A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solution Preparation and Characterization
2.3. Portable Trilayered Electrohydrodynamic Apparatus and Processing Conditions
2.4. Fiber Characterisation
2.5. Drug Release Study
2.6. Antimicrobial Activity
2.6.1. Agar Diffusion Assay
2.6.2. Suspension Assay
3. Results
3.1. Portable Multi-Layer Electrospinning Device
3.2. Solution Compositions for Optimal Trilayered Fiber Formation
3.3. Analyses of the Trilayered Fiber Compositions
3.3.1. Structural Features
3.3.2. Compositional Features
3.4. Drug Release Study
3.5. Release from the Trilayered Fiber System and Creams
3.6. Antimicrobial Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Phillips, C.J.; Humphreys, I.; Fletcher, J.; Harding, K.; Chamberlain, G.; Macey, S. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int. Wound J. 2016, 13, 1193–1197. [Google Scholar] [CrossRef]
- Leaper, D.; Assadian, O.; Edmiston, C.E. Approach to chronic wound infections. Br. J. Dermatol. 2015, 173, 351–358. [Google Scholar] [CrossRef]
- Inoue, D.; Kabata, T.; Ohtani, K.; Kajino, Y.; Shirai, T.; Tsuchiya, H. Inhibition of biofilm formation on iodine-supported titanium implants. Int. Orthod. 2017, 41, 1093–1099. [Google Scholar] [CrossRef]
- Daeschlein, G. Antimicrobial and antiseptic strategies in wound management. Int. Wound J. 2013, 10, 9–14. [Google Scholar] [CrossRef]
- Fitzgerald, J.B.; Schoeberl, B.; Nielsen, U.B.; Sorger, P.K. Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2006, 2, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N. Foot Infections in Diabetic Patients: The Role of Anaerobes. Clin. Infect. Dis. 1995, 20, S283–S288. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.J.; Fazii, P.; di Giulio, M.; Cellini, L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. Int. Wound J. 2015, 12, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Delcea, M.; Yashchenok, A.; Videnova, K.; Kreft, O.; Möhwald, H.; Skirtach, A.G. Multicompartmental micro-and nanocapsules: Hierarchy and applications in biosciences. Macromol. Biosci. 2010, 10, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Craig, D. Recent developments in micro-and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms. Adv. Drug Deliv. Rev. 2016, 100, 67–84. [Google Scholar] [CrossRef]
- Davoodi, P.; Feng, F.; Xu, Q.; Yan, W.-C.; Tong, Y.W.; Srinivasan, M.; Sharma, V.K.; Wang, C.-H. Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications. J. Control. Release 2015, 205, 70–82. [Google Scholar] [CrossRef]
- Maroni, A.; Melocchi, A.; Parietti, F.; Foppoli, A.; Zema, L.; Gazzaniga, A. 3d printed multi-compartment capsular devices for two-pulse oral drug delivery. J. Control. Release 2017, 268, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Nan, A. Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv. 2012, 2012, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mouthuy, P.-A.; Groszkowski, L.; Ye, H. Performances of a portable electrospinning apparatus. Biotechnol. Lett. 2015, 37, 1107–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.-C.; Qin, C.-C.; Yu, M.; Dong, R.-H.; Yan, X.; Zhao, H.; Han, W.-P.; Zhang, H.-D.; Long, Y.-Z. A battery-operated portable handheld electrospinning apparatus. Nanoscale 2015, 7, 12351–12355. [Google Scholar] [CrossRef]
- Yan, X.; Yu, M.; Zhang, L.-H.; Jia, X.-S.; Li, J.-T.; Duan, X.-P.; Qin, C.-C.; Dong, R.-H.; Long, Y.-Z. A portable electrospinning apparatus based on a small solar cell and a hand generator: Design, performance and application. Nanoscale 2016, 8, 209–213. [Google Scholar] [CrossRef]
- Mody, S.B.; Doshi, M.M.; Joshi, M. Novel topical microbicidal compositions. U.S. Patent 20030228376A1, 11 December 2003. [Google Scholar]
- Brayfield, A. Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2014. [Google Scholar]
- Summa, M.; Russo, D.; Penna, I.; Margaroli, N.; Bayer, I.S.; Bandiera, T.; Athanassiou, A.; Bertorelli, R. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur. J. Pharm. Biopharm. 2018, 122, 17–24. [Google Scholar] [CrossRef]
- Brako, F.; Luo, C.; Craig, D.Q.; Edirisinghe, M. An Inexpensive, Portable Device for Point-of-Need Generation of Silver-Nanoparticle Doped Cellulose Acetate Nanofibersfor Advanced Wound Dressing. Macromol. Mater. Eng. 2018, 303, 1700586. [Google Scholar] [CrossRef] [Green Version]
- Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti-Infect. Ther. 2015, 13, 605–613. [Google Scholar] [CrossRef]
- Schmidtchen, A.; Wolff, H.; Hansson, C. Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm. Venereol. Stockh. 2001, 81, 406–409. [Google Scholar] [CrossRef] [Green Version]
- Bankier, C.; Cheong, Y.; Mahalingam, S.; Edirisinghe, M.; Ren, G.; Cloutman-Green, E.; Ciric, L. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS ONE 2018, 13, e0192093. [Google Scholar] [CrossRef] [Green Version]
- Fong, H.; Chun, I.; Reneker, D. Beaded nanofibersformed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Angammana, C.J.; Jayaram, S.H. Analysis of the effects of solution conductivity on electrospinning process and fibermorphology. IEEE Trans. Ind. Appl. 2011, 41, 1109–1117. [Google Scholar] [CrossRef]
- Xu, N.; Ding, D. Preparation and antibacterial activity of chitosan derivative membrane complexation with iodine. RSC Adv. 2015, 5, 79820–79828. [Google Scholar] [CrossRef]
- Kirsh, I.U.Ė.; Kirsh, Y.E. Water Soluble Poly-N-Vinylamides: Synthesis and Physicochemical Properties; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Herculano, R.D.; de Queiroz, A.A.A.; Kinoshita, A.; Oliveira, O.N.; Graeff, C.F.O. On the release of metronidazole from natural rubber latex membranes. Mater. Sci. Eng. C 2011, 31, 272–275. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Patil, S.; Shettigar, H.; Bairwa, K.; Jana, S. Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med. Chem. 2015, 5, 340–344. [Google Scholar]
- Grohganz, H.; Priemel, P.A.; Löbmann, K.; Nielsen, L.H.; Laitinen, R.; Mullertz, A.; van den Mooter, G.; Rades, T. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin. Drug Deliv. 2014, 11, 977–989. [Google Scholar] [CrossRef]
- Yu, D.-G.; Gao, L.-D.; White, K.; Branford-White, C.; Lu, W.-Y.; Zhu, L.-M. Multicomponent amorphous nanofiberselectrospun from hot aqueous solutions of a poorly soluble drug. Pharm. Res. 2010, 27, 2466–2477. [Google Scholar] [CrossRef]
- Banerjee, S.; Argáez, C. Topical Antibiotics for Infection Prevention: A Review of the Clinical Effectiveness and Guidelines. In Review from Canadian Agency for Drugs and Technologies in Health; CADTH: Ottawa, ON, Canada, 2017. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 73–86. [Google Scholar] [CrossRef]
- Tiwari, V.K. Burn wound: How it differs from other wounds. Indian J. Plast. Surg. 2012, 45, 364–373. [Google Scholar] [CrossRef]
- Larsen, D.B.; Parshad, H.; Fredholt, K.; Larsen, C. Characteristics of drug substances in oily solutions. Drug release rate, partitioning and solubility. Int. J. Pharm. 2002, 232, 107–117. [Google Scholar] [CrossRef]
- Ferreira, L.; Seiller, M.; Grossiord, J.; Marty, J.; Wepierre, J. Vehicle influence on in vitro release of metronidazole: Role of w/o/w multiple emulsion. Int. J. Pharm. 1994, 194, 251–259. [Google Scholar] [CrossRef]
- Chou, S.-F.; Carson, D.; Woodrow, K.A. Current strategies for sustaining drug release from electrospun nanofibers. J. Control. Release 2015, 220, 584–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, I.M.; MacKenzie, F.M. Antibiotic exposure as a risk factor for emergence of resistance: The influence of concentration. Proc. J. Appl. Microbiol. Symp. Suppl. 2002, 92, 72–84. [Google Scholar] [CrossRef]
- Poole, K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 2004, 10, 12–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjarnsholt, T.; Kirketerp-Møller, K.; Jensen, P.Ø.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Høiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen. 2008, 16, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.; Popejoy, M.W.; Hershberger, E.; Steenbergen, J.N.; Alverdy, J. Characteristics and outcomes of complicated intra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob. Agents Chemother. 2016, 60, 4387–4390. [Google Scholar] [CrossRef] [Green Version]
- Alexiadou, K.; Doupis, J. Management of diabetic foot ulcers. Diabetes Ther. 2012, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Liu, B.; Carlson, M.A.; Gombart, A.F.; Reilly, D.A.; Xie, J. Recent advances in electrospun nanofibersfor wound healing. Nanomedicine 2017, 12, 1335–1352. [Google Scholar] [CrossRef]
Fiber Layer | Flow Rate (mL h−1) | Material | Solvent |
---|---|---|---|
Core layer | 2 | 4 wt % MTZ + 12 wt % PCL | 4:1 v/v DCM: DMF |
Middle layer | 4 | 10 wt % PVP-I or 10 wt % PVP-I/PVP (1:1 w/w) | EtOH |
Shell layer | 7 | 25 wt % PEG | DCM |
Solution | Concentration (wt %) | Viscosity (mPa·s) | Surface Tension (mNm−1) | Conductivity (µSm−1) |
---|---|---|---|---|
PCL + MTZ | 12 + 4 | 1355.0 ± 6.4 | 40.2 ± 0.6 | 5.37 ± 0.04 |
PEG | 25 | 1605.0 ± 5.0 | 39.0 ± 0.9 | 2.90 ± 0.02 |
PVP-I | 10 | 4.1 ± 0.3 | 24.6 ± 0.3 | 340.00 ± 4.00 |
PVP + PVP-I 1:1 w/w | 10 | 78.6 ± 1.2 | 27.8 ± 0.3 | 121.00 ± 0.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brako, F.; Luo, C.; Matharu, R.K.; Ciric, L.; Harker, A.; Edirisinghe, M.; Craig, D.Q.M. A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics 2020, 12, 373. https://doi.org/10.3390/pharmaceutics12040373
Brako F, Luo C, Matharu RK, Ciric L, Harker A, Edirisinghe M, Craig DQM. A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics. 2020; 12(4):373. https://doi.org/10.3390/pharmaceutics12040373
Chicago/Turabian StyleBrako, Francis, Chaojie Luo, Rupy Kaur Matharu, Lena Ciric, Anthony Harker, Mohan Edirisinghe, and Duncan Q. M. Craig. 2020. "A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application" Pharmaceutics 12, no. 4: 373. https://doi.org/10.3390/pharmaceutics12040373
APA StyleBrako, F., Luo, C., Matharu, R. K., Ciric, L., Harker, A., Edirisinghe, M., & Craig, D. Q. M. (2020). A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics, 12(4), 373. https://doi.org/10.3390/pharmaceutics12040373