Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antimicrobials and Pharmacokinetic Data
2.2. Microbiological Data
2.3. PK/PD Analysis and Monte Carlo Simulation
2.3.1. Probability of Target Attainment (PTA) Estimation
- Time-dependent activity antimicrobials;
- IV infusion.
- Continuous infusion
- Concentration–time-dependent antimicrobials;
- Cmax/MIC: ratio of the maximum drug plasma concentration divided by the MIC.
- AUC24h/MIC: ratio of the area under the antimicrobial concentration–time curve for 24 h divided by the MIC.
2.3.2. Calculation of the Cumulative Fraction of Response (CFR)
2.3.3. Calculation of the Joint Probability of PK/PD Target Attainment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accessed on 12 May 2021).
- Jorda, A.; Zeitlinger, M. Preclinical Pharmacokinetic/Pharmacodynamic Studies and Clinical Trials in the Drug Development Process of EMA-Approved Antibacterial Agents: A Review. Clin. Pharmacokinet. 2020, 59, 1071–1084. [Google Scholar] [CrossRef]
- Azam, M.W.; Khan, A.U. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. Today 2018, 24, 350–359. [Google Scholar] [CrossRef]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updates 2015, 21–22, 41–59. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe. Surveillance Report 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Country%20summaries-AER-EARS-Net%20202019.pdf (accessed on 12 May 2021).
- Estudio Nacional de Vigilancia de Infección Nosocomial en Servicios de Medicina Intensiva. Informe 2019. Available online: https://hws.vhebron.net/envin-helics/Help/Informe%20ENVIN-UCI%202019.pdf (accessed on 12 May 2021).
- Del Barrio-Tofiño, E.; Zamorano, L.; Cortes-Lara, S.; López-Causapé, C.; Sánchez-Diener, I.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; Oliver, A.; Galán, F.; et al. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J. Antimicrob. Chemother. 2019, 74, 1825–1835. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2020, 72, e169–e183. [Google Scholar]
- World Health Organization. Global Action Plan. Available online: https://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 12 May 2021).
- Rodríguez-Gascón, A.; Solinís, M.; Isla, A. The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials. Pharmaceutics 2021, 13, 833. [Google Scholar] [CrossRef]
- Asín-Prieto, E.; Rodríguez-Gascón, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Blondeau, J.; Hansen, G.; Metzler, K.; Hedlin, P. The Role of PK/PD Parameters to Avoid Selection and Increase of Resistance: Mutant Prevention Concentration. J. Chemother. 2004, 16, 1–19. [Google Scholar] [CrossRef]
- Owens, R.C.; Bulik, C.C.; Andes, D. Pharmacokinetics–pharmacodynamics, computer decision support technologies, and antimicrobial stewardship: The compass and rudder. Diagn. Microbiol. Infect. Dis. 2018, 91, 371–382. [Google Scholar] [CrossRef]
- de Velde, F.; Mouton, J.W.; de Winter, B.C.; van Gelder, T.; Koch, B. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol. Res. 2018, 134, 280–288. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 10.0. 2021. Available online: www.eucast.org/clinical_breakpoints/ (accessed on 12 May 2021).
- Zazo, H.; Martín-Suárez, A.; Lanao, J.M. Evaluating amikacin dosage regimens in intensive care unit patients: A pharmacokinetic/pharmacodynamic analysis using Monte Carlo simulation. Int. J. Antimicrob. Agents 2013, 42, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, C.; MacGowan, A.P. A review of the pharmacokinetics and pharmacodynamics of aztreonam. J. Antimicrob. Chemother. 2016, 71, 2704–2712. [Google Scholar] [CrossRef] [Green Version]
- Lipman, J.; Wallis, S.; Rickard, C. Low Plasma Cefepime Levels in Critically Ill Septic Patients: Pharmacokinetic Modeling Indicates Improved Troughs with Revised Dosing. Antimicrob. Agents Chemother. 1999, 43, 2559–2561. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves-Pereira, J.; Póvoa, P. Antibiotics in critically ill patients: A systematic review of the pharmacokinetics of β-lactams. Crit. Care 2011, 15, R206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benko, A.S.; Cappelletty, D.M.; Kruse, J.A.; Rybak, M.J. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob. Agents Chemother. 1996, 40, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwin, K.B.; Zhuang, L.; Sy, S.K.B.; Zhuang, L.; Sy, S.; Derendorf, H. Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime–Avibactam Combination: A Model-Informed Strategy for its Clinical Development. Clin. Pharmacokinet. 2018, 58, 545–564. [Google Scholar]
- Stein, G.E.; Smith, C.L.; Scharmen, A.; Kidd, J.M.; Cooper, C.; Kuti, J.; Mitra, S.; Nicolau, D.P.; Havlichek, D.H. Pharmacokinetic and Pharmacodynamic Analysis of Ceftazidime/Avibactam in Critically Ill Patients. Surg. Infect. 2019, 20, 55–61. [Google Scholar] [CrossRef]
- European Medicines Agency. Zavicefta 2 g/0.5 g Powder for Concentrate for Solution for Infusion. Summary of Product Characteristics (SPC). Available online: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 2 June 2021).
- Sime, F.B.; Lassig-Smith, M.; Starr, T.; Stuart, J.; Pandey, S.; Parker, S.L.; Wallis, S.C.; Lipman, J.; Roberts, J.A. Population Pharmacokinetics of Unbound Ceftolozane and Tazobactam in Critically Ill Patients without Renal Dysfunction. Antimicrob. Agents Chemother. 2019, 63, e01265-19. [Google Scholar] [CrossRef] [Green Version]
- Kakara, M.; Larson, K.; Feng, H.-P.; Shiomi, M.; Yoshitsugu, H.; Rizk, M.L. Population pharmacokinetics of tazobactam/ceftolozane in Japanese patients with complicated urinary tract infection and complicated intra-abdominal infection. J. Infect. Chemother. 2019, 25, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Conil, J.-M.; Georges, B.; de Lussy, A.; Khachman, D.; Seguin, T.; Ruiz, S.; Cougot, P.; Fourcade, O.; Houin, G.; Saivin, S. Ciprofloxacin use in critically ill patients: Pharmacokinetic and pharmacodynamic approaches. Int. J. Antimicrob. Agents 2008, 32, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Garonzik, S.M.; Li, J.; Thamlikitkul, V.; Paterson, D.; Shoham, S.; Jacob, J.; Silveira, F.P.; Forrest, A.; Nation, R.L. Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients. Antimicrob. Agents Chemother. 2011, 55, 3284–3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipš, M.; Šiller, M.; Strojil, J.; Urbánek, K.; Balík, M.; Suchánková, H. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: A comparison of 0.5-h and 3-h infusions. Int. J. Antimicrob. Agents 2014, 44, 358–362. [Google Scholar] [CrossRef]
- Isla, A.; Canut, A.; Arribas, J.; Asín-Prieto, E.; Rodríguez-Gascón, A. Meropenem dosing requirements against Enterobacteriaceae in critically ill patients: Influence of renal function, geographical area and presence of extended-spectrum β-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 511–519. [Google Scholar] [CrossRef]
- Li, C.; Kuti, J.L.; Nightingale, C.H.; Mansfield, D.L.; Dana, A.; Nicolau, D.P. Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with complicated intra-abdominal infection. J. Antimicrob. Chemother. 2005, 56, 388–395. [Google Scholar] [CrossRef]
- Peris-Marti, J.F.; Borras-Blasco, J.; Rosique-Robles, J.D.; Gonzalez-Delgado, M. Evaluation of once daily tobramycin dosing in critically ill patients through Bayesian simulation. J. Clin. Pharm. Ther. 2004, 29, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Barbhaiya, R.H.; Knupp, C.A.; Pfeffer, M.; Pittman, K.A. Lack of pharmacokinetic interaction between cefepime and amikacin in humans. Antimicrob. Agents Chemother. 1992, 36, 1382–1386. [Google Scholar] [CrossRef] [Green Version]
- Scully, B.E.; Swabb, E.A.; Neu, H.C. Pharmacology of aztreonam after intravenous infusion. Antimicrob. Agents Chemother. 1983, 24, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.H.; McKinnon, P.S.; Akins, R.L.; Drusano, G.L.; Rybak, M.J. Pharmacokinetics and Pharmacodynamics of Cefepime in Patients with Various Degrees of Renal Function. Antimicrob. Agents Chemother. 2003, 47, 1853–1861. [Google Scholar] [CrossRef] [Green Version]
- Frei, C.R.; Wiederhold, N.P.; Burgess, D.S. Antimicrobial breakpoints for Gram-negative aerobic bacteria based on pharmacokinetic–pharmacodynamic models with Monte Carlo simulation. J. Antimicrob. Chemother. 2008, 61, 621–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensman, T.J.; Wang, J.; Jayne, J.; Fukushima, L.; Rao, A.P.; D’Argenio, D.Z.; Beringer, P.M. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Determine Optimal Dosing of Ceftazidime-Avibactam for the Treatment of Acute Pulmonary Exacerbations in Patients with Cystic Fibrosis. Antimicrob. Agents Chemother. 2017, 61, e00988-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monogue, M.L.; Pettit, R.S.; Muhlebach, M.; Cies, J.J.; Nicolau, D.P.; Kuti, J.L. Population Pharmacokinetics and Safety of Ceftolozane-Tazobactam in Adult Cystic Fibrosis Patients Admitted with Acute Pulmonary Exacerbation. Antimicrob. Agents Chemother. 2016, 60, 6578–6584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Núñez, O.; Periañez-Parraga, L.; Oliver, A.; Munita, J.M.; Boté, A.; Gasch, O.; Nuvials, X.; Dinh, A.; Shaw, R.; Lomas, J.M.; et al. Higher MICs (>2 mg/L) Predict 30-Day Mortality in Patients With Lower Respiratory Tract Infections Caused by Multidrug- and Extensively Drug-Resistant Pseudomonas aeruginosa Treated With Ceftolozane/Tazobactam. Open Forum Infect. Dis. 2019, 6, ofz416. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Zerbaxa (Ceftolozane/Tazobactam) 1 g/0.5 g Powder for Concentrate for Solution for Infusion. Summary of Product Characteristics (SPC). Available online: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf (accessed on 5 June 2021).
- Zelenitsky, S.A.; Rubinstein, E.; Ariano, R.E.; Zhanel, G.G.; Hoban, D.J.; Adam, H.J.; Karlowsky, J.A.; Baxter, M.R.; Nichol, K.A.; Lagacé-Wiens, P.R.S.; et al. Integrating pharmacokinetics, pharmacodynamics and MIC distributions to assess changing antimicrobial activity against clinical isolates of Pseudomonas aeruginosa causing infections in Canadian hospitals (CANWARD). J. Antimicrob. Chemother. 2013, 68, i67–i72. [Google Scholar] [CrossRef] [Green Version]
- Couet, W.; Grégoire, N.; Gobin, P.; Saulnier, P.J.; Frasca, D.; Marchand, S.; Mimoz, O. Pharmacokinetics of Colistin and Colistimethate Sodium After a Single 80-mg Intravenous Dose of CMS in Young Healthy Volunteers. Clin. Pharmacol. Ther. 2011, 89, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Asín-Prieto, E.; Isla, A.; Canut, A.; Gascón, A.R. Comparison of antimicrobial pharmacokinetic/pharmacodynamic breakpoints with EUCAST and CLSI clinical breakpoints for Gram-positive bacteria. Int. J. Antimicrob. Agents 2012, 40, 313–322. [Google Scholar] [CrossRef]
- Zelenitsky, S.A.; Harding, G.K.M.; Sun, S.; Ubhi, K.; Ariano, R.E. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: An antibiotic pharmacodynamic analysis. J. Antimicrob. Chemother. 2003, 52, 668–674. [Google Scholar] [CrossRef]
- Guglielmo, B.J.; Flaherty, J.F.; Woods, T.M.; LaFollette, G.; Gambertoglio, J.G. Pharmacokinetics of cefoperazone and tobramycin alone and in combination. Antimicrob. Agents Chemother. 1987, 31, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Grupo de Estudio de los Mecanismos de Acción y de las Resistencias a los antimicrobianos. GEMARA-SEIMC. Available online: https://www.seimc.org/ (accessed on 12 May 2021).
- Heffernan, A.J.; Sime, F.; Lipman, J.; Roberts, J.A. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2018, 78, 621–641. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Dulhunty, J.M.; Bellomo, R.; Lipman, J.; Roberts, J.A. Continuous beta-lactam infusion in critically ill patients: The clinical evidence. Ann. Intensiv. Care 2012, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Kashuba, A.D.; Nafziger, A.N.; Drusano, G.L.; Bertino, J.S. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob. Agents Chemother. 1999, 43, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ’bug and drug’. Nat. Rev. Genet. 2004, 2, 289–300. [Google Scholar] [CrossRef] [PubMed]
- DeRyke, C.A.; Kuti, J.L.; Nicolau, D.P. Reevaluation of current susceptibility breakpoints for Gram-negative rods based on pharmacodynamic assessment. Diagn. Microbiol. Infect. Dis. 2007, 58, 337–344. [Google Scholar] [CrossRef]
- Tängdén, T.; Martín, V.R.; Felton, T.W.; Nielsen, E.I.; Marchand, S.; Brüggemann, R.J.; Bulitta, J.; Bassetti, M.; Theuretzbacher, U.; Tsuji, B.T.; et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensiv. Care Med. 2017, 43, 1021–1032. [Google Scholar] [CrossRef]
- Tam, V.H.; Chang, K.-T.; Zhou, J.; Ledesma, K.R.; Phe, K.; Gao, S.; Van Bambeke, F.; Sánchez-Díaz, A.M.; Zamorano, L.; Oliver, A.; et al. Determining β-lactam exposure threshold to suppress resistance development in Gram-negative bacteria. J. Antimicrob. Chemother. 2017, 72, 1421–1428. [Google Scholar] [CrossRef]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Crandon, J.L.; Schuck, V.J.; Banevicius, M.A.; Beaudoin, M.-E.; Nichols, W.W.; Tanudra, M.A.; Nicolau, D.P. Comparative In Vitro and In Vivo Efficacies of Human Simulated Doses of Ceftazidime and Ceftazidime-Avibactam against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2012, 56, 6137–6146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanScoy, B.D.; Mendes, R.E.; Castanheira, M.; McCauley, J.; Bhavnani, S.M.; Jones, R.N.; Friedrich, L.V.; Steenbergen, J.N.; Ambrose, P.G. Relationship between Ceftolozane-Tazobactam Exposure and Selection for Pseudomonas aeruginosa Resistance in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2014, 58, 6024–6031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergen, P.J.; Bulitta, J.B.; Kirkpatrick, C.; Rogers, K.E.; McGregor, M.J.; Wallis, S.C.; Paterson, D.; Lipman, J.; Roberts, J.; Landersdorfer, C.B. Effect of different renal function on antibacterial effects of piperacillin against Pseudomonas aeruginosa evaluated via the hollow-fibre infection model and mechanism-based modelling. J. Antimicrob. Chemother. 2016, 71, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Firsov, A.A.; Gilbert, D.; Greer, K.; Portnoy, Y.A.; Zinner, S.H. Comparative Pharmacodynamics and Antimutant Potentials of Doripenem and Imipenem with Ciprofloxacin-Resistant Pseudomonas aeruginosa in an In Vitro Model. Antimicrob. Agents Chemother. 2011, 56, 1223–1228. [Google Scholar] [CrossRef]
- Maciá, M.D.; Borrell, N.; Segura, M.; Gómez, C.; Pérez, J.L.; Oliver, A. Efficacy and Potential for Resistance Selection of Antipseudomonal Treatments in a Mouse Model of Lung Infection by Hypermutable Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colin, P.; Eleveld, D.J.; Jonckheere, S.; Van Bocxlaer, J.; De Waele, J.; Vermeulen, A. What about confidence intervals? A word of caution when interpreting PTA simulations. J. Antimicrob. Chemother. 2016, 71, 2502–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency (EMA-CHMP). Guideline on the Use of Pharmacokinetics and Pharmacodynamics in the Development of Antimicrobial Medicinal Products (EMA/CHMP/594085/2015). London, UK, 2016. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-pharmacokinetics-pharmacodynamics-development-antimicrobial-medicinal-products_en.pdf (accessed on 5 June 2021).
- Valero, A.; Isla, A.; Rodríguez-Gascón, A.; Calvo, B.; Canut, A.; Solinís, M. Pharmacokinetic/pharmacodynamic analysis as a tool for surveillance of the activity of antimicrobials against Pseudomonas aeruginosa strains isolated in critically ill patients. Enfermedades infecciosas y microbiologia clinica 2018, 37, 380–386. [Google Scholar] [PubMed]
- Valero, A.; Isla, A.; Rodríguez-Gascón, A.; Canut, A.; Solinís, M. Susceptibility of Pseudomonas aeruginosa and antimicrobial activity using PK/PD analysis: An 18-year surveillance study. Enfermedades infecciosas y microbiologia clinica 2019, 37, 626–633. [Google Scholar] [CrossRef]
- Thabit, A.K.; Hobbs, A.L.; Guzman, O.E.; Shea, K.M. The Pharmacodynamics of Prolonged Infusion β-Lactams for the Treatment of Pseudomonas aeruginosa Infections: A Systematic Review. Clin. Ther. 2019, 41, 2397–2415. [Google Scholar] [CrossRef]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; Van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit. Care 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Abuhussain, S.S.A.; Sutherland, C.A.; Nicolau, D.P. In vitro potency of antipseudomonal β-lactams against blood and respiratory isolates of P. aeruginosa collected from US hospitals. J. Thorac. Dis. 2019, 11, 1896–1902. [Google Scholar] [CrossRef]
- World Health Organization. The 2019 Who Aware Classification of Antibiotics for Evaluation and Monitoring of Use. Geneva, Switzerland, 2019. (WHO/EMP/IAU/2019.11). Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/handle/10665/327957 (accessed on 12 May 2021).
Antimicrobial Agent | Dosing Regimen | Infusion Time (h) | Vd (L) | Cl (L/h) | Ke (h−1) | Fu | References |
---|---|---|---|---|---|---|---|
Amikacin | 25–30 mg/kg q 24 h | 0.5 | 36.27 ± 8.34 | 5.58 ± 1.56 | [17] | ||
Aztreonam | 2 g q 6 h | 2 | 27.20 ± 20.80 | 9.60 ± 5.00 | 0.72 | [18] | |
3 | |||||||
Cefepime | 2 g q 8 h | 0.5 | 21.80 ± 5.10 | 7.62 ± 1.98 | 0.85 | [19,20] | |
3 | |||||||
Ceftazidime | 2 g q 8 h | 0.5 | 18.90 ± 9.00 | 0.27 ± 0.21 | 0.80 | [21] | |
1 g q 4 h | 3 | ||||||
Ceftazidime/ avibactam | 2/0.5 g q 8 h | 2 | 34.78 ± 10.49 | 6.14 ± 3.80 | 0.90 | [22,23,24] | |
50.81 ± 14.32 | 11.09 ± 6.78 | 0.92 | |||||
Ceftolozane/ tazobactam | 1/0.5 g q 8 h 2/1 g q 8 h | 1 | 20.40 ± 3.70 | 7.20 ± 3.20 | 0.79 | [25,26] | |
32.40 ± 10.00 | 25.40 ± 9.40 | 0.70 | |||||
Ciprofloxacin | 400 mg q 8 h | 1 | 13.60 ± 5.80 | [27] | |||
Colistin | 150 mg q 12 h | 0.5 | 2.92 ± 2.72 | [28] | |||
Imipenem | 1 g q 6 h | 1 | 28.70 ± 9.70 | 11.40 ± 3.53 | 0.80 | [29] | |
2 | |||||||
Meropenem | 2 g q 8 h | 0.5 | 22.70 ± 3.70 | 13.60 ± 2.08 | 0.98 | [30] | |
3 | |||||||
Piperacillin/ tazobactam | 4/0.5 g q 6 h | 0.5 | 19.40 ± 7.76 | 13.80 ± 4.77 | 0.75 | [31] | |
4 | |||||||
Tobramycin | 6–7 mg/kg q 24 h | 0.5 | 17.50 ± 5.25 | 0.25 ± 0.01 | [32] |
Antimicrobial Agent | Dosing Regimen | Infusion Time (h) | Vd (L) | Cl (L/h) | AUC (mg/L · h) | Fu | References |
---|---|---|---|---|---|---|---|
Amikacin | 25–30 mg/kg q 24 h | 0.5 | 15.80 ± 3.50 | 5.87 ± 0.98 | [33] | ||
Aztreonam | 2 g q 6 h | 2 | 0.14 ± 0.04 (L/kg) | 4.41 ± 0.63 | 0.40 | [34] | |
3 | |||||||
Cefepime | 1 g q 8 h | 0.5 | 0.28 ± 0.25 (L/kg) | 7.00 ± 4.30 | 0.80 | [35] | |
2 g q 12 h | 3 | ||||||
Ceftazidime | 1 g q 8 h | 0.5 | 15.75 ± 1.50 | 6.96 ± 1.08 | 0.90 | [36] | |
3 | |||||||
Ceftazidime/ avibactam | 2/0.5 g q 8 h | 2 | 18.70 ± 1.65 | 7.53 ± 1.28 | 0.90 | [24,37] | |
25.30 ± 4.43 | 12.30 ± 1.96 | 0.92 | |||||
Ceftolozane/ tazobactam | 1/0.5 g q 8 h 2/1 g q 8 h | 1 | 13.50 ± 2,83 | 4.76 ± 1.13 | 0.79 | [38,39,40] | |
18.20 ± 4.55 | 20.51 ± 4.40 | 0.70 | |||||
Ciprofloxacin | 400 mg q 12 h | 1 | 20.80 ± 5.70 | [41] | |||
Colistin | 150 mg q 12 h | 0.5 | 2.92 ± 0.10 | [42] | |||
Imipenem | 500 mg q 6 h | 1 | 16.50 ± 3.75 | 10.50 ± 1.38 | 0.90 | [43] | |
2 | |||||||
Meropenem | 1 g q 8 h | 0.5 | 20.25 ± 3.00 | 14.40 ± 1.80 | 0.92 | [43] | |
3 | |||||||
Piperacillin/ tazobactam | 4/0.5 g q 8 h | 0.5 | 11.25 ± 1.50 | 10.22 ± 2.12 | 0.70 | [43] | |
4 | |||||||
Tobramycin | 6–7 mg/kg q 24 h | 0.5 | 20.50 ± 11.40 | 5.19 ± 0.91 | [44,45] |
Susceptibility (%) | ||||||
---|---|---|---|---|---|---|
ICU | Medical Ward Patients | |||||
Antimicrobial Agent and Dosing Regimen | Total | Respiratory | Non-Respiratory | Total | Respiratory | Non-Respiratory |
Amikacin | 91 ** | 93 ** | 90 ** | 92 ** | 96 ** | 97 ** |
Aztreonam | 70 | 64 | 77 | 87 | 87 | 87 |
Cefepime | 67 | 69 | 65 | 80 | 72 | 82 |
Ceftazidime | 64 | 67 | 60 | 81 | 79 | 83 |
Ceftazidime/avibactam | 85 | 87 | 83 | 95 ** | 96 ** | 95 ** |
Ceftolozane/ tazobactam | 81 | 87 | 73 | 96 ** | 95 ** | 96 ** |
Ciprofloxacin | 52 | 46 | 60 | 62 | 55 | 65 |
Colistin | 95 ** | 96 ** | 94 ** | 95 ** | 96 ** | 94 ** |
Imipenem | 55 | 57 | 52 | 75 | 72 | 75 |
Meropenem | 71 | 73 | 69 | 80 | 87 | 87 |
Piperacillin/ tazobactam | 57 | 57 | 58 | 75 | 73 | 76 |
Tobramycin | 74 | 75 | 73 | 84 | 84 | 85 |
Antimicrobial Agent | PK/PD Target | References |
---|---|---|
Amikacin | Cmax/MIC > 10 | [49] |
Aztreonam | %ƒT>MIC > 60 | [18] |
Cefepime | %ƒT>MIC > 70 | [50] |
Ceftazidime | %ƒT>MIC > 70 | [12] |
Ceftazidime/ avibactam | %ƒT>MIC > 50% %ƒT > 1 mg/L > 50% | [23] |
Ceftolozane/ tazobactam | %ƒT>MIC > 60% %ƒT > 1 mg/L > 20% | [25,26] |
Ciprofloxacin | fAUC24h/MIC > 125 | [51] |
Colistin | fAUC24h/MIC > 25–35 | [52] |
Imipenem | %ƒT>MIC > 40 | [12] |
Meropenem | %ƒT>MIC > 40 | [51] |
Piperacillin/tazobactam | %ƒT>MIC > 50 | [41] |
Tobramycin | Cmax/MIC > 10 | [36] |
Time-dependent antimicrobials Continuous infusion | Css > 4 × MIC | [48] |
Antimicrobial | PK/PD Index | PK/PD Index Magnitude | References | |
---|---|---|---|---|
Total Drug | Free Drug | |||
Cefepime | Cmin/MIC | ≥ 3.8 | [53] | |
Ceftazidime | %ƒT>MIC | ≥ 100 | [54] | |
Ceftazidime/avibactam | %ƒT>MIC | ≥ 87 | [55] | |
Ceftolozane/tazobactam | %ƒT>MIC | ≥ 80 | [56] | |
Piperacillin/tazobactam | Cmin/MIC | ≥ 5 | [57] | |
Meropenem | Cmin/MIC | ≥ 3.8 | [53] | |
Imipenem | AUC24/MIC | = 140 | [58] | |
Ciprofloxacin | fAUC24/MIC | ≥ 385 | [59] |
Antimicrobial Agent and Dosing Regimen | CFR (%) | |||||
---|---|---|---|---|---|---|
ICU | Medical Ward Patients | |||||
Amikacin | Total | Respiratory | Non-Respiratory | Total | Respiratory | Non-Respiratory |
25 mg/kg q 24 h | 71 (68–74) | 77 (75–79) | 63 (60–66) | 92 (91–94) ** | 88 (86–90) * | 94 (93–96) ** |
30 mg/kg q 24 h | 72 (69–75) | 81 (78–84) | 67 (64–70) | 92 (91–94) ** | 90 (88–92) ** | 95 (94–97) ** |
Aztreonam | ||||||
2 g q 6 h (2 h inf.) | 65 (62–69) | 62 (59–65) | 70 (67–73) | 86 (83–87) * | 85 (83–87) * | 87 (84–89) * |
2 g q 6 h (3 h inf.) | 69 (66–71) | 66 (64–70) | 71 (68–74) | 86 (84–88) * | 85 (83–87) * | 87 (85–89) * |
Cefepime | ||||||
1 g q 8 h (0.5 h inf.) | 57 (54–60) | 51 (48–54) | 53 (50–57) | |||
2 g q 12 h (0.5 h inf.) | 48 (45–51) | 45 (42–48) | 46 (43–49) | |||
2 g q 8 h (0.5 h inf.) | 68 (71–61) | 67 (64–69) | 65 (62–68) | |||
1 g q 8 h (3 h inf.) | 63 (59–66) | 59 (56–62) | 65 (62–68) | |||
2 g q 12 h (3 h inf.) | 53 (49–55) | 53 (51–55) | 55 (53–59) | |||
2 g q 8 h (3 h inf.) | 77(75–80) | 76 (73–78) | 73 (70–75) | |||
Ceftazidime | ||||||
1 g q 4 h (0.5 h inf.) | 80 (78–83) * | 83(81–86) * | 78 (75–81) | |||
1 g q 8 h (0.5 h inf.) | 68 (65–70) | 63 (60–66) | 64 (60–66) | |||
2 g q 8 h (0.5 h inf.) | 76 (74–79) | 76 (73–79) | 72 (69–75) | |||
1 g q 4 h (3 h inf.) | 85 (82–87) * | 85 (83–87) | 81 (78–83) * | |||
1 g q 8 h (3 h inf.) | 73 (71–76) | 75 (72–77) | 74 (72–77) | |||
2 g q 8 h (3 h inf.) | 79 (76–82) | 81 (79–83) * | 77 (74–80) | |||
Ceftazidime/avibactam | ||||||
2/0.5 g q 8 h (2 h inf.) | 95 (94–97) ** | 98 (97–99) ** | 93 (92–95) ** | 97 (96–98) ** | 98 (97–98) ** | 97 (96–99) ** |
Ceftolozane/tazobactam | ||||||
1/0.5 g q 8 h (1 h inf.) | 84 (81–86) * | 85 (82–87) * | 81 (78–83) * | 95 (94–96) ** | 92 (91–94) ** | 96 (95–98) ** |
2/1 g q 8 h (1 h inf.) | 86 (84–88) * | 92 (91–94) ** | 83 (81–86) * | 96 (95–97) ** | 95 (94–96) ** | 97 (95–98) ** |
Ciprofloxacin | ||||||
400 mg q 12 h | 53 (50–57) | 43 (40–47) | 58 (55–61) | |||
400 mg q 8 h | 54 (51–57) | 48 (45–50) | 59 (56–63) | |||
Colistin | ||||||
150 mg q 12 h | 89 (86–90) * | 88 (86–90) * | 88 (87–90) * | 95 (94–96) ** | 95 (94–97) ** | 94 (93–95) ** |
Imipenem | ||||||
500 mg q 6 h (1 h inf.) | 75 (72–78) | 75 (73–77) | 78 (76–80) | |||
1 g q 6 h (1 h inf.) | 77 (74–79) | 83 (81–85) * | 77 (75–80) | |||
500 mg q 6 h (2 h inf.) | 77 (75–80) | 75 (73–78) | 78 (75–80) | |||
1 g q 6 h (2 h inf.) | 81 (79–84) * | 83 (81–85) * | 76 (73–79) | |||
Meropenem | ||||||
1 g q 8 h (0.5 h inf.) | 79 (77–82) | 80 (77–82) * | 80 (78–84) * | |||
2 g q 8 h (0.5 h inf.) | 77 (74–80) | 79 (77–82) | 73 (71–76) | |||
1 g q 8 h (3 h inf.) | 84 (81–86) * | 82 (80–84) * | 83 (81–86) * | |||
2 g q 8 h (3 h inf.) | 82 (79–84) * | 86 (84–88) * | 77 (75–80) | |||
Piperacillin/tazobactam | ||||||
4/0.5 g q 8 h (0.5 h inf.) | 51 (48–54) | 50 (46–54) | 50 (47–53) | |||
4/0.5 g q 6 h (0.5 h inf.) | 53 (49–56) | 52 (49–56) | 55 (52–59) | |||
4/0.5 g q 8 h (4 h inf.) | 79 (76–82) | 75 (73–78) | 76 (74–79) | |||
4/0.5 g q 6 h (4 h inf.) | 64 (61–67) | 67 (64–70) | 68 (64–70) | |||
Tobramycin | ||||||
6 mg/kg q 24 h | 72 (69–75) | 72 (69–75) | 71 (68–75) | 81 (79–84) * | 80 (78–83) * | 81 (79–83) * |
7 mg/kg q 24 h | 70 (67–73) | 71 (69–74) | 72 (69–75) | 82 (79–84) * | 82 (79–84) * | 83 (81–85) * |
CFR (%) | ||
---|---|---|
Antimicrobial Agent and Dosing Regimen | ICU | Medical Ward Patients |
Cefepime | ||
1 g q 8 h (0.5 h inf.) | 20 (18–23) | |
2 g q 12 h (0.5 h inf.) | 14 (12–16) | |
2 g q 8 h (0.5 h inf.) | 10 (9–12) | |
1 g q 8 h (3 h inf.) | 19 (17–22) | |
2 g q 12 h (3 h inf.) | 16 (14–19) | |
2 g q 8 h (3 h inf.) | 19 (17–21) | |
Ceftazidime | ||
1 g q 4 h (0.5 h inf.) | 78 (76–81) | |
1 g q 8 h (0.5 h inf.) | 26 (23–29) | |
2 g q 8 h (0.5 h inf.) | 65 (62–68) | |
1 g q 4 h (3 h inf.) | 81 (79–84) * | |
1 g q 8 h (3 h inf.) | 51 (48–54) | |
2 g q 8 h (3 h inf.) | 69 (66–72) | |
Ceftazidime/avibactam | ||
2/0.5 g q 8 h (2 h inf.) | 89 (87–91) * | 91 (90–93) ** |
Ceftolozane/tazobactam | ||
1/0.5 g q 8 h (1 h inf.) | 77 (75–80) | 96 (95–97) ** |
2/1 g q 8 h (1 h inf.) | 86 (84–88) * | 97 (97–98) ** |
Ciprofloxacin | ||
400 mg q 12 h | 0 (0–0) | |
400 mg q 8 h | 36 (33–39) | |
Imipenem | ||
500 mg q 6 h | 0 (0–0) | |
1 g q 6 h | 42 (39–45) | |
Meropenem | ||
1 g q 8 h (0.5 h inf.) | 0 (0–0) | |
2 g q 8 h (0.5 h inf.) | 5 (4–7) | |
1 g q 8 h (3 h inf.) | 1 (0–2) | |
2 g q 8 h (3 h inf.) | 15 (13–18) | |
Piperacillin/tazobactam | ||
4/0.5 g q 8 h (0.5 h inf.) | 0 (0–0) | |
4/0.5 g q 6 h (0.5 h inf.) | 2 (1–3) | |
4/0.5 g q 8 h (4 h inf.) | 0 (0–0) | |
4/0.5 g q 6 h (4 h inf.) | 8 (7–10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valero, A.; Rodríguez-Gascón, A.; Isla, A.; Barrasa, H.; del Barrio-Tofiño, E.; Oliver, A.; Canut, A.; Solinís, M.Á. Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis. Pharmaceutics 2021, 13, 1899. https://doi.org/10.3390/pharmaceutics13111899
Valero A, Rodríguez-Gascón A, Isla A, Barrasa H, del Barrio-Tofiño E, Oliver A, Canut A, Solinís MÁ. Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis. Pharmaceutics. 2021; 13(11):1899. https://doi.org/10.3390/pharmaceutics13111899
Chicago/Turabian StyleValero, Ana, Alicia Rodríguez-Gascón, Arantxa Isla, Helena Barrasa, Ester del Barrio-Tofiño, Antonio Oliver, Andrés Canut, and María Ángeles Solinís. 2021. "Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis" Pharmaceutics 13, no. 11: 1899. https://doi.org/10.3390/pharmaceutics13111899
APA StyleValero, A., Rodríguez-Gascón, A., Isla, A., Barrasa, H., del Barrio-Tofiño, E., Oliver, A., Canut, A., & Solinís, M. Á. (2021). Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis. Pharmaceutics, 13(11), 1899. https://doi.org/10.3390/pharmaceutics13111899