Supplementary Materials: Polypeptide self-assembled nanoparticles as delivery systems for polymyxins B and E

Dmitrii Iudin, Natalia Zashikhina, Elena Demyanova, Viktor Korzhikov-Vlakh, Elena Shcherbakova, Roman Boroznjak, Irina Tarasenko, Natalya Zakharova, Antonina Lavrentieva, Yury Skorik and Evgenia Korzhikova-Vlakh

(a)

Figure S1. Molecular docking of interaction between polymyxin E and pentapeptides: *(a)* Glu₅*; (b)* Glu₂PheGlu₂.

Figure S2. SEC traces of P(Glu-*co*-DPhe): blue line – sample 1; red line – sample 2.

Figure S3. NMR spectra of P(Glu(OBzl)-*co*-DPhe) (*a*) and P(Glu-*co*-DPhe) (*b*) in DMSO-d6.

Sample	<i>dn/dc</i> , cm ³ /g	A_2 , cm ³ ·mol·g ⁻²
1	0.1132	-8.56E-05
2	0.1171	-3.49E-04

Table S1. Characteristics used for calculations of M_w for synthesized copolymers by staticlight scattering.

Figure S4. Dependence of conductivity on polymer concentration in solution: determination of critical micelle concentration (CMC) by conductometry.

Table S2. Characteristics of PLA and PLA-*b*-PEG nanoparticles used as control for comparison phagocytosis rate.

Nanoparticles	D _H , nm	ζ-potential, mV
PLA	92 ± 13	-8.1 ± 2.2
PLA-b-PEG	121 ± 16	-0.6 ± 1.1

Figure S5. Stability of P(Glu-*co*-Phe) and P(Glu-*co*-DPhe) nanoparticles in the enzyme containing medium. *Conditions:* 0.01 M PBS containing papain; the concentration of nanoparticles was 1.0 mg/mL; the concentration of papain was 0.05 mg/mL; the suspension was incubated at 37 °C. In 15 days the medium was replaced with a fresh portion.

Figure S6. Uptake rate of fluorescently-labeled P(Glu-*co*-DPhe) NPs and these modified with "self"-peptide by macrophages. *Conditions:* J774A.1 cell line (mouse macrophages); mouse "self"-peptide: GNYTCEVTELTREGETIIELK; flow cytometry; concentration of NPs was 50 µg/mL; amount of bound "self-peptide" as 50 µg/mg of NPs; dansylcadaverine was used as a fluorescent label.

Time (h)

Time (h)

Time (h)

Time (h)

Figure S7. Drug dissolution kinetics models and approximation curves. *Abbreviations:* PolE: polymyxin E; PolB: polymyxin B; PBS: 0.01 M sodium phosphate buffer, containing 0.15 mol/L NaCl; HBS: human blood plasma.

Figure S8. The dependence of drug dissolution mechanism with time. *R/f* is the ratio of polymer relaxation (R) to Fick's diffusion (f) as the driving mechanisms of drug release for

the system. At definite time R/f was calculated as follows: $\frac{R}{f} = \frac{K_2 \times t^m}{K_1}$, were K_1 , K_2 and m

are parameters determined by approximation of release data with Peppas-Sahlin model and *t* is time. *Abbreviations:* PolE: polymyxin E; PolB: polymyxin B; PBS: 0.01 M sodium phosphate buffer, containing 0.15 mol/L NaCl; HBS: human blood plasma.