Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Iron Gold Alloy Nanoparticles (FeAu)
2.3. Synthesis and Characterization of Gelatin-Coated Iron–Gold Alloy Nanoparticles Containing Lidocaine Hydrochloride
2.4. Characterization of Lidocaine-Containing FeAu Coated with Gelatin
2.5. Estimation of Amount of Lidocaine Release upon High-Frequency Induction Wave (HFIW) Stimulation
2.6. Cell Culture
2.7. In Vitro Cytotoxicity Analysis Using MTT Assay
2.8. In Vivo Rat Model for Evaluating Anesthetic Efficiency of FeAu@Gelatin-Lidocaine
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of FeAu Nanoparticles
3.2. Confirmation of the Formation of FeAu@Gelatin–Lidocaine Drug-Nanoparticle Conjugate
3.3. Magnetic Properties of FeAu Nps
3.4. Thermogravimetric Analysis for the Degradation of Gelatin for Drug Release
3.5. Confirmation of Hyperthermia Properties of FeAu Nanoparticles
3.6. In-Vitro Cytotoxicity Analysis
3.7. Intravenous Injection and Evaluation of Drug Release in an In Vivo Rat Model
3.8. Intramuscular Injection and Evaluation of Lidocaine Release on HFIW Stimulation In Vivo
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.Q.; Dhawan, D.; Wang, H.Y.; Liu, X.R.; Ku, H.H.; Tsai, M.T.; Yen, H.W.; Chung, R.J. Theranostic Iron@Gold Core-Shell Nanoparticles for Simultaneous Hyperthermia-Chemotherapy upon Photo-Stimulation. Part. Part. Syst. Char. 2019, 36, 1800419. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Patra, C.R.; Earl, A.; Wang, S.F.; Katarya, A.; Lu, L.; Kizhakkedathu, J.N.; Yaszemski, M.J.; Greipp, P.R.; Mukhopadhyay, D.; et al. Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed.-Nanotechnol. 2007, 3, 224–238. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, H.; Kim, D.I.; Choi, J.H.; Son, J.H.; Kim, J.; Moon, G.D.; Hyun, D.C. Gold Nanocage-Incorporated Poly(epsilon-Caprolactone) (PCL) Fibers for Chemophotothermal Synergistic Cancer Therapy. Pharmaceutics 2019, 11, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Appl. Microbiol. Biot. 2015, 99, 4579–4593. [Google Scholar] [CrossRef] [PubMed]
- O’Farrell, N.; Houlton, A.; Horrocks, B.R. Silicon nanoparticles: Applications in cell biology and medicine. Int. J. Nanomed. 2006, 1, 451–472. [Google Scholar] [CrossRef]
- Kim, S.; Moon, M.J.; Poilil Surendran, S.; Jeong, Y.Y. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 2019, 11, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.Y.; Jiang, H.T.; Wan, L.; Zhao, Q.F.; Jiang, T.Y.; Wang, B.; Wang, S.L. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015, 13, 354–363. [Google Scholar] [CrossRef]
- Alpaslan, E.; Yazici, H.; Golshan, N.H.; Ziemer, K.S.; Webster, T.J. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. Acs Biomater. Sci. Eng. 2015, 1, 1096–1103. [Google Scholar] [CrossRef]
- Lasheras, X.; Insausti, M.; de Muro, I.G.; Garaio, E.; Plazaola, F.; Moros, M.; De Matteis, L.; de la Fuente, J.M.; Lezama, L. Chemical Synthesis and Magnetic Properties of Monodisperse Nickel Ferrite Nanoparticles for Biomedical Applications. J. Phys. Chem. C 2016, 120, 3492–3500. [Google Scholar] [CrossRef] [Green Version]
- Green, L.A.W.; Thuy, T.T.; Mott, D.M.; Maenosono, S.; Thanh, N.T.K. Multicore magnetic FePt nanoparticles: Controlled formation and properties. RSC Adv. 2014, 4, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, U.; Sue, M.W.; Lan, K.C.; Buddhakosai, W.; Huang, P.H.; Chen, Y.C.; Chen, P.C.; Chen, W.L. Nanochip-Induced Epithelial-to-Mesenchymal Transition: Impact of Physical Microenvironment on Cancer Metastasis. ACS Appl. Mater. Inter. 2018, 10, 11474–11485. [Google Scholar] [CrossRef]
- Dhawan, U.; Wang, S.M.; Chu, Y.H.; Huang, G.S.; Lin, Y.R.; Hung, Y.C.; Chen, W.L. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness. Sci. Rep.-UK 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanini, A.; Schmitt, A.; Kacem, K.; Chau, F.; Ammar, S.; Gavard, J. Evaluation of iron oxide nanoparticle biocompatibility. Int. J. Nanomed. 2011, 6, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, G.; Sudame, A.; Luthra, T.; Saini, K.; Maity, D. Functionalized Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Application in Liver Cancer Treatment. ACS Omega 2018, 3, 3991–4005. [Google Scholar] [CrossRef] [PubMed]
- Nemati, Z.; Alonso, J.; Martinez, L.M.; Khurshid, H.; Garaio, E.; Garcia, J.A.; Phan, M.H.; Srikanth, H. Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. J. Phys. Chem. C 2016, 120, 8370–8379. [Google Scholar] [CrossRef]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef] [PubMed]
- Bear, J.C.; Patrick, P.S.; Casson, A.; Southern, P.; Lin, F.Y.; Powell, M.J.; Pankhurst, Q.A.; Kalber, T.; Lythgoe, M.; Parkin, I.P.; et al. Magnetic hyperthermia controlled drug release in the GI tract: Solving the problem of detection. Sci. Rep.-UK 2016, 6, 34271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.C.; Mornet, S.; Vander Elst, L.; Laurent, S.; Jerome, C.; Duguet, E. Heat-triggered drug release systems based on mesoporous silica nanoparticles filled with a maghemite core and phase-change molecules as gatekeepers. J. Mater. Chem. B 2014, 2, 59–70. [Google Scholar] [CrossRef]
- Mantha, V.R.R.; Nair, H.K.; Venkataramanan, R.; Gao, Y.Y.; Matyjaszewski, K.; Dong, H.; Li, W.W.; Landsittel, D.; Cohen, E.; Lariviere, W.R. Nanoanesthesia: A Novel, Intravenous Approach to Ankle Block in the Rat by Magnet-Directed Concentration of Ropivacaine-Associated Nanoparticles. Anesth. Analg. 2014, 118, 1355–1362. [Google Scholar] [CrossRef]
- Li, D.; Deng, M.W.; Yu, Z.Y.; Liu, W.; Zhou, G.D.; Wang, X.S.; Yang, D.P.; Zhang, W.J. Biocompatible and Stable GO-Coated Fe3O4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomater. Sci. Eng. 2018, 4, 2143–2154. [Google Scholar] [CrossRef]
- Li, Y.Q.; Xu, M.; Dhawan, U.; Liu, W.C.; Wu, K.T.; Liu, X.R.; Lin, C.P.; Zhao, G.; Wu, Y.C.; Chung, R.J. Iron-gold alloy nanoparticles serve as a cornerstone in hyperthermia-mediated controlled drug release for cancer therapy. Int. J. Nanomed. 2018, 13, 5499–5509. [Google Scholar] [CrossRef] [Green Version]
- Al Faraj, A.; Shaik, A.P.; Shaik, A.S. Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology 2015, 9, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.N.M.; Franz-Montan, M.; Alcantara, A.C.S.; Breitkreitz, M.C.; Castro, S.R.; Guilherme, V.A.; Muniz, B.V.; da Silva, G.H.R.; de Paula, E. Hybrid nanofilms as topical anesthetics for pain-free procedures in dentistry. Sci. Rep.-UK 2020, 10, 11341. [Google Scholar] [CrossRef]
- Barker, S.J.; Gamel, D.M.; Tremper, K.K. Cardiovascular Effects of Anesthesia and Operation. Crit Care Clin. 1987, 3, 251–268. [Google Scholar] [CrossRef]
- Wannaphatchaiyong, S.; Heng, P.W.S.; Suksaeree, J.; Boonme, P.; Pichayakorn, W. Lidocaine loaded gelatin/gelatinized tapioca starch films for buccal delivery and the irritancy evaluation using chick chorioallantoic membrane. Saudi Pharm. J. 2019, 27, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Chung, R.J.; Wang, H.Y.; Wu, K.T. Preparation and Characterization of Fe-Au Alloy Nanoparticles for Hyperthermia Application. J. Med. Biol. Eng. 2014, 34, 251–255. [Google Scholar] [CrossRef]
- Levy, M.; Wilhelm, C.; Siaugue, J.M.; Horner, O.; Bacri, J.C.; Gazeau, F. Magnetically induced hyperthermia: Size-dependent heating power of gamma-Fe2O3 nanoparticles. J. Phys.-Condens Mat. 2008, 20, 204133. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, S.; Esterle, A.; Sharma, N.C.; Sahi, S.V. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 2014, 9, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergo, P.; Sobral, P.J.A. Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloid 2007, 21, 1285–1289. [Google Scholar] [CrossRef]
- Parikh, N.; Parekh, K. Technique to optimize magnetic response of gelatin coated magnetic nanoparticles. J. Mater. Sci. Mater. Med. 2015, 26, 202. [Google Scholar] [CrossRef]
- Wei, Y.J.; Nedley, M.P.; Bhaduri, S.B.; Bredzinski, X.; Boddu, S.H.S. Masking the Bitter Taste of Injectable Lidocaine HCl Formulation for Dental Procedures. AAPS PharmSciTech 2015, 16, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Dey, K.; Parvin, F.; Sharmin, N.; Khan, R.A.; Sarker, B.; Nahar, S.; Ghoshal, S.; Khan, M.A.; Billah, M.M.; et al. Preparation and Characterization of Gelatin-Based PVA Film: Effect of Gamma Irradiation. Int. J. Polym. Mater. 2011, 60, 1056–1069. [Google Scholar] [CrossRef]
- Zhao, C.W.; He, P.; Xiao, C.S.; Gao, X.Y.; Zhuang, X.L.; Chen, X.S. Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer. J. Colloid Interf. Sci. 2011, 359, 436–442. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Jiang, K.Q.; Song, Q.L.; Liu, S.Y. Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide. Langmuir 2007, 23, 13076–13084. [Google Scholar] [CrossRef]
- Kang, D.K.; Zhao, L.Y.; Wang, H.L. Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines. Rev. Bras. Anestesiol. 2016, 66, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.Y. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J. Mater. Sci. Mater. Med. 2010, 21, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- Rigon, A.R.; Takahashi, R.N. The effects of systemic procaine, lidocaine and dimethocaine on nociception in mice. Gen. Pharmacol. 1996, 27, 647–650. [Google Scholar] [CrossRef]
Experimental Group | pH | Zeta Potential (mV) | Size (nm) |
---|---|---|---|
FeAu@Gelatin-Lidocaine | 2 | 22 mV | 348 |
FeAu@Gelatin-Lidocaine | 7.4 | 0 | 546 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, C.-K.; Dhawan, U.; Tseng, C.-L.; Alex Gong, C.-S.; Liu, W.-C.; Tsai, H.-D.; Chung, R.-J. Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles. Pharmaceutics 2020, 12, 1097. https://doi.org/10.3390/pharmaceutics12111097
Ting C-K, Dhawan U, Tseng C-L, Alex Gong C-S, Liu W-C, Tsai H-D, Chung R-J. Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles. Pharmaceutics. 2020; 12(11):1097. https://doi.org/10.3390/pharmaceutics12111097
Chicago/Turabian StyleTing, Chien-Kun, Udesh Dhawan, Ching-Li Tseng, Cihun-Siyong Alex Gong, Wai-Ching Liu, Huai-De Tsai, and Ren-Jei Chung. 2020. "Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles" Pharmaceutics 12, no. 11: 1097. https://doi.org/10.3390/pharmaceutics12111097
APA StyleTing, C. -K., Dhawan, U., Tseng, C. -L., Alex Gong, C. -S., Liu, W. -C., Tsai, H. -D., & Chung, R. -J. (2020). Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles. Pharmaceutics, 12(11), 1097. https://doi.org/10.3390/pharmaceutics12111097