The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Salbutamol Sulphate/Theophylline Powders by Spray Drying
2.3. Scanning Electron Microscopy (SEM)
2.4. Yield
2.5. Particle Size Measurement
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Powder X-ray Diffraction (PXRD)
2.8. Thermal Analysis: Thermogravimetric Analysis and Modulated Differential Scanning Calorimetry (MDSC)
2.9. In Vitro Aerosol Deposition Studies Using the Next Generation Impactor (NGI)
2.10. High-Performance Liquid Chromatography (HPLC)
2.11. Statistical Analysis
3. Results and Discussion
3.1. General Considerations and SEM Analysis
3.2. PXRD and FTIR Analysis
3.3. Product Yield
3.4. Particle Size Distribution
3.5. Thermal Analyses: mDSC and TGA
3.6. In-Vitro Deposition Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Toews, M.L.; Bylund, D.B. Pharmacologic principles for combination therapy. Proc. Am. Thorac. Soc. 2005, 2, 282–289, discussion 290-1. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Nicolini, G.; Bizzi, A.; Spinola, M.; Singh, D. Do inhaled corticosteroid/long-acting beta2-agonist fixed combinations provide superior clinical benefits compared with separate inhalers? A literature reappraisal. Allergy Asthma Proc. 2012, 33, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Huchon, G.; Magnussen, H.; Chuchalin, A.; Dymek, L.; Gonod, F.B.; Bousquet, J. Lung function and asthma control with beclomethasone and formoterol in a single inhaler. Respir. Med. 2009, 103, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Tal, A.; Simon, G.; Vermeulen, J.H.; Petru, V.; Cobos, N.; Everard, M.L.; de Boeck, K. Budesonide/formoterol in a single inhaler versus inhaled corticosteroids alone in the treatment of asthma. Pediatr. Pulmonol. 2002, 34, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, P.; Hayes, D., Jr.; Mansour, H.M. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opin. Drug Deliv. 2015, 12, 947–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashkin, D.P.; Celli, B.; Senn, S.; Burkhart, D.; Kesten, S.; Menjoge, S.; Decramer, M. A 4-Year Trial of Tiotropium in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2008, 359, 1543–1554. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Pons, N.; Cosío, B.G. Is There Room for Theophylline in COPD? Arch. Bronconeumol. Engl. Ed. 2017, 53, 539–540. [Google Scholar] [CrossRef]
- Barnes, P.J. Theophylline in chronic obstructive pulmonary disease: New horizons. Proc. Am. Thorac. Soc. 2005, 2, 334–339, discussion 340-1. [Google Scholar] [CrossRef]
- Salama, R.O.; Young, P.M.; Traini, D. Concurrent oral and inhalation drug delivery using a dual formulation system: The use of oral theophylline carrier with combined inhalable budesonide and terbutaline. Drug Deliv. Transl. Res. 2014, 4, 256–267. [Google Scholar] [CrossRef]
- Salem, H.; Abdelrahim, M.; Eid, K.A.; Sharaf, M. Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler. Int. J. Nanomed. 2011, 6, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Malamatari, M.; Somavarapu, S.; Kachrimanis, K.; Bloxham, M.; Taylor, K.M.G.; Buckton, G. Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: The influence of mannitol as a co-milling agent. Int. J. Pharm. 2016, 514, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Raeburn, D.; Woodman, V.R. Effect of theophylline administered intratracheally as a dry powder formulation on bronchospasm and airway microvascular leakage in the anesthetized guinea-pig. Pulm. Pharmacol. 1994, 7, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Haghi, M.; Goud, M.; Young, P.M.; Traini, D. The formulation of a pressurized metered dose inhaler containing theophylline for inhalation. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015, 76, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Haghi, M.; Nguyen, A.; Goud, M.; Yeung, S.; Young, P.M.; Traini, D. Delivery of theophylline as dry powder for inhalation. Asian J. Pharm. Sci. 2015, 10, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Gradon, L.; Sosnowski, T.R. Formation of particles for dry powder inhalers. Adv. Powder Technol. 2014, 25, 43–55. [Google Scholar] [CrossRef]
- Timsina, M.P.; Martin, G.P.; Marriott, C.; Ganderton, D.; Yianneskis, M. Drug delivery to the respiratory tract using dry powder inhalers. Int. J. Pharm. 1994, 101, 1–13. [Google Scholar] [CrossRef]
- Newman, S.P.; Busse, W.W. Evolution of dry powder inhaler design, formulation, and performance. Respir. Med. 2002, 96, 293–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, I.J.; Parry-Billings, M. The inhalers of the future? A review of dry powder devices on the market today. Pulm. Pharmacol. Ther. 2003, 16, 79–95. [Google Scholar] [CrossRef]
- Yang, M.Y.; Chan, J.G.Y.; Chan, H.-K. Pulmonary drug delivery by powder aerosols. J. Control. Release 2014, 193, 228–240. [Google Scholar] [CrossRef]
- Alhalaweh, A.; Kaialy, W.; Buckton, G.; Gill, H.; Nokhodchi, A.; Velaga, S.P. Theophylline cocrystals prepared by spray drying: Physicochemical properties and aerosolization performance. AAPS PharmSciTech 2013, 14, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Leng, D.; Kissi, E.O.; Löbmann, K.; Thanki, K.; Fattal, E.; Rades, T.; Foged, C.; Yang, M. Design of Inhalable Solid Dosage Forms of Budesonide and Theophylline for Pulmonary Combination Therapy. AAPS PharmSciTech 2019, 20, 137. [Google Scholar] [CrossRef] [PubMed]
- Momeni, A.; Mohammadi, M.H. Respiratory delivery of theophylline by size-targeted starch microspheres for treatment of asthma. J. Microencapsul. 2009, 26, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Healy, A.M.; Amaro, M.I.; Paluch, K.J.; Tajber, L. Dry powders for oral inhalation free of lactose carrier particles. Adv. Drug Deliv. Rev. 2014, 75, 32–52. [Google Scholar] [CrossRef]
- Scherließ, R.; Etschmann, C. DPI formulations for high dose applications - Challenges and opportunities. Int. J. Pharm. 2018, 548, 49–53. [Google Scholar] [CrossRef]
- Jantikar, A.; Brashier, B.; Maganji, M.; Raghupathy, A.; Mahadik, P.; Gokhale, P.; Gogtay, J.; Salvi, S. Comparison of bronchodilator responses of levosalbutamol and salbutamol given via a pressurized metered dose inhaler: A randomized, double blind, single-dose, crossover study. Respir. Med. 2007, 101, 845–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, V.; Ambery, C. Bronchodilation and safety of supratherapeutic doses of salbutamol or ipratropium bromide added to single dose GSK961081 in patients with moderate to severe COPD. Pulm. Pharmacol. Ther. 2013, 26, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Koyama, H.; Ikeda, A.; Sugiura, N.; Kawakatsu, K.; Izumi, T. The additive effect of theophylline on a high-dose combination of inhaled salbutamol and ipratropium bromide in stable COPD. Chest 1995, 107, 718–723. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, J.J.; Norwood, E.-A.; O’Mahony, J.A.; Kelly, A.L. Atomisation technologies used in spray drying in the dairy industry: A review. J. Food Eng. 2019, 243, 57–69. [Google Scholar] [CrossRef]
- Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. [Google Scholar] [CrossRef]
- Chow, A.H.; Tong, H.H.; Chattopadhyay, P.; Shekunov, B.Y. Particle engineering for pulmonary drug delivery. Pharm. Res. 2007, 24, 411–437. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1–19. [Google Scholar] [CrossRef]
- Legako, J.; Dunford, N.T. Effect of spray nozzle design on fish oil-whey protein microcapsule properties. J. Food Sci. 2010, 75, E394–E400. [Google Scholar] [CrossRef]
- Kašpar, O.; Jakubec, M.; Štěpánek, F. Characterization of spray-dried chitosan–TPP microparticles formed by two- and three-fluid nozzles. Powder Technol. 2013, 240, 31–40. [Google Scholar] [CrossRef]
- Theophylline; National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Theophylline (accessed on 15 October 2020).
- Simon, A.; Amaro, M.I.; Cabral, L.M.; Healy, A.M.; de Sousa, V.P. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int. J. Pharm. 2016, 501, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Amaro, M.I.; Tajber, L.; Corrigan, O.I.; Healy, A.M. Optimisation of spray drying process conditions for sugar nanoporous microparticles (NPMPs) intended for inhalation. Int. J. Pharm. 2011, 421, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Bosquillon, C.; Lombry, C.; Préat, V.; Vanbever, R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J. Control. Release 2001, 70, 329–339. [Google Scholar] [CrossRef]
- British Pharmacopeia; British Pharmacopoeia Commission: London, UK, 2017.
- Feng, A.L.; Boraey, M.A.; Gwin, M.A.; Finlay, P.R.; Kuehl, P.J.; Vehring, R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int. J. Pharm. 2011, 409, 156–163. [Google Scholar] [CrossRef]
- Airaksinen, S.; Karjalainen, M.; Shevchenko, A.; Westermarck, S.; Leppänen, E.; Rantanen, J.; Yliruusi, J. Role of water in the physical stability of solid dosage formulations. J. Pharm. Sci. 2005, 94, 2147–2165. [Google Scholar] [CrossRef]
- Bianco, S.; Tewes, F.; Tajber, L.; Caron, V.; Corrigan, O.I.; Healy, A.M. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems. Int. J. Pharm. 2013, 456, 143–152. [Google Scholar] [CrossRef]
- Fluids—Latent Heat of Evaporation. Available online: https://www.engineeringtoolbox.com/fluids-evaporation-latent-heat-d_147.html (accessed on 15 October 2020).
- Spray Drying Training Papers. Available online: https://static1.buchi.com/sites/default/files/downloads/Set_3_Training_Papers_Spray_Drying_en_01.pdf?996b2db24007502bd69c913b675467cfc63880ba (accessed on 15 October 2020).
- Baird, J.A.; Taylor, L.S. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv. Drug Deliv. Rev. 2012, 64, 396–421. [Google Scholar] [CrossRef]
- Hancock, B.C.; Shamblin, S.L.; Zografi, G. Molecular Mobility of Amorphous Pharmaceutical Solids Below Their Glass Transition Temperatures. Pharm. Res. 1995, 12, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhang, G.G.; Law, D.; Grant, D.J.; Schmitt, E.A. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci. 2002, 91, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Theophylline Solvent | TH/SS Ratio (w/w) | Atomizing Gas Flow Rate (%) | Salbutamol Sulphate Solution Feed Flow Rate (mL/min) | TH/SS Flow Rate Ratio | Spray Dryer Configuration |
---|---|---|---|---|---|---|
3F_1 | Ethanol | 1:9 | 60 | 3.4 | 1 | Closed |
3F_2 | Ethanol | 2:8 | 60 | 1.7 | 2 | Closed |
3F_3 | Ethanol | 3:7 | 60 | 1.1 | 3 | Closed |
3F_4 | Acetone | 1:9 | 60 | 3.4 | 1 | Closed |
3F_5 | Acetone | 2:8 | 60 | 1.7 | 2 | Closed |
3F_6 | Acetone | 3:7 | 60 | 1.1 | 3 | Closed |
3F_7 | Chloroform | 1:9 | 60 | 3.4 | 1 | Closed |
3F_8 | Chloroform | 2:8 | 60 | 1.7 | 2 | Closed |
3F_9 | Chloroform | 3:7 | 60 | 1.1 | 3 | Closed |
3F_10 | Water | 1:9 | 60 | 3.4 | 1 | Open |
3F_11 | Water | 2:8 | 60 | 1.7 | 2 | Open |
3F_12 | Water | 3:7 | 60 | 1.1 | 3 | Open |
2F_1 | Water a | 1:9 | 60 | 3.4 b | NA | Open |
2F_2 | Water a | 2:8 | 50 | 3.4 b | NA | Open |
2F_3 | Water a | 3:7 | 40 | 3.4 b | NA | Open |
Sample ID | Tout (°C) | Yield (%) | Particle Size (µm) | Span | Residual Solvent Content (Weight %) | Tg (°C) | |
---|---|---|---|---|---|---|---|
D50 | D90 | ||||||
3F_1 | 76 | 55.7 | 3.7 ± 0.1 | 9.7 ± 0.4 | 2.3 | 3.6 ± 0.1 | 114 ± 1 |
3F_2 | 75 | 84.5 | 3.1 ± 0.1 | 7.5 ± 0.9 | 2.2 | 3.5 ± 0.1 | 108 ± 5 |
3F_3 | 76 | 78.1 | 3.2 ± 0.1 | 7.1 ± 0.1 | 1.9 | 2.5 ± 0.1 | 106 ± 5 |
3F_4 | 67 | 12.8 | 4.5 ± 0.2 | 102.7 ± 31.6 | 22.8 | 2.4 ± 0.1 | 111 ± 1 |
3F_5 | 76 | 83.8 | 3.1 ± 0.1 | 6.8 ± 0.1 | 1.9 | 2.2 ± 0.1 | 108 ± 1 |
3F_6 | 83 | 90.0 | 4.1 ± 0.3 | 12.5 ± 4.7 | 55.4 | 3.3 ± 0.1 | 102 ± 1 |
3F_7 | 80 | 66.4 | 5.7 ± 0.3 | 433.5 ± 303.3 | 76.0 | 2.5 ± 0.1 | 101 ± 1 |
3F_8 | 79 | 85.8 | 5.2 ± 0.1 | 10.9 ± 1.3 | 1.8 | 2.8 ± 0.3 | 100 ± 2 |
3F_9 | 87 | 80.6 | 5.1 ± 0.1 | 292.0 ± 156.6 | 57.6 | 2.1 ± 0.1 | 111 ± 1 |
3F_10 | 79 | 85.6 | 4.7 ± 0.1 | 9.2 ± 0.1 | 1.6 | 2.2 ± 0.2 | 113 ± 1 |
3F_11 | 63 | 81.3 | 5.9 ± 0.9 | 403.9 ± 307.1 | 68.7 | 2.9 ± 0.8 | 109 ± 2 |
3F_12 | 69 | 82.2 | 4.0 ± 0.1 | 7.8 ± 0.1 | 1.6 | 3.0 ± 0.1 | 117 ± 1 |
2F_1 | 74 | 83.5 | 2.6 ± 0.1 | 5.1 ± 0.1 | 1.6 | 3.2 ± 0.5 | 109 ± 1 |
2F_2 | 74 | 78.5 | 2.5 ± 0.1 | 5.1 ± 0.1 | 1.6 | 3.6 ± 0.4 | 100 ± 1 |
2F_3 | 75 | 57.0 | 3.0 ± 0.1 | 5.9 ± 0.1 | 1.7 | 4.7 ± 0.1 | 93 ± 1 |
Sample ID | TH FPF < 5 µm (%) | TH FPF < 3 µm (%) | MMAD (µm) | GSD |
---|---|---|---|---|
3F_3 | 43.1 ± 0.1 | 24.2 ± 0.1 | 7.70 ± 0.1 | 3.6 ± 0.1 |
3F_6 | 34.1 ± 0.2 | 17.6 ± 0.2 | 13.1 ± 0.2 | 5.5 ± 0.1 |
3F_9 | 18.4 ± 0.1 | 7.2 ± 0.1 | 60.2 ± 0.1 | 12.3 ± 0.1 |
3F_12 | 26.4 ± 0.1 | 12.1 ± 0.1 | 24.6 ± 0.2 | 8. 3± 0.1 |
2F_3 | 54.3 ± 0.3 | 39.5 ± 0.2 | 3.70 ± 0.1 | 2.2 ± 0.1 |
Sample ID | SS FPF < 5 µm (%) | SS FPF < 3 µm (%) | MMAD (µm) | GSD |
---|---|---|---|---|
3F_3 | 36.0 ± 0.3 | 17.7 ± 0.3 | 13.3 ± 0.7 | 5.1 ± 0.1 |
3F_6 | 24.4 ± 2.3 | 10.5 ± 0.2 | 31.3 ± 2.3 | 8.6 ± 0.4 |
3F_9 | 15.6 ± 0.9 | 5.2 ± 0.2 | 229.5 ± 38.6 | 12.3 ± 0.1 |
3F_12 | 24.7 ± 0.1 | 10.8 ± 0.1 | 38.0 ± 1.6 | 11.6 ± 0.2 |
2F_3 | 54.9 ± 0.3 | 39.2 ± 0.1 | 3.8 ± 0.1 | 2.3 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Focaroli, S.; Jiang, G.; O'Connell, P.; Fahy, J.V.; Healy, A.-M. The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery. Pharmaceutics 2020, 12, 1116. https://doi.org/10.3390/pharmaceutics12111116
Focaroli S, Jiang G, O'Connell P, Fahy JV, Healy A-M. The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery. Pharmaceutics. 2020; 12(11):1116. https://doi.org/10.3390/pharmaceutics12111116
Chicago/Turabian StyleFocaroli, Stefano, Guannan Jiang, Peter O'Connell, John V. Fahy, and Anne-Marie Healy. 2020. "The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery" Pharmaceutics 12, no. 11: 1116. https://doi.org/10.3390/pharmaceutics12111116
APA StyleFocaroli, S., Jiang, G., O'Connell, P., Fahy, J. V., & Healy, A. -M. (2020). The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery. Pharmaceutics, 12(11), 1116. https://doi.org/10.3390/pharmaceutics12111116