Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. UV-Visible Localized Spectroscopy
2.2.1. Drug Solutions Preparations
2.2.2. Mucin–Drug Samples Preparation
2.2.3. Analytical Method
2.3. Mucus–PVPA Barrier Preparation
2.4. In Vitro Permeability Study
2.5. Statistical Analysis
3. Results and Discussion
3.1. Quantification of Diffusion Coefficients in Water (D0)
3.2. Quantification of Relative Diffusion Coefficients (Drel)
3.3. Permeability of Drugs In the Presence and Absence of Mucin
3.4. Diffusivity–Permeability Correlation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C.M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 2018, 124, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Duggan, S.; Cummins, W.; O’Donovan, O.; Hughes, H.; Owens, E. Thiolated polymers as mucoadhesive drug delivery systems. Eur. J. Pharm. Sci. 2017, 100, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Khanvilkar, K.; Donovan, M.D.; Flanagan, D.R. Drug transfer through mucus. Adv. Drug Deliv. Rev. 2001, 48, 173–193. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Kirch, J.; Lehr, C.M. Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 2013, 453, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, S.S.; Padgett, J.L.; Yudin, A.I.; Whaley, K.J.; Moench, T.R.; Cone, R.A. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 2001, 81, 1930–1937. [Google Scholar] [CrossRef] [Green Version]
- Elberskirch, L.; Knoll, T.; Moosmann, A.; Wilhelm, N.; von Briesen, H.; Wagner, S. A novel microfluidic mucus-chip for studying the permeation of compounds over the mucus barrier. J. Drug Deliv. Sci. Tech. 2019, 54, 1–7. [Google Scholar] [CrossRef]
- Groo, A.C.; Lagarce, F. Mucus models to evaluate nanomedicines for diffusion. Drug Disc. Today 2014, 19, 1098–1108. [Google Scholar] [CrossRef] [Green Version]
- Griessinger, J.; Dünnhaupt, S.; Cattoz, B.; Griffiths, P.; Oh, S.; Borrós i Gómez, S.; Wilcox, M.; Pearson, J.; Gumbleton, M.; Abdulkarim, M.; et al. Methods to determine the interactions of micro- and nanoparticles with mucus. Eur. J. Pharm. Biopharm. 2015, 96, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K.R.; Afdhal, N.; Lal, J. Small angle neutron scattering (SANS) study of gastric mucin solutions. In Proceedings of the Annual APS March Meeting, Indianapolis, IN, USA, 18–22 March 2002. [Google Scholar]
- Griffiths, P.C.; Occhipinti, P.; Morris, C.; Heenan, R.K.; King, S.M.; Gumbleton, M. PGSE-NMR and SANS studies of the interaction of model polymer therapeutics with mucin. Biomacromolecules 2010, 11, 120–125. [Google Scholar] [CrossRef]
- Lock, J.Y.; Carlson, T.; Carrier, R.L. Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev. 2018, 124, 34–49. [Google Scholar] [CrossRef]
- Di Cagno, M.; Clarelli, F.; Våbenø, J.; Lesley, C.; Rahman, S.D.; Cauzzo, J.; Franceschinis, E.; Realdon, N.; Stein, P.C. Experimental determination of drug diffusion coefficients in unstirred aqueous environments by temporally resolved concentration measurements. Mol. Pharmaceutics 2018, 15, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, M.; Stein, P.C. Studying the effect of solubilizing agents on drug diffusion through the unstirred water layer (UWL) by localized spectroscopy. Eur. J. Pharm. Biopharm. 2019, 139, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, I.Y.; Skalko-Basnet, N.; di Cagno, M.P. Influence of the environmental tonicity perturbations on the release of model compounds from large unilamellar vesicles (LUVs): A mechanistic investigation. Colloids Surf. B 2018, 157, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Drugbank. Available online: https://www.drugbank.ca/ (accessed on 29 November 2019).
- Benet, L.Z.; Broccatelli, F.; Oprea, T.I. BDDCS applied to over 900 drugs. AAPS J. 2011, 13, 519–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 29 November 2019).
- Di Cagno, M.; Luppi, B. Drug “supersaturation” states induced by polymeric micelles and liposomes: A mechanistic investigation into permeability enhancements. Eur. J. Pharm. Sci. 2013, 48, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.; Ghafourian, T.; Nokhodchi, A. Optimising the release rate of naproxen liqui-pellet: a new technology for emerging novel oral dosage form. Drug Deliv. Transl. Res. 2019, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falavigna, M.; Klitgaard, M.; Brase, C.; Ternullo, S.; Skalko-Basnet, N.; Flaten, G.E. Mucus-PVPA (mucus phospholipid vesicle-based permeation assay): an artificial permeability tool for drug screening and formulation development. Int. J. Pharm. 2018, 537, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Falavigna, M.; Klitgaard, M.; Steene, E.; Flaten, G.E. Mimicking regional and fasted/fed state conditions in the intestine with the mucus-PVPA in vitro model: The impact of pH and simulated intestinal fluids on drug permeability. Eur. J. Pharm. Sci. 2019, 132, 44–54. [Google Scholar] [CrossRef]
- Flaten, G.E.; Dhanikula, A.B.; Luthman, K.; Brandl, M. Drug permeability across a phospholipid vesicle barrier: a novel approach for studying passive diffusion. Eur. J. Pharm. Sci. 2006, 27, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Naderkhani, E.; Vasskog, T.; Flaten, G.E. Biomimetic PVPA in vitro model for estimation of the intestinal drug permeability using fasted and fed state simulated intestinal fluids. Eur. J. Pharm. Sci. 2015, 73, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Larhed, A.W.; Artusson, P.; Gråsjö, J.; Björk, R. Diffusion of drugs in native and purified gastrointestinal mucus. J. Pharm. Sci. 1997, 86, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Larhed, A.W.; Artusson, P.; Björk, R. The influence of intestinal mucus components on the diffusion of drugs. Pharm. Res. 1998, 15, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Huang, Y. Nanoscale technology of mucoadhesive interactions. Adv. Drug Deliv. Rev. 2004, 56, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
Drug | MW (g/mol) | pKa a | Charge at pH 7.4 a | Log P a | Log D 7.4 b | Solubility in Water at pH 7.4 (mg/mL) |
---|---|---|---|---|---|---|
ATN | 266.34 | 9.6 | + | 0.16 | −1.03 | 2.4 c |
CAF | 194.2 | 10.4 | 0 | −0.07 | −0.07 | >20 c |
HYD | 362.5 | 12.6 | 0 | 1.6 | 1.37 | 0.4 d |
NPR | 230.3 | 4.2 | - | 3.2 | 1.70 | 3.5 e |
Drug | Cn (mM) | D0 (10−6 cm2/s) | A0 (µmol/cm2) | σ (cm) |
---|---|---|---|---|
ATN | 4.99 | 5.81 | 648 | 0.11 |
CAF | 0.86 | 9.07 | 111 | 0.11 |
HYD | 0.53 | 6.44 | 69 | 0.11 |
NPR | 1.01 | 8.02 | 133 | 0.13 |
MUC% | D Reduction (%) | ||||
---|---|---|---|---|---|
ATN | CAF | HYD | NPR | MUC | |
0.0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 24 | 33 | 17 | 25 | 14 |
0.3 | 47 | 51 | 36 | 53 | 43 |
0.6 | 63 | 67 | 37 | 65 | 39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falavigna, M.; Stein, P.C.; Flaten, G.E.; di Cagno, M.P. Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin. Pharmaceutics 2020, 12, 168. https://doi.org/10.3390/pharmaceutics12020168
Falavigna M, Stein PC, Flaten GE, di Cagno MP. Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin. Pharmaceutics. 2020; 12(2):168. https://doi.org/10.3390/pharmaceutics12020168
Chicago/Turabian StyleFalavigna, Margherita, Paul C. Stein, Gøril Eide Flaten, and Massimiliano Pio di Cagno. 2020. "Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin" Pharmaceutics 12, no. 2: 168. https://doi.org/10.3390/pharmaceutics12020168
APA StyleFalavigna, M., Stein, P. C., Flaten, G. E., & di Cagno, M. P. (2020). Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin. Pharmaceutics, 12(2), 168. https://doi.org/10.3390/pharmaceutics12020168