, 53, 363–372. [Google Scholar] [CrossRef]
- Lainer, D.T.; Brahn, E. New antiangiogenic strategies for the treatment of proliferative synovitis. Expert Opin. Investig. Drugs 2005, 14, 1–17. [Google Scholar] [CrossRef]
- Li, G.; Faibushevich, A.; Turunen, B.J.; Yoon, S.O.; Georg, G.; Michaelis, M.L.; Dobrowsky, R.T. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases β-amyloid toxicity in cortical neurons. J. Neurochem. 2003, 84, 347–362. [Google Scholar] [CrossRef]
- Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598. [Google Scholar] [CrossRef]
- Ho, P.-Y.; Yeh, T.-K.; Yao, H.-T.; Lin, H.-L.; Wu, H.-Y.; Lo, Y.-K.; Chang, Y.-W.; Chiang, T.-H.; Wu, S.H.; Chao, Y.-S.; et al. Enhanced oral bioavailability of paclitaxel by d-α-tocopheryl polyethylene glycol 400 succinate in mice. Int. J. Pharm. 2008, 359, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Chae, S.W.; Xia, Y.; Kim, N.H.; Kim, H.J.; Rhie, S.; Lee, H.J. Effect of coumarin derivative-mediated inhibition of P-glycoprotein on oral bioavailability and therapeutic efficacy of paclitaxel. Eur. J. Pharmacol. 2014, 723, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.; Zu, Y.; Zhang, Y. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int. J. Pharm. 2015, 490, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Bilensoy, E.; Gürkaynak, O.; Ertan, M.; Şen, M.; Hıncal, A.A. Development of Nonsurfactant Cyclodextrin Nanoparticles Loaded With Anticancer Drug Paclitaxel. J. Pharm. Sci. 2008, 97, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, F.Z.; Yang, H.; Zhou, J.; Yao, J.; Zhang, T.; Zhang, Q. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2012, 47, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.W.; Kim, M.S.; Kim, J.S.; Park, H.J.; Lee, S.; Woo, J.S.; Hwang, S.J. Preparation and characterization of simvastatin/hydroxypropyl-beta-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2007, 66, 413–421. [Google Scholar] [CrossRef]
- Agüeros, M.; Zabaleta, V.; Millán, M.E.; Campanero, M.; Irache, J. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J. Control. Release 2010, 145, 2–8. [Google Scholar] [CrossRef]
- Vogt, F.G.; Williams, G.R.; Copley, R.C.B. Solid-State NMR Analysis of a Boron-Containing Pharmaceutical Hydrochloride Salt. J. Pharm. Sci. 2013, 102, 3705–3716. [Google Scholar] [CrossRef]
- Vogt, F.G.; Yin, H.; Forcino, R.G.; Wu, L. 17O Solid-State NMR as a Sensitive Probe of Hydrogen Bonding in Crystalline and Amorphous Solid Forms of Diflunisal. Mol. Pharm. 2013, 10, 3433–3446. [Google Scholar] [CrossRef]
- Vogt, F.G.; Williams, G.R.; Strohmeier, M.; Johnson, M.N.; Copley, R.C.B. Solid-State NMR Analysis of a Complex Crystalline Phase of Ronacaleret Hydrochloride. J. Phys. Chem. B 2014, 118, 10266–10284. [Google Scholar] [CrossRef]
- Harper, J.K.; Mulgrew, A.E.; Li, J.Y.; Barich, D.H.; Strobel, G.A.; Grant, D.M. Characterization of stereochemistry and molecular conformation using solid-state NMR tensors. J. Am. Chem. Soc. 2001, 123, 9837–9842. [Google Scholar] [CrossRef]
- Judge, P.J.; Taylor, G.F.; Dannatt, H.R.W.; Watts, A. Solid-State Nuclear Magnetic Resonance Spectroscopy for Membrane Protein Structure Determination. Adv. Struct. Saf. Stud. 2014, 1261, 331–347. [Google Scholar] [CrossRef]
- Harper, J.K.; McGeorge, G.; Grant, D.M. Solid-State13C Chemical Shift Tensors in Terpenes. 2. NMR Characterization of Distinct Molecules in the Asymmetric Unit and Steric Influences on Shift in Parthenolide. J. Am. Chem. Soc. 1999, 121, 6488–6496. [Google Scholar] [CrossRef]
- Demers, J.-P.; Habenstein, B.; Loquet, A.; Vasa, S.K.; Giller, K.; Becker, S.; Baker, D.; Lange, A.; Sgourakis, N.G. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat. Commun. 2014, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andronesi, O.C.; Von Bergen, M.; Biernat, J.; Seidel, K.; Griesinger, C.; Mandelkow, E.; Baldus, M. Characterization of Alzheimer’s-like Paired Helical Filaments from the Core Domain of Tau Protein Using Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2008, 130, 5922–5928. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.L.F.; Sperling, L.J.; Gao, Y.G.; Wylie, B.J.; Boettcher, J.M.; Wilson, S.R.; Rienstra, C.M. Crystal Polymorphism of Protein GB1 Examined by Solid-State NMR Spectroscopy and X-ray Diffraction. J. Phys. Chem. B 2007, 111, 14362–14369. [Google Scholar] [CrossRef] [Green Version]
- Mastropaolo, D.; Camerman, A.; Luo, Y.; Brayer, G.D.; Camerman, N. Crystal and molecular structure of paclitaxel (taxol). Proc. Natl. Acad. Sci. USA 1995, 92, 6920–6924. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.K.; Facelli, J.C.; Barich, D.H.; McGeorge, G.; Mulgrew, A.E.; Grant, D.M. 13C NMR Investigation of Solid-State Polymorphism in 10-Deacetyl Baccatin III. J. Am. Chem. Soc. 2002, 124, 10589–10595. [Google Scholar] [CrossRef]
- Milanesio, M.; Ugliengo, A.P.; Viterbo, D.; Appendino, G. Ab InitioConformational Study of the Phenylisoserine Side Chain of Paclitaxel. J. Med. Chem. 1999, 42, 291–299. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, J.; Fu, Y.; Li, H.; Ding, R.; Gong, T.; Zhang, Z. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf. B Biointerfaces 2017, 150, 89–97. [Google Scholar] [CrossRef]
Angle(°) | |
---|---|
Raw PTX | 5.58°, 6.12°, 8.89°, 9.67°, 10.04°, 11.06°, 12.29°, 13.83°, 15.61°, 17.07°, 18.68°, 19.56°, 21.89° |
Crystal PTX | 5.19°, 6.12°, 9.82°, 11.13°, 12.50°, 13.59°, 16.49°, 20.34° |
Position | δ 13C/ppm (Crystal PTX) | δ 13C/ppm (Raw PXT) |
---|---|---|
C18 | 6.10 | 5.79 |
C16, C17, C19 | 16.35 | 15.50 |
C24, C28 | 28.99, 31.18 | 30.14 |
C6 | 37.58 | 37.19, 41.29 |
C8, C3’ | 51.53 | 51.62 |
C7, C13, C2’ | 68.64 | 68.93, |
C4, C5 | 86.75 | 88.62 |
C22, C25, C26 | 123.18 | 123.10 |
C11, C12 | 134.56 | 134.16, 136.04 |
C21, C23, C4’ | 164.97 | 165.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zu, C.; Li, W.; Wu, W.; Ge, Y.; Wang, L.; Wang, L.; Li, Y.; Zhao, X. Enhanced Water Solubility and Oral Bioavailability of Paclitaxel Crystal Powders through an Innovative Antisolvent Precipitation Process: Antisolvent Crystallization Using Ionic Liquids as Solvent. Pharmaceutics 2020, 12, 1008. https://doi.org/10.3390/pharmaceutics12111008
Yang Q, Zu C, Li W, Wu W, Ge Y, Wang L, Wang L, Li Y, Zhao X. Enhanced Water Solubility and Oral Bioavailability of Paclitaxel Crystal Powders through an Innovative Antisolvent Precipitation Process: Antisolvent Crystallization Using Ionic Liquids as Solvent. Pharmaceutics. 2020; 12(11):1008. https://doi.org/10.3390/pharmaceutics12111008
Chicago/Turabian StyleYang, Qilei, Chang Zu, Wengang Li, Weiwei Wu, Yunlong Ge, Lingling Wang, Li Wang, Yong Li, and Xiuhua Zhao. 2020. "Enhanced Water Solubility and Oral Bioavailability of Paclitaxel Crystal Powders through an Innovative Antisolvent Precipitation Process: Antisolvent Crystallization Using Ionic Liquids as Solvent" Pharmaceutics 12, no. 11: 1008. https://doi.org/10.3390/pharmaceutics12111008
APA StyleYang, Q., Zu, C., Li, W., Wu, W., Ge, Y., Wang, L., Wang, L., Li, Y., & Zhao, X. (2020). Enhanced Water Solubility and Oral Bioavailability of Paclitaxel Crystal Powders through an Innovative Antisolvent Precipitation Process: Antisolvent Crystallization Using Ionic Liquids as Solvent. Pharmaceutics, 12(11), 1008. https://doi.org/10.3390/pharmaceutics12111008