Hierarchical Porous Carbon—PLLA and PLGA Hybrid Nanoparticles for Intranasal Delivery of Galantamine for Alzheimer’s Disease Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of HPC
2.3. Galantamine’s Adsorption to HPC
2.4. Preparation of Nanoparticles
2.5. Characterization
2.5.1. BET and BJH Structural Characterization
2.5.2. UV–Vis
2.5.3. FE-SEM and SEM
2.5.4. X-ray Photoelectron Spectroscopy (XPS)
2.5.5. TGA
2.5.6. Fourier-Transformed Infrared Spectroscopy (FT-IR)
2.5.7. Wide Angle X-ray Scattering
2.5.8. Differential Scanning Calorimetry (DSC)
2.5.9. Measurement of Size and Surface Potential
2.5.10. Drug Loading, Yield and Entrapment Efficiency (EE)
2.5.11. In-Vitro Drug Release
2.5.12. HPLC Analysis
2.6. In Vivo Experiments
2.6.1. Animals and Treatments
2.6.2. Tissue Preparation and Microscopic Evaluation
3. Results and Discussion
3.1. Synthesis and Characterization of HPC
3.2. Polymeric GAL Loaded Nanoparticles Characterization
3.3. Dissolution Study
3.4. In Vivo Experimentation
3.4.1. Selection and Fluorescence Evaluation of Rhodamine-Treated PLGA 65/35–HPC–GAL Nanoparticles for IN Administration in Rats
3.4.2. PLGA 65/35–HPC–GAL Nanoparticles in the Hippocampus of the Rat Brain Following IN Administration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolopoulos, A.; Andreadis, P.; Malandris, K.; Avgerinos, I.; Karagiannis, T.; Kapogiannis, D.; Tsolaki, M.; Tsapas, D.; Bekiari, E. Intravenous Immunoglobulin for Patients With Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Am. J. Alzheimer’s Dis. Other Dement. 2019, 34, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Bernabel, R.; Bullock, R.; Cruz Jentoft, A.J.; Frölich, L.; Hock, C.; Raivio, M.; Triau, E.; Vandewoude, M.; Wimo, A.; et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer’s disease (the SERAD study): A randomised, placebo-controlled, double-blind trial. Lancet Neurol. 2009, 8, 39–47. [Google Scholar] [CrossRef]
- Memo-Farmellas Oral-Sol 4 mg/mL. Available online: https://www.galinos.gr/web/drugs/main/packages/13593 (accessed on 3 March 2020).
- Lilienfeld, S. Galantamine, a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2002, 8, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Mufamadi, M.S.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Obulapuram, P.K.; Modi, G.; Naidoo, D.; Iyuke, S.E.; Pillay, V. Liposome-embedded, polymeric scaffold for extended delivery of galantamine. J. Drug Deliv. Sci. Technol. 2019, 52, 255–265. [Google Scholar] [CrossRef]
- Ameen, D.; Michniak-Kohn, B. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: Effect of penetration enhancers and crystallization inhibition. Eur. J. Pharm. Biopharm. 2019, 139, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Khatavkar, U.N.; Shimpi, S.L.; Kumar, K.J.; Deo, K.D. Development and in vivo evaluation of novel monolithic controlled release compositions of galantamine hydrobromide as against reservoir technology. Pharm. Dev. Technol. 2013, 18, 1148–1158. [Google Scholar] [CrossRef]
- Zhou, Y.; Liyanage, P.Y.; Devadoss, D.; Guevara, L.R.R.; Cheng, L.; Graham, R.M.; Chand, H.S.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; et al. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale 2019, 11, 22387–22397. [Google Scholar] [CrossRef]
- Hanafy, A.S.; Ragwa, M.F.; Maged, W.H.; Safaa, S.E. Pharmacological, Toxicological and Neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv. 2016, 23, 3111–3122. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Musumeci, T.; Serapide, M.F.; Pellitteri, R.; Uchegbu, I.F.; Puglisi, G. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf. B Βiointerfaces 2017, 154, 297–306. [Google Scholar] [CrossRef]
- Turiiski, V.I.; Krustev, A.D.; Sirakov, V.N.; Getova, D.P. In vivo and in vitro study of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract. Eur. J. Pharm. 2004, 13, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rapun, R.; De Matteis, L.; Ambrosone, A.; Garcia-Embid, S.; Gutierrez, L.; de la Fuente, J.M. Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr. Pharm. Des. 2017, 23, 1927–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhou, Y.; Zhao, N.; Hao, B.; Wang, X.; Kong, P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ. Toxicol. Pharm. 2012, 34, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, A.S.; Farid, R.M.; El Gamal, S.S. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: Preparation and detection in rat brain. Drug Dev. Ind. Pharm. 2015, 41, 2055–2068. [Google Scholar] [CrossRef]
- Nanaki, S.; Pantopoulos, K.; Bikiaris, D. Synthesis of biocompatible poly(e-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles. Int. J. Nanomed. 2011, 6, 2981–2995. [Google Scholar]
- Nanaki, S.; Barmpalexis, P.; Iatrou, A.; Christodoulou, E.; Kostoglou, M.; Bikiaris, D. Risperidone controlled release microspheres based on poly(lactic acid)-poly(propylene adipate) novel polymer blends appropriate for long acting injectable formulations. Pharmaceutics 2018, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Nanaki, S.; Barmpalexis, P.; Papakonstantinou, Z.; Christodoulou, E.; Kostoglou, M.; Bikiaris, D. Preparation of New Risperidone Depot Microspheres Based on Novel Biocompatible Poly(Alkylene Adipate) Polyesters as Long-Acting Injectable Formulations. J. Pharm. Sci. 2018, 11, 2891–2901. [Google Scholar] [CrossRef]
- Koulouktsi, C.; Nanaki, S.; Barmpalexis, P.; Kostoglou, M.; Bikiaris, D. Preparation and characterization of Alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. Int. J. Pharm. 2019, 1, 100014. [Google Scholar] [CrossRef]
- Christodoulou, E.; Nerantzaki, M.; Nanaki, S.; Barmpalexis, P.; Giannousi, K.; Dendrinou-Samara, C.; Angelakeris, M.; Gounari, E.; Anastasiou, A.D.; Bikiaris, D. Paclitaxel magnetic core–shell nanoparticles based on poly(Lactic acid) semitelechelic novel block copolymers for combined hyperthermia and chemotherapy treatment of cancer. Pharmaceutics 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Nanaki, S.; Siafaka, P.I.; Zachariadou, D.; Nerantzaki, M.; Giliopoulos, D.J.; Triantafyllidis, K.S.; Kostoglou, M.; Nikolakaki, E.; Bikiaris, D.N. PLGA/SBA-15 mesoporous silica composite microparticles loaded with paclitaxel for local chemotherapy. Eur. J. Pharm. Sci. 2017, 99, 32–44. [Google Scholar] [CrossRef]
- Nanaki, S.G.; Tseklima, M.; Terzopoulou, Z.; Nerantzaki, M.; Giliopoulos, D.J.; Triantafyllidis, K.; Kostoglou, M.; Bikiaris, D.N. Use of mesoporous cellular foam (MCF) in preparation of polymeric microspheres for long acting injectable release formulations of paliperidone antipsychotic drug. Eur. J. Pharm. Biopharm. 2017, 117, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Nanaki, S.; Tseklima, M.; Christodoulou, E.; Triantafyllidis, K.; Kostoglou, M.; Bikiaris, D. Thiolated chitosan masked polymeric microspheres with incorporated mesocellular silica foam (MCF) for intranasal delivery of paliperidone. Polymers 2017, 9, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; CaO, L.; Lu, L. Bacteria promoted hierarchical carbon materials for high-performance supercapacitor. Energy Environ. Sci. 2012, 5, 6206–6213. [Google Scholar] [CrossRef]
- Baroud, T.N.; Giannelis, E.P. Role of Mesopore Structure of Hierarchical Porous Carbons on the Electrosorption Performance of Capacitive Deionization Electrodes. ACS Sustain. Chem. Eng. 2019, 7, 7580–7596. [Google Scholar] [CrossRef]
- Baroud, T.N.; Giannelis, E.P. High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons. Carbon 2018, 139, 614–625. [Google Scholar] [CrossRef]
- Estevez, L.P.; Dua, R.; Bhandari, N.; Ramanujapuram, A.; Wang, P.; Giannelis, E.P. A facile approach for the synthesis of monolithic hierarchical porous carbons—High performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ. Sci. 2013, 6, 1785–1790. [Google Scholar] [CrossRef] [Green Version]
- Sahore, R.; Estevez, L.P.; Ramanujapuram, A.; DiSalvo, F.J.; Giannelis, E.P. High-rate lithium–sulfur batteries enabled by hierarchical porous carbons synthesized via ice templation. J. Power Sources 2015, 297, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Paxinos, G.; Watson, C. The Rat Brain Atlas in Stereotaxic Coordinates, 7th ed.; Academic Press: London, UK, 2013; p. 472. [Google Scholar]
- Wahba, S.M.; Darwish, A.S.; Kamal, S.M. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer’s disease in ovariectomized albino-rat model. Mater. Sci. Eng. C 2016, 65, 151–163. [Google Scholar] [CrossRef]
- Dyer, A.M.; Hinchcliffe, M.; Watts, P.; Castile, J.; Jabbal-Gill, I.; Nankervis, R.; Smith, A.; Illum, L. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm. Res. 2002, 19, 998–1008. [Google Scholar] [CrossRef]
- Musumeci, T.; Pellitteri, R.; Spatuzza, M.; Puglisi, G. Nose-to-Brain Delivery: Evaluation of Polymeric Nanoparticles on Olfactory Ensheathing Cells Uptake. J. Pharm. Sci. 2014, 103, 628–635. [Google Scholar] [CrossRef]
- Musumeci, T.; Serapideb, M.F.; Pellitteric, R.; Dalpiazd, A.; Ferraroe, L.; Dal Magrof, R.; Bonaccorsoa, A.; Carbonea, C.; Francisco Veigag, G.; Sancinif, G.; et al. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur. J. Pharm. Biopharm. 2018, 133, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.; Igel, C.; Liv Hansen, N.; Osler, M.; Lauritzen, M.; Rostrup, E.; Nielsen, M. Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing. Early detection of Alzheimer’s disease using MRI hippocampal texture. Hum. Brain Mapp. 2016, 37, 1148–1161. [Google Scholar]
- Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014, 41, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 3, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377 Pt. 1, 159–169. [Google Scholar] [CrossRef]
- Ariano, P.; Zamburlin, P.; Gilardino, A.; Mortera, R.; Onida, B.; Tomatis, M.; Ghiazza, M.; Fubini, B.; Lovisolo, D. Interaction of spherical silica nanoparticles with neuronal cells: Size-dependent toxicity and perturbation of calcium homeostasis. Small 2011, 7, 766–774. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Ershov, D.; Fytianos, K.; van der Gucht, J.; Alink, G.M.; Rietjens, I.M.; Marcelis, A.T.; Zuilhof, H. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Part. Fibre Toxicol. 2012, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Hou, Y.; Hu, Y.; Zhao, L.; Luo, Z.; Shi, Y.; Lai, M.; Yang, W.; Liu, P. Correlation of the cytotoxicity of TiO2 nanoparticles with different particle sizes on a sub-200-nm scale. Small 2011, 7, 3026–3031. [Google Scholar] [CrossRef]
BET Surface Area [m2 g−1] | t-Plot Micropore [m2 g−1] | Mesopore Surface [m2 g−1] | Total Pore Volume [cm3 g−1] | Mesopore Volume [cm3 g−1] | Micropore Volume [cm3 g−1] | Vmeso/Vtotal | |
---|---|---|---|---|---|---|---|
HPC | 2211 | 233 | 1978 | 4.014 | 3.90 | 0.112 | 97 |
Sample (Nanoparticles) | Average Size (nm) | PDI | Z-Potential |
---|---|---|---|
neat PLLA | 149.00 ± 0.01 | 0.12 ± 0.04 | −20.37 ± 0.02 |
neat PLGA 75/25 | 138.00 ± 0.01 | 0.17 ± 0.05 | −25.50 ± 0.03 |
neat PLGA 65/35 | 134.00 ± 0.02 | 0.14 ± 0.03 | −28.50 ± 0.03 |
PLLA–GAL | 182.67 ± 0.01 | 0.21 ± 0.07 | −29.37 ± 0.02 |
PLGA 75/25–GAL | 224.00 ± 0.02 | 0.27 ± 0.05 | −17.00 ± 0.08 |
PLGA 65/35–GAL | 198.00 ± 0.02 | 0.25 ± 0.04 | −27.42 ± 0.03 |
PLLA–HPC–GAL | 1302.06 ± 0.49 | 0.97 ± 0.06 | −20.27 ± 0.04 |
PLGA 75/25–HPC–GAL | 393.96 ± 0.39 | 0.94 ± 0.12 | −19.13 ± 0.12 |
PLGA 65/35–HPC–GAL | 241.60± 0.31 | 1.00 ± 0.01 | −19.77 ± 0.08 |
Nanoparticles | Drug Loading (%) | Entrapment Efficiency (%) | Nanoparticle Yield (%) |
---|---|---|---|
PLLA–GAL | 5.34 ± 0.24 | 25.14 ± 2.57 | 87.26 ± 2.05 |
PLGA 75/25–GAL | 8.49 ± 0.72 | 28.49 ± 1.08 | 92.86 ± 1.98 |
PLGA 65/35–GAL | 9.57 ± 0.61 | 29.04 ± 2.19 | 89.71 ± 2.14 |
PLLA–HPC–GAL | 28.35 ± 1.06 | 54.04 ± 2.46 | 82.18 ± 1.57 |
PLGA 75/25–HPC–GAL | 32.83 ± 1.84 | 59.23 ± 2.75 | 88.83 ± 2.34 |
PLGA 65/35–HPC–GAL | 31.24 ± 1.75 | 58.76 ± 3.51 | 90.29 ± 3.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanaki, S.G.; Spyrou, K.; Bekiari, C.; Veneti, P.; Baroud, T.N.; Karouta, N.; Grivas, I.; Papadopoulos, G.C.; Gournis, D.; Bikiaris, D.N. Hierarchical Porous Carbon—PLLA and PLGA Hybrid Nanoparticles for Intranasal Delivery of Galantamine for Alzheimer’s Disease Therapy. Pharmaceutics 2020, 12, 227. https://doi.org/10.3390/pharmaceutics12030227
Nanaki SG, Spyrou K, Bekiari C, Veneti P, Baroud TN, Karouta N, Grivas I, Papadopoulos GC, Gournis D, Bikiaris DN. Hierarchical Porous Carbon—PLLA and PLGA Hybrid Nanoparticles for Intranasal Delivery of Galantamine for Alzheimer’s Disease Therapy. Pharmaceutics. 2020; 12(3):227. https://doi.org/10.3390/pharmaceutics12030227
Chicago/Turabian StyleNanaki, Stavroula G., Konstantinos Spyrou, Chryssa Bekiari, Pelagia Veneti, Turki N. Baroud, Niki Karouta, Ioannis Grivas, Georgios C. Papadopoulos, Dimitrios Gournis, and Dimitrios N. Bikiaris. 2020. "Hierarchical Porous Carbon—PLLA and PLGA Hybrid Nanoparticles for Intranasal Delivery of Galantamine for Alzheimer’s Disease Therapy" Pharmaceutics 12, no. 3: 227. https://doi.org/10.3390/pharmaceutics12030227
APA StyleNanaki, S. G., Spyrou, K., Bekiari, C., Veneti, P., Baroud, T. N., Karouta, N., Grivas, I., Papadopoulos, G. C., Gournis, D., & Bikiaris, D. N. (2020). Hierarchical Porous Carbon—PLLA and PLGA Hybrid Nanoparticles for Intranasal Delivery of Galantamine for Alzheimer’s Disease Therapy. Pharmaceutics, 12(3), 227. https://doi.org/10.3390/pharmaceutics12030227