Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Elemental Characterization of Pristine Materials
2.2.2. In Vitro Release of Elements
2.2.3. Biocompatibility of ALIG30@20
2.2.4. Selection of Elements Under Study
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Elemental Characterisation of Pristine Materials
3.2. In Vitro Release of Elements
3.3. Biocompatibility of ALIG30@20
4. Discussion
4.1. Release of Elements and Potentially Useful Therapeutic Activities
4.2. Mobility of Elements
4.3. Biocompatibility of ALIG30@20
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Hydrogel | Element (ng) | Amount of Hydrogel in Cell Wells During MTT Test | |||
---|---|---|---|---|---|
1000 μg/mL | 500 μg/mL | 50 μg/mL | 5 μg/mL | ||
ALIPS9 | Al | 2.25 | 1.13 | 0.11 | 0.01 |
B | 0.79 | 0.39 | 0.04 | 0.004 | |
Ca | 161.5 | 80.7 | 8.08 | 0.81 | |
K | 55.3 | 27.6 | 2.76 | 0.28 | |
Mg | 73.8 | 36.9 | 3.69 | 0.37 | |
Na | 125.7 | 62.8 | 6.28 | 0.63 | |
S | 109.4 | 54.7 | 5.47 | 0.55 | |
Fe | 1.46 | 0.73 | 0.07 | 0.01 | |
Sr | 2.97 | 1.49 | 0.15 | 0.01 | |
Zn | 3.32 | 1.66 | 0.17 | 0.02 | |
Mn | 0.01 | 0.01 | 0.0007 | 0.0001 | |
Cu | 0.07 | 0.04 | 0.0036 | 0.0004 | |
ALIG30@10 | Al | 11.6 | 5.78 | 0.58 | 0.06 |
B | NR | NR | NR | NR | |
Ca | 608.3 | 304.1 | 30.41 | 3.04 | |
K | 38.3 | 19.1 | 1.91 | 0.19 | |
Mg | 103.1 | 51.6 | 5.16 | 0.52 | |
Na | 210.7 | 105.3 | 10.53 | 1.05 | |
S | 234.0 | 117.0 | 11.70 | 1.17 | |
Fe | 0.42 | 0.21 | 0.02 | 0.002 | |
Sr | 1.32 | 0.66 | 0.07 | 0.01 | |
Zn | 2.83 | 1.41 | 0.14 | 0.01 | |
Mn | NR | NR | NR | NR | |
Cu | 0.036 | 0.018 | 0.002 | 0.0002 | |
ALIG30@20 | Al | 6.72 | 3.36 | 0.34 | 0.03 |
B | 0.001 | 5·104 | 5·10-5 | 5·10-6 | |
Ca | 165.2 | 82.6 | 8.26 | 0.83 | |
K | 25.9 | 12.9 | 1.29 | 0.13 | |
Mg | 29.7 | 14.8 | 1.48 | 0.15 | |
Na | 84.8 | 42.4 | 4.24 | 0.42 | |
S | 79.4 | 39.7 | 3.97 | 0.4 | |
Fe | 0.09 | 0.04 | 4.4·10-3 | 4.4·10-4 | |
Sr | 0.69 | 0.34 | 0.03 | 0.003 | |
Zn | 1.75 | 0.88 | 0.09 | 0.01 | |
Mn | 0.07 | 0.04 | 0.0004 | 3.7·10-4 | |
Cu | 0.01 | 0.005 | 4.6·10-4 | 4.6·10-5 |
References
- Tateo, F.; Ravaglioli, A.; Andreoli, C.; Bonina, F.; Coiro, V.; Degetto, S.; Giaretta, A.; Orsini, A.M.; Puglia, C.; Summa, V. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl. Clay Sci. 2009, 44, 83–94. [Google Scholar] [CrossRef]
- Fioravanti, A.; Cantarini, L.; Guidelli, G.M.; Galeazzi, M. Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatol. Int. 2011, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, A.; Perpignano, G.; Tirri, G.; Cardinale, G.; Gianniti, C.; Lanza, C.E.; Loi, A.; Tirri, E.; Sfriso, P.; Cozzi, F. Effects of mud-bath treatment on fibromyalgia patients: A randomized clinical trial. Rheumatol. Int. 2007, 27, 1157–1161. [Google Scholar] [CrossRef]
- Cozzi, F.; Raffeiner, B.; Beltrame, V.; Ciprian, L.; Coran, A.; Botsios, C.; Perissinotto, E.; Grisan, E.; Ramonda, R.; Oliviero, F.; et al. Effects of mud-bath therapy in psoriatic arthritis patients treated with TNF inhibitors. Clinical evaluation and assessment of synovial inflammation by contrast-enhanced ultrasound (CEUS). Jt. Bone Spine 2015, 82, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, A.; Karagulle, M.; Bender, T.; Karagülle, M.Z. Balneotherapy in osteoarthritis: Facts, fiction and gaps in knowledge. Eur. J. Integr. Med. 2017, 9, 148–150. [Google Scholar] [CrossRef]
- Sukenik, S.; Flusser, D.; Codish, S.; Abu-Shakra, M. Balneotherapy at the Dead Sea area for knee osteoarthritis. Isr. Med. Assoc. J. 1999, 1, 83–85. [Google Scholar]
- Andreoli, C.; Rascio, N. The algal flora in the Thermal Baths of Montegrotto Terme (Padua). Its distribution over one-year period. Int. Rev. Hydrobiol. 1975, 60, 857–871. [Google Scholar] [CrossRef]
- Quintela, A.; Terroso, D.; Almeida, S.; Reis, A. Geochemical and microbiological characterization of some Azorean volcanic muds after maturation. Res. J. Chem. Environ. 2010, 14, 66–74. [Google Scholar]
- Pesciaroli, C.; Viseras, C.; Aguzzi, C.; Rodelas, B.; González-López, J. Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Appl. Clay Sci. 2016, 132, 59–67. [Google Scholar] [CrossRef]
- Drobnik, J.; Stebel, A. Central European ethnomedical and officinal uses of peat, with special emphasis on the Tołpa peat preparation (TPP): An historical review. J. Ethnopharmacol. 2019, 246, 112248. [Google Scholar] [CrossRef]
- Elkayam, O.; Ophir, J.; Brener, S.; Paran, D.; Wigler, I.; Efron, D.; Even-Paz, Z.; Politi, Y.; Yaron, M. Immediate and delayed effects of treatment at the Dead Sea in patients with psoriatic arthritis. Rheumatol. Int. 2000, 19, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Delfino, M.; Russo, N.; Migliaccio, G.; Carraturo, N. Experimental study on efficacy of thermal muds of Ischia Island combined with balneotherapy in the treatment of psoriasis vulgaris with plaques. La Clin. Ter. 2003, 154, 167–171. [Google Scholar]
- Harari, M. Beauty is not only skin deep: The Dead Sea features and cosmetics. In Anales de Hidrología Médica; Universidad Complutense de Madrid: Madrid, Spain, 2012; Volume 5, pp. 75–88. [Google Scholar]
- Argenziano, G.; Delfino, M.; Russo, N. Mud and baththerapy in the acne cure. La Clin. Ter. 2004, 155, 125. [Google Scholar]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Aguzzi, C.; Viseras, C.; Caramella, C. Clay minerals for tissue regeneration, repair, and engineering. In Wound Healing Biomaterials; Agren, M.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 385–402. [Google Scholar]
- García-Villén, F.; Faccendini, A.; Aguzzi, C.; Cerezo, P.; Bonferoni, M.C.; Rossi, S.; Grisoli, P.; Ruggeri, M.; Ferrari, F.; Sandri, G.; et al. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int. J. Nanomed. 2019, 14, 5051–5060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Villén, F.; Faccendini, A.; Miele, D.; Ruggeri, M.; Sánchez-Espejo, R.; Borrego-Sánchez, A.; Cerezo, P.; Rossi, S.; Viseras, C.; Sandri, G. Wound Healing Activity of Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020, 12, 467. [Google Scholar] [CrossRef]
- García-Villén, F.; Souza, I.M.; Barbosa, R.D.M.; Borrego-Sánchez, A.; Sánchez-Espejo, R.; Ojeda-Riascos, S.; Iborra, C.V.; Viseras, C. Natural Inorganic Ingredients in Wound Healing. Curr. Pharm. Des. 2020, 26, 621–641. [Google Scholar] [CrossRef]
- Sasaki, Y.; Sathi, G.A.; Yamamoto, O. Wound healing effect of bioactive ion released from Mg-smectite. Mater. Sci. Eng. C 2017, 77, 52–57. [Google Scholar] [CrossRef]
- Lansdown, A.B.G.; Sampson, B.; Rowe, A. Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds. J. Anat. 1999, 195, 375–386. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. Calcium: A potential central regulator in wound healing in the skin. Wound Repair Regen. 2002, 10, 271–285. [Google Scholar] [CrossRef]
- Dubé, J.; Rochette-Drouin, O.; Lévesque, P.; Gauvin, R.; Roberge, C.J.; Auger, F.A.; Goulet, D.; Bourdages, M.; Plante, M.; Germain, L.; et al. Restoration of the Transepithelial Potential Within Tissue-Engineered Human Skin In Vitro and During the Wound Healing Process In Vivo. Tissue Eng. Part A 2010, 16, 3055–3063. [Google Scholar] [CrossRef]
- Fairley, J.A.; Marcelo, C.L.; Hogan, V.A.; Voorhees, J.J. Increased Calmodulin Levels in Psoriasis and Low Ca++ Regulated Mouse Epidermal Keratinocyte Cultures. J. Investig. Dermatol. 1985, 84, 195–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvonen, S.-L.; Korkiamäki, T.; Ylä-Outinen, H.; Nissinen, M.; Teerikangas, H.; Pummi, K.; Karvonen, J.; Peltonen, J. Psoriasis and Altered Calcium Metabolism: Downregulated Capacitative Calcium Influx and Defective Calcium-Mediated Cell Signaling in Cultured Psoriatic Keratinocytes. J. Investig. Dermatol. 2000, 114, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Jin, X. Needle-punched three-dimensional nonwoven wound dressings with density gradient from biocompatible calcium alginate fiber. Text. Res. J. 2019, 89, 2776–2788. [Google Scholar] [CrossRef]
- Hotta, E.; Hara, H.; Kamiya, T.; Adachi, T. Non-thermal atmospheric pressure plasma-induced IL-8 expression is regulated via intracellular K + loss and subsequent ERK activation in human keratinocyte HaCaT cells. Arch. Biochem. Biophys. 2018, 644, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Lim, J.W.; Kim, B.K.; Park, S.J.; Kim, S.W.; Choi, T.H. KCl Mediates K+Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing. Arch. Plast. Surg. 2015, 42, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhang, M.; Qi, B.; Zhu, Z.; Yao, J.; Yuan, X.; Sun, D. Nanoparticle-Based Strategies and Approaches for the Treatment of Chronic Wounds. J. Biomater. Tissue Eng. 2018, 8, 455–464. [Google Scholar] [CrossRef]
- Chebassier, N.; Ouijja, E.H.; Viegas, I.; Dreno, B. Stimulatory effect of boron and manganese salts on keratinocyte migration. Acta Derm. Venereol. 2004, 84, 191–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COLIPA. Guidelines for Percutaneous Absorption/Penetration; COLIPA: Brussels, Belgium, 1997; pp. 1–36. [Google Scholar]
- EU. Manual of the Working Group on Cosmetic Products (Sub-Group on Borderline Products) on the Scope of Application of the Cosmetics Regulation; EU: Brussels, Belgium, 2017; pp. 1–33. [Google Scholar]
- ICH. Guideline for Elemental Impurities Q3D (R1); ICH: Geneva, Switzerland, 2019. [Google Scholar]
- EU. Regulation (EC) No 1223/2009 on Cosmetic Products; EU: Brussels, Belgium, 2009; pp. 1–151. [Google Scholar]
- Prado, A.J.P. Sistema termal de Alicún de las Torres (Granada) como análogo natural de escape de CO2 en forma de DIC: Implicaciones paleoclimáticas y como sumidero de CO2. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2011. [Google Scholar]
- Prado-Pérez, A.J.; Del Villar, L.P. Dedolomitization as an analogue process for assessing the long-term behaviour of a CO2 deep geological storage: The Alicún de las Torres thermal system (Betic Cordillera, Spain). Chem. Geol. 2011, 289, 98–113. [Google Scholar] [CrossRef]
- García-Villén, F.; Sánchez-Espejo, R.; Borrego-Sánchez, A.; Cerezo, P.; Perioli, L.; Iborra, C.A.V. Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements. Pharmaceutics 2020, 12, 764. [Google Scholar] [CrossRef]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; pp. 1–360. [Google Scholar]
- Flarend, R.; Bin, T.; Elmore, D.; Hem, S.L. A preliminary study of the dermal absorption of aluminium from antiperspirants using aluminium-26. Food Chem. Toxicol. 2001, 39, 163–168. [Google Scholar] [CrossRef]
- De Ligt, R.; Van Duijn, E.; Grossouw, D.; Bosgra, S.; Burggraaf, J.; Windhorst, A.; Peeters, P.A.; Van Der Luijt, G.A.; Alexander-White, C.; Vaes, W.H. Assessment of Dermal Absorption of Aluminum from a Representative Antiperspirant Formulation Using a 26Al Microtracer Approach. Clin. Transl. Sci. 2018, 11, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineau, A.; Guillard, O.; Fauconneau, B.; Favreau, F.; Marty, M.H.; Gaudin, A.; Vincent, C.M.; Marrauld, A.; Marty, J.P. In vitro study of percutaneous absorption of aluminum from antiperspirants through human skin in the FranzTM diffusion cell. J. Inorg. Biochem. 2012, 110, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.D.; Misra, R.; Williams, L.B. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance. Sci. Rep. 2016, 6, 19043. [Google Scholar] [CrossRef] [PubMed]
- Wlaschek, M.; Singh, K.; Sindrilaru, A.; Crisan, D.; Scharffetter-Kochanek, K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic. Biol. Med. 2019, 133, 262–275. [Google Scholar] [CrossRef]
- Grasman, J.; Williams, M.D.; Razis, C.G.; Bonzanni, M.; Golding, A.S.; Cairns, D.M.; Levin, M.; Kaplan, D. Hyperosmolar Potassium Inhibits Myofibroblast Conversion and Reduces Scar Tissue Formation. ACS Biomater. Sci. Eng. 2019, 5, 5327–5336. [Google Scholar] [CrossRef]
- Khiari, I.; Sánchez-Espejo, R.; García-Villén, F.; Cerezo, P.; Aguzzi, C.; López-Galindo, A.; Jamoussi, F.; Viseras, C. Rheology and cation release of tunisian medina mud-packs intended for topical applications. Appl. Clay Sci. 2019, 171, 110–117. [Google Scholar] [CrossRef]
- Bish, D. Parallels and Distinctions between Clay Minerals and Zeolites. In Developments in Clay Science; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 1097–1112. [Google Scholar]
- Kass, L.; Rosanoff, A.; Tanner, A.; Sullivan, K.; McAuley, W.; Plesset, M. Effect of transdermal magnesium cream on serum and urinary magnesium levels in humans: A pilot study. PLoS ONE 2017, 12, e0174817. [Google Scholar] [CrossRef] [Green Version]
- Schempp, C.M.; Dittmar, H.C.; Hummler, D.; Simon-Haarhaus, B.; Schöpf, E.; Simon, J.C.; Schulte-Mönting, J.; Christoph, M. Magnesium ions inhibit the antigen-presenting function of human epidermal Langerhans cells in vivo and in vitro. Involvement of ATPase, HLA-DR, B7 molecules, and cytokines. J. Investig. Dermatol. 2000, 115, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, N.C.; Sanchez, W.Y.; Mohammed, Y.H.; Grice, J.E.; Roberts, M.S.; Barnard, R.T. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles. Magnes. Res. 2016, 29, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Denda, M.; Katagiri, C.; Hirao, T.; Maruyama, N.; Takahashi, M. Some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch. Dermatol. Res. 1999, 291, 560–563. [Google Scholar] [CrossRef]
- Engen, D.J.; McAllister, S.J.; Whipple, M.O.; Cha, S.; Dion, L.J.; Vincent, A.; Bauer, B.A.; Wahner-Roedler, D.L. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: A feasibility study. J. Integr. Med. 2015, 13, 306–313. [Google Scholar] [CrossRef]
- Demirci, S.; Doğan, A.; Karakus, E.; Halici, Z.; Topçu, A.; Demirci, E.; Şahin, F.; Halıcı, Z. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing. Biol. Trace Elem. Res. 2015, 168, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Doğan, A.; Aydın, S.; Dülger, E.Ç.; Şahin, F. Boron promotes streptozotocin-induced diabetic wound healing: Roles in cell proliferation and migration, growth factor expression, and inflammation. Mol. Cell. Biochem. 2016, 417, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Benderdour, M.; Van Bui, T.; Hess, K.; Dicko, A.; Belleville, F.; Dousset, B. Effects of boron derivatives on extracellular matrix formation. J. Trace Elem. Med. Boil. 2000, 14, 168–173. [Google Scholar] [CrossRef]
- Chebassier, N.; El Houssein, O.; Viegas, I.; Dreno, B. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese. Exp. Dermatol. 2004, 13, 484–490. [Google Scholar] [CrossRef]
- Sieghart, D.; Liszt, M.; Wanivenhaus, A.; Bröll, H.; Kiener, H.; Klösch, B.; Steiner, G. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J. Cell. Mol. Med. 2015, 19, 187–197. [Google Scholar] [CrossRef]
- Carbajo, J.M.; Maraver, F. Sulphurous Mineral Waters: New Applications for Health. Evid. Based Complement. Altern. Med. 2017, 2017, 8034084. [Google Scholar] [CrossRef]
- Rodrigues, L.; Valentim, E.E.; Florenzano, J.; Cerqueira, A.; Soares, A.; Schmidt, T.; Santos, K.; Teixeira, S.; Ribela, M.; Rodrigues, S.F.; et al. Protective effects of exogenous and endogenous hydrogen sulfide in mast cell-mediated pruritus and cutaneous acute inflammation in mice. Pharmacol. Res. 2017, 115, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Nasermoaddel, A.; Kagamimori, S. Balneotherapy in medicine: A review. Environ. Health Prev. Med. 2005, 10, 171–179. [Google Scholar] [CrossRef]
- Sarsour, E.H.; Venkataraman, S.; Kalen, A.L.; Oberley, L.W.; Goswami, P. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008, 7, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Erikson, K.M.; Aschner, M. Manganese: Its Role in Disease and Health. Essent. Met. Med. 2019, 19, 253–266. [Google Scholar]
- Lucchini, R.G.; Aschner, M.; Landrigan, P.J.; Cranmer, J.M. Neurotoxicity of manganese: Indications for future research and public health intervention from the Manganese 2016 conference. Neurotoxicology 2018, 64, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef] [PubMed]
- Dinic, Z.; Maksimović, J.; Stanojković-Sebić, A.; Pivić, R. Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia. Agronomy 2019, 9, 856. [Google Scholar] [CrossRef] [Green Version]
- García-Villén, F.; Sánchez-Espejo, R.; López-Galindo, A.; Cerezo, P.; Viseras, C. Design and characterization of spring water hydrogels with natural inorganic excipients. Appl. Clay Sci. 2020, 197, 105772. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Kawamura, T.; Shimada, S. Zinc and skin biology. Arch. Biochem. Biophys. 2016, 611, 113–119. [Google Scholar] [CrossRef]
- Ogen-Shtern, N.; Chumin, K.; Cohen, G.; Borkow, G. Increased pro-collagen 1, elastin, and TGF-β1 expression by copper ions in an ex-vivo human skin model. J. Cosmet. Dermatol. 2019, 19, 1522–1527. [Google Scholar] [CrossRef]
- Tenaud, I.; Leroy, S.; Chebassier, N.; Dreno, B. Zinc, copper and manganese enhanced keratinocyte migration through a functional modulation of keratinocyte integrins. Exp. Dermatol. 2000, 9, 407–416. [Google Scholar] [CrossRef]
- Qiao, Y.; Ping, Y.; Zhang, H.; Zhou, B.; Liu, F.; Yu, Y.; Xie, T.; Li, W.; Zhong, D.; Zhang, Y.; et al. Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. ACS Appl. Mater. Interfaces 2019, 11, 3809–3822. [Google Scholar] [CrossRef] [Green Version]
- Ul-Islam, M.; Khan, T.; Khattak, W.A.; Park, J.K. Bacterial cellulose-MMTs nanoreinforced composite films: Novel wound dressing material with antibacterial properties. Cellulose 2013, 20, 589–596. [Google Scholar] [CrossRef]
- Health Canada. Natural Health Products Ingredients Database. Available online: http://webprod.hc-sc.gc.ca/nhpid-bdipsn/search-rechercheReq.do (accessed on 18 December 2019).
- Health Canada. Quality of Natural Health Products Guide—Natural and Non-Prescription Health Products Directorate; Health Canada: Ottawa, ON, Canada, 2015; Available online: https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/industry-professionals.html (accessed on 18 December 2019).
- Goss, C.; Kaneko, Y.; Khuu, L.; Anderson, G.D.; Ravishankar, S.; Aitken, M.L.; Lechtzin, N.; Zhou, G.; Czyz, D.M.; McLean, K.; et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 2018, 10, eaat7520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, M.; Ozcan, A.; Lee, B.; Maxwell, T.; Andl, T.; Rajasekaran, P.; Beazley, M.J.; Tetard, L.; Santra, S. N-acetyl Cysteine Coated Gallium Particles Demonstrate High Potency against Pseudomonas aeruginosa PAO1. Pathogens 2019, 8, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Chen, X.; Tan, R.; She, Z.; Chen, Z.-H.; Xia, Z. Preparation and characterization of a gallium-loaded antimicrobial artificial dermal scaffold. Mater. Sci. Eng. C 2019, 105, 110063. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, T.; Kang, S.; Jin, H.; Lee, K.; Yoon, H.J. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small 2020, 16, e1903391. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Knapp-Wachsner, A.; Hsieh, C.G.; Kamangar, N. Pulmonary Kaposi Sarcoma without Mucocutaneous Involvement: The Role of Sequential Thallium and Gallium Scintigraphy. J. Clin. Imaging Sci. 2019, 9, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Seguchi, O.; Mochizuki, H.; Iwasaki, K.; Toda, K.; Kumai, Y.; Kuroda, K.; Nakajima, S.; Tateishi, E.; Watanabe, T.; et al. Role of Gallium-SPECT-CT in the Management of Patients With Ventricular Assist Device-Specific Percutaneous Driveline Infection. J. Card. Fail. 2019, 25, 795–802. [Google Scholar] [CrossRef]
- Jalali, A.; Zahmatkesh, M.H.; Jalilian, A.R.; Borujeni, A.T.; Alirezapour, B. Preparation and Biological Evaluation of 67Gallium- Labeled Iranian Hemiscorpius Lepturus Scorpion Venom. Curr. Radiopharm. 2020, 13, 99–106. [Google Scholar] [CrossRef]
- Chitambar, C.R. Medical Applications and Toxicities of Gallium Compounds. Int. J. Environ. Res. Public Health 2010, 7, 2337–2361. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, P.; Matos, M.D.F.C.; Malzac, A.; Teixeira, A.R.; De Albuquerque, D.M. Evaluation of in vitro toxicity of hydroxyapatite doped with gallium. Mater. Lett. 2019, 253, 343–345. [Google Scholar] [CrossRef]
- Bartley, J.C.; Reber, E.F. Toxic Effects of Stable Strontium in Young Pigs. J. Nutr. 1961, 75, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Kirrane, B.M.; Nelson, L.S.; Hoffman, R.S. Massive Strontium Ferrite Ingestion without Acute Toxicity. Basic Clin. Pharmacol. Toxicol. 2006, 99, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Hayta, S.B.; Durmuş, K.; Altuntaş, E.E.; Yildiz, E.; Hisarciklıo, M.; Akyol, M.; Durmuş, K.; Yıldız, E.; Hisarcıklıo, M. The reduction in inflammation and impairment in wound healing by using strontium chloride hexahydrate. Cutan. Ocul. Toxicol. 2018, 37, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Jebahi, S.; Oudadesse, H.; Jardak, N.; Khayat, I.; Keskes, H.; Khabir, A.; Rebai, T.; El Feki, H.; El Feki, A. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: Responses to oxidative stress in ovariectomised rats. Ann. Pharm. Fr. 2013, 71, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, L.; Guo, C.; Qin, H.; Yu, X. A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. Int. J. Biol. Macromol. 2017, 104, 969–978. [Google Scholar] [CrossRef]
- Gunawardana, D.H.; Lichtenstein, M.; Better, N.; Rosenthal, M. Results of Strontium-89 Therapy in Patients with Prostate Cancer Resistant to Chemotherapy. Clin. Nucl. Med. 2004, 29, 81–85. [Google Scholar] [CrossRef]
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Cabrera, W.E.; Schrooten, I.; De Broe, M.E.; D’Haese, P.C. Strontium and Bone. J. Bone Miner. Res. 1999, 14, 661–668. [Google Scholar] [CrossRef]
- Buehler, J.; Chappuis, P.; Saffar, J.-L.; Tsouderos, Y.; Vignery, A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 2001, 29, 176–179. [Google Scholar] [CrossRef]
- Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; Galindo, A.L.; Machado, J.; Viseras, C. Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Appl. Clay Sci. 2015, 116, 1–7. [Google Scholar] [CrossRef]
- Adeleye, S.A.; Clay, P.G.; Oladipo, M.O.A. Sorption of caesium, strontium and europium ions on clay minerals. J. Mater. Sci. 1994, 29, 954–958. [Google Scholar] [CrossRef]
- Missana, T.; Garcia-Gutierrez, M.; Alonso, U. Sorption of strontium onto illite/smectite mixed clays. Phys. Chem. Earth Parts A B C 2008, 33, S156–S162. [Google Scholar] [CrossRef]
- Vengris, T.; Binkien, R.; Sveikauskait, A. Nickel, copper and zinc removal from waste water by a modified clay sorbent. Appl. Clay Sci. 2001, 18, 183–190. [Google Scholar] [CrossRef]
- Sun, W.; Selim, H.M. Kinetics of Molybdenum Adsorption and Desorption in Soils. J. Environ. Qual. 2018, 47, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Mousa, M.; Evans, N.D.; Oreffo, R.O.C.; Dawson, J.I. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials 2018, 159, 204–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salcedo-Bellido, I.; Sandri, G.; Aguzzi, C.; Bonferoni, C.; Cerezo, P.; Sánchez-Espejo, R.; Viseras, C.; Bonferoni, M.C. Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids Surf. B Biointerfaces 2014, 117, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, I.; Aguzzi, C.; Sandri, G.; Bonferoni, M.C.; Mori, M.; Cerezo, P.; Sánchez, R.; Viseras, C.; Caramella, C. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: A new drug delivery. Appl. Clay Sci. 2012, 55, 131–137. [Google Scholar] [CrossRef]
- Tenci, M.; Rossi, S.; Aguzzi, C.; Carazo, E.; Sandri, G.; Bonferoni, M.C.; Grisoli, P.; Viseras, C.; Caramella, C.; Ferrari, F. Carvacrol/clay hybrids loaded into in situ gelling films. Int. J. Pharm. 2017, 531, 676–688. [Google Scholar] [CrossRef]
- Carazo, E.; Sandri, G.; Cerezo, P.; Lanni, C.; Ferrari, F.; Bonferoni, C.; Viseras, C.; Aguzzi, C.; Ianni, C. Halloysite nanotubes as tools to improve the actual challenge of fixed doses combinations in tuberculosis treatment. J. Biomed. Mater. Res. Part A 2019, 107, 1513–1521. [Google Scholar] [CrossRef]
- Cervini-Silva, J.; Ramírez-Apan, M.T.; Kaufhold, S.; Ufer, K.; Palacios, E.; Montoya, A. Role of bentonite clays on cell growth. Chemosphere 2016, 149, 57–61. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Luo, Y.; Wang, S.; Shen, M.; Tomás, H.; Zhu, M.; Shi, X. Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Adv. 2015, 5, 2383–2391. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Du, J.; Tang, C.-S.; Jin, H.; Huang, Y. Inhibitory Effects of Sulfur Dioxide on Rat Myocardial Fibroblast Proliferation and Migration. Chin. Med. J. 2018, 131, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B.G. Physiological and Toxicological Changes in the Skin Resulting from the Action and Interaction of Metal Ions. Crit. Rev. Toxicol. 1995, 25, 397–462. [Google Scholar] [CrossRef]
- Huang, J.-S.; Mukherjee, J.J.; Chung, T.; Crilly, K.S.; Kiss, Z. Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin and insulin-like growth factor I in fibroblasts. Eur. J. Biochem. 1999, 266, 943–951. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, B.L.; Browning, J.D. Zinc Deprivation Impairs Growth Factor-Stimulated Calcium Influx into Murine 3T3 cells Associated with Decreased Cell Proliferation. J. Nutr. 2011, 141, 1036–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dell, B.L.; Browning, J.D. Impaired Calcium Entry into Cells Is Associated with Pathological Signs of Zinc Deficiency. Adv. Nutr. 2013, 4, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, J.J.; Pierschbacher, M.D. Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J. Clin. Investig. 1995, 95, 227–233. [Google Scholar] [CrossRef] [Green Version]
Element | PS9 (ppm) | G30 (ppm) | ALI (ppb) | Comments |
---|---|---|---|---|
Al | 15.9 | 31.9 | 37 | Class 4 Q3D(R1); Allowed in EC 1223/2009 |
B | 0.3 | 0.3 | 395 | Class 4 in Q3D(R1); Not listed in EC 1223/2009 |
Ca | 2.8 | 33.3 | 312,700 | Class 4 in Q3D(R1); Not listed as element in EC 1223/2009 |
Fe | 5.2 | 24.2 | 58 | |
K | 6.0 | 1.9 | 6836 | |
Mg | 122.0 | 41.8 | 114,267 | |
Na | 0.1 | 0.1 | 49,150 | |
S | 0.1 | 0.4 | 388,367 | Not listed as element in EC 1223/2009 |
Mn | 177.0 | 178.5 | ND | Class 4 in Q3D(R1); Not listed in EC 1223/2009 |
W | 0.9 | 0.4 | ND | |
Zn | 81.2 | 96.1 | 3.3 | Class 4 in Q3D(R1); Not listed as element in EC 1223/2009 |
Cu * | 8.1 | 11.3 | 2.5 | Class 3 in Q3D(R1); Allowed in EC 1223/2009 |
Ag * | 0.04 | 0.2 | 0.1 | Class 2B in Q3D(R1); Allowed in EC 1223/2009. |
Au * | ND | ND | ND | |
Sc | 2.7 | 7.9 | 1.8 | Not listed in EC 1223/2009 |
Ti | 689.6 | 1820.5 | 0.2 | Not listed as element in EC 1223/2009 |
Ga | 8.2 | 16.1 | 0.8 | Not listed in EC 1223/2009 |
Ge | 3.2 | 0.8 | 0.1 | |
Tb | 43.2 | 17.9 | 7.2 | |
Sr | 24.4 | 106.0 | 10,049 | Not listed as element in EC 1223/2009 |
Y | 6.2 | 39.9 | 0.04 | Not listed in EC 1223/2009 |
Nb | 3.8 | 6.1 | 0.002 | |
In | ND | 0.002 | ND | |
La | 7.7 | 36.3 | ND | |
Ce | 17.1 | 48.9 | ND | |
Pr | 2.0 | 7.5 | 0.003 | |
Sm | 1.7 | 5.5 | 0.001 | |
Eu | 0.2 | 1.2 | 0.001 | |
Gd | 1.5 | 5.6 | 0.003 | |
Dy | 1.2 | 4.7 | 0.002 | |
Ho | 0.2 | 1.0 | 0.002 | |
Er | 0.6 | 2.9 | 0.002 | |
Tm | 0.1 | 0.4 | 0.002 | |
Yb | 0.5 | 2.4 | ND | |
Lu | 0.1 | 0.4 | 0.002 | |
Hf | 44.7 | 13.9 | 2.3 | |
Re | ND | ND | 0.01 | |
Bi | 0.1 | ND | ND | Not listed as element in EC 1223/2009 |
Th | 4.6 | 5.6 | 0.1 | Not listed in EC 1223/2009 |
Concentration Units | Element | ALIPS9 | ALIG30@10 | ALIG30@20 | |||
---|---|---|---|---|---|---|---|
48 h | 1 m | 48 h | 1 m | 48h | 1 m | ||
mg/100 g | Ca | 11.7 ± 2.91 | 8.1 ± 1.30 | 14.9 ± 1.758 | 30.4 ± 7.379 | 17.5 ± 3.51 | 7.0 ± 1.25 |
K | 1.8 ± 0.843 | 2.8 ± 0.628 | 2.7 ± 1.183 | 1.9 ± 0.491 | 3.4 ± 1.004 | 2.6 ± 1.09 | |
Mg | 2.7 ± 0.48 | 3.7 ± 0.52 | 2.5 ± 0.237 | 5.2 ± 1.433 | 4.9 ± 0.23 | 3.0 ± 0.48 | |
Na | 5.4 ± 1.40 | 6.3 ± 1.65 | 8.8 ± 2.727 | 10.5 ± 3.185 | 12.4 ± 1.136 | 6.43 ± 0.469 | |
S | 14.8 ± 3.80 | 5.5 ± 2.81 | 23.3 ± 2.063 | 11.7 ± 2.162 | 10.4 ± 2.34 | 6.7 ± 2.29 | |
B | 0.2 ± 0.016 | 0.04 ± 0.020 | 0.1 ± 0.021 | ND | 0.3 ± 0.062 | ND | |
Fe | 0.06 ± 0.036 | 0.07 ± 0.028 | ND | 0.02 ± 0.018 | 0.1 ± 0.054 | 0.01 ± 0.009 | |
Al | ND | 0.1 ± 0.056 | ND | 0.58 ± 0.452 | ND | 0.67 ± 0.100 | |
μg/100 g | Mn | ND | 0.7 ± 0.39 | ND | ND | 4.9 ± 2.64 | 7.4 ± 3.69 |
W | ND | ND | ND | ND | ND | ND | |
Zn | 25.9 ± 16.07 | 165.9 ± 68.51 | 132.1 ± 38.17 | 181.4 ± 99.18 | 164.8 ± 53.09 | 175.1 ± 80.91 | |
Cu* | 10.8 ± 3.29 | 3.6 ± 2.17 | 32.6 ± 11.59 | 1.5 ± 1.01 | 20.6 ± 3.725 | 0.9 ± 0.61 | |
Ag *, Au *, Sc, Ti, Ge, Tb | ND | ND | ND | ND | ND | ND | |
Ga | ND | 0.08 ± 0.050 | ND | ND | 0.2 ± 0.019 | 0.04 ± 0.001 | |
Sr | 176.5 ± 15.89 | 148.7 ± 20.37 | 90.4 ± 18.67 | 65.9 ± 10.39 | 82.8 ± 15.64 | 68.5 ± 7.93 | |
Y, Nb, In, La, Ce, Pr, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Hf, Re, Bi, Th | ND | ND | ND | ND | ND | ND |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Villén, F.; Sánchez-Espejo, R.; Borrego-Sánchez, A.; Cerezo, P.; Cucca, L.; Sandri, G.; Viseras, C. Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics 2020, 12, 891. https://doi.org/10.3390/pharmaceutics12090891
García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Cerezo P, Cucca L, Sandri G, Viseras C. Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics. 2020; 12(9):891. https://doi.org/10.3390/pharmaceutics12090891
Chicago/Turabian StyleGarcía-Villén, Fátima, Rita Sánchez-Espejo, Ana Borrego-Sánchez, Pilar Cerezo, Lucia Cucca, Giuseppina Sandri, and César Viseras. 2020. "Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels" Pharmaceutics 12, no. 9: 891. https://doi.org/10.3390/pharmaceutics12090891
APA StyleGarcía-Villén, F., Sánchez-Espejo, R., Borrego-Sánchez, A., Cerezo, P., Cucca, L., Sandri, G., & Viseras, C. (2020). Correlation between Elemental Composition/Mobility and Skin Cell Proliferation of Fibrous Nanoclay/Spring Water Hydrogels. Pharmaceutics, 12(9), 891. https://doi.org/10.3390/pharmaceutics12090891