Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Microspheres
2.2. Microspheres Characterization
2.2.1. Production Yield
2.2.2. Mean Particle Size, Particle Size Distribution, and Morphology of Microspheres
2.2.3. Polymer Integrity
2.2.4. Drug Quantification by HPLC
2.2.5. Encapsulation Efficiency of Dexamethasone-Loaded Microspheres (Dx-MS)
2.2.6. In Vitro Release Studies
2.2.7. Analysis of Drug Release Mechanism
2.3. Sterilization of Microspheres
2.4. In Vivo Studies
2.5. Statistical Analysis
3. Results
3.1. Microsphere Preparation and Characterization
3.2. Sterilization of Dx PLGA Microspheres
3.3. In Vivo Evaluation
3.4. Histological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fricke, T.R.; Tahhan, N.; Resnikoff, S.; Papas, E.; Burnett, A.; Ho, S.M.; Naduvilath, T.; Naidoo, K.S. Global Prevalence of Presbyopia and Vision Impairment from Uncorrected Presbyopia: Systematic Review, Meta-analysis, and Modelling. Ophthalmology 2018, 125, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.R.A.; Flaxman, S.R.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; Leasher, J.; Limburg, H.; et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e888–e897. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Osuna, I.; Andrés-Guerrero, V.; Abal, P.P.; Molina-Martinez, I.T.; Herrero-Vanrell, R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv. Transl. Res. 2016, 6, 686–707. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Vanrell, R.; De La Torre, M.V.; Andrés-Guerrero, V.; Barbosa-Alfaro, D.; Molina-Martínez, I.; Bravo-Osuna, I. Nano and microtechnologies for ophthalmic administration, an overview. J. Drug Deliv. Sci. Technol. 2013, 23, 75–102. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Figueiras, A.; Veiga, F. Improvements in Topical Ocular Drug Delivery Systems: Hydrogels and Contact Lenses. J. Pharm. Pharm. Sci. 2015, 18, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Samy, K.E.; Bernards, D.A.; Desai, T.A. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov. Today 2019, 24, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Hickey, T.; Kreutzer, D.; Burgess, D.; Moussy, F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 2002, 23, 1649–1656. [Google Scholar] [CrossRef]
- Short, B.G. Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations. Toxicol. Pathol. 2008, 36, 49–62. [Google Scholar] [CrossRef]
- Chang-Lin, J.-E.; Burke, J.A.; Peng, Q.; Lin, T.; Orilla, W.C.; Ghosn, C.R.; Zhang, K.-M.; Kuppermann, B.D.; Robinson, M.R.; Whitcup, S.M.; et al. Pharmacokinetics of a Sustained-Release Dexamethasone Intravitreal Implant in Vitrectomized and Nonvitrectomized Eyes. Investig. Opthalmol. Vis. Sci. 2011, 52, 4605–4609. [Google Scholar] [CrossRef] [Green Version]
- Kuppermann, B.D.; Blumenkranz, M.S.; Haller, J.A.; Williams, G.A.; Weinberg, D.V.; Chou, C.; Whitcup, S.M. Randomized Controlled Study of an Intravitreous Dexamethasone Drug Delivery System in Patients With Persistent Macular Edema. Arch. Ophthalmol. 2007, 125, 309–317. [Google Scholar] [CrossRef]
- Haller, J.A.; Kuppermann, B.D.; Blumenkranz, M.S.; Williams, G.A.; Weinberg, D.V.; Chou, C.; Whitcup, S.M. Randomized Controlled Trial of an Intravitreous Dexamethasone Drug Delivery System in Patients With Diabetic Macular Edema. Arch. Ophthalmol. 2010, 128, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Haller, J.A.; Bandello, F.; Belfort, R.; Blumenkranz, M.S.; Gillies, M.; Heier, J.; Loewenstein, A.; Yoon, Y.-H.; Jacques, M.-L.; Jiao, J.; et al. Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Macular Edema Due to Retinal Vein Occlusion. Ophthalmology 2010, 117, 1134–1146. [Google Scholar] [CrossRef]
- Hsu, J. Drug delivery methods for posterior segment disease. Curr. Opin. Ophthalmol. 2007, 18, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Silva-Cunha, A.; Fialho, S.L.; Naud, M.-C.; Behar-Cohen, F. Poly-epsilon-caprolactone intravitreous devices: An in vivo study. Invest Ophthalmol. Vis. Sci. 2009, 50, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Vanrell, R.; Refojo, M.F. Biodegradable microspheres for vitreoretinal drug delivery. Adv. Drug Deliv. Rev. 2001, 52, 5–16. [Google Scholar] [CrossRef]
- Jager, R.D.; Aiello, L.P.; Patel, S.C.; Cunningham, E.T. Risks of Intravitreous Injection: A Comprehensive Review. Retina 2004, 24, 676–698. [Google Scholar] [CrossRef] [PubMed]
- Fung, A.T.; Tran, T.; Lim, L.L.; Samarawickrama, C.; Arnold, J.; Gillies, M.; Catt, C.; Mitchell, L.; Symons, A.; Buttery, R.; et al. Local delivery of corticosteroids in clinical ophthalmology: A review. Clin. Exp. Ophthalmol. 2020, 48, 366–401. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Hao, J.; Li, S.K. Characterization of Human Sclera Barrier Properties for Transscleral Delivery of Bevacizumab and Ranibizumab. J. Pharm. Sci. 2013, 102, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Guise, P. Sub-Tenon’s anesthesia: An update. Local Reg. Anesth. 2012, 5, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Yang, Y.; Huang, X.; Lin, D. Preliminary study of a controllable device for subtenon drug infusion in a rabbit model. Acta Ophthalmol. 2017, 95, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Geroski, D.H.; Edelhauser, H.F. Drug delivery for posterior segment eye disease. Investig. Ophthalmol. Vis. Sci. 2000, 41, 961–964. [Google Scholar]
- Huang, X.; Liu, S.; Yang, Y.; Duan, Y.; Lin, D. Controllable continuous sub-tenon drug delivery of dexamethasone disodium phosphate to ocular posterior segment in rabbit. Drug Deliv. 2017, 24, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Duan, Y.; Zhao, L.; Liu, S.; Qin, D.; Zhang, F.; Lin, D. Dexamethasone pharmacokinetics characteristics via sub-tenon microfluidic system in uveitis rabbits. J. Drug Deliv. Sci. Technol. 2020, 57, 101639. [Google Scholar] [CrossRef]
- Paganelli, F.; Cardillo, J.A.; Melo, L.A.S.; Lucena, D.R.; Silva, A.A.; De Oliveira, A.G.; Höfling-Lima, A.L.; Nguyen, Q.D.; Kuppermann, B.D.; Belfort, R. A Single Intraoperative Sub-Tenon’s Capsule Injection of Triamcinolone and Ciprofloxacin in a Controlled-Release System for Cataract Surgery. Investig. Opthalmol. Vis. Sci. 2009, 50, 3041–3047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, K.; Misra, M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother. 2018, 107, 1564–1582. [Google Scholar] [CrossRef]
- Friess, W.; Schlapp, M. Sterilization of gentamicin containing collagen/PLGA microparticle composites. Eur. J. Pharm. Biopharm. 2006, 63, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Puthli, S.; Vavia, P. Formulation and Performance Characterization of Radio-Sterilized “Progestin-Only” Microparticles Intended for Contraception. AAPS PharmSciTech 2009, 10, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Faisant, N.; Siepmann, J.; Richard, J.; Benoit, J. Mathematical modeling of drug release from bioerodible microparticles: Effect of gamma-irradiation. Eur. J. Pharm. Biopharm. 2003, 56, 271–279. [Google Scholar] [CrossRef]
- Mohr, D.; Wolff, M.; Kissel, T. Gamma irradiation for terminal sterilization of 17beta-estradiol loaded poly-(D,L-lactide-co-glycolide) microparticles. J. Control. Release 1999, 61, 203–217. [Google Scholar] [CrossRef]
- Martínez-Sancho, C.; Herrero-Vanrell, R.; Negro, S. Study of gamma-irradiation effects on aciclovir poly(d,l-lactic-co-glycolic) acid microspheres for intravitreal administration. J. Control. Release 2004, 99, 41–52. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Von Meerwall, E.; Peppas, N.A. Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. J. Polym. Sci. Part B Polym. Phys. 1986, 24, 409–434. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Lustig, S.R.; Peppas, N.A. Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling. J. Polym. Sci. Part B Polym. Phys. 1986, 24, 395–408. [Google Scholar] [CrossRef]
- Hellen, J.; Baker, R. Theory and Practice of Controlled Drug Delivery from Bioerodible Polymers; Controlled Release of Bioactive Materials; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Herrero-Vanrell, R.; Ramirez, L. Biodegradable PLGA Microspheres Loaded with Ganciclovir for Intraocular Administration. Encapsulation Technique, in Vitro Release Profiles, and Sterilization Process. Pharm. Res. 2000, 17, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Schwach, G.; Oudry, N.; Delhomme, S.; Lück, M.; Lindner, H.; Gurny, R. Biodegradable microparticles for sustained release of a new GnRH antagonist--part I: Screening commercial PLGA and formulation technologies. Eur. J. Pharm. Biopharm. 2003, 56, 327–336. [Google Scholar] [CrossRef]
- Yip, E.Y.; Wang, J.; Wang, C.-H. Sustained release system for highly water-soluble radiosensitizer drug etanidazole: Irradiation and degradation studies. Biomaterials 2003, 24, 1977–1987. [Google Scholar] [CrossRef]
- Peppas, N.A. 1. Commentary on an exponential model for the analysis of drug delivery: Original research article: A simple equation for description of solute release: I II. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, 1987. J. Control. Release Off. J. Control. Release Soc. 2014, 190, 31–32. [Google Scholar]
- Saishin, Y.; Takahashi, K.; Melia, M.; Vinores, S.A.; Campochiaro, P.A. Inhibition of protein kinase C decreases prostaglandin-induced breakdown of the blood-retinal barrier. J. Cell Physiol. 2003, 195, 210–219. [Google Scholar] [CrossRef]
- Andrés-Guerrero, V.; Zong, M.; Ramsay, E.; Rojas, B.; Sarkhel, S.; Gallego, B.; De Hoz, R.; Ramírez, A.I.; Salazar, J.J.; Triviño, A.; et al. Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology. J. Control. Release 2015, 211, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ballesteros, M.; Andrés-Guerrero, V.; Parra, F.; Marinich, J.; De-las-Heras, B.; Molina-Martínez, I.T.; Vazquez, B.; San Román, F.; Herrero-Vanrell, R. HEMA/Bayfit-MA nanoparticles improve the hypotensive effect of acetazolamide in rabbit eyes. In Proceedings of the International Forum on Advances in Pharmaceutical Technology, Santiago de Compostela, Spain, 5 November 2015. [Google Scholar]
- Herrero-Vanrell, R.; Bravo-Osuna, I.; Andrés-Guerrero, V.; Vicario-De-La-Torre, M.; Molina-Martínez, I.T. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog. Retin. Eye Res. 2014, 42, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.; Kim, S.-W.; Castro, V.; Stingl, K.; Strasser, T.; Bolz, S.; Schraermeyer, U.; Mihov, G.; Zong, M.; Andres-Guerrero, V.; et al. Evaluation of polyesteramide (PEA) and polyester (PLGA) microspheres as intravitreal drug delivery systems in albino rats. Biomaterials 2017, 124, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Faisant, N.; Akiki, J.; Richard, J.; Benoit, J.P. Effect of the size of biodegradable microparticles on drug release: Experiment and theory. J. Control. Release 2004, 96, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Bittner, B.; Mäder, K.; Kroll, C.; Borchert, H.H.; Kissel, T. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: Influence of gamma-irradiation on radical formation and polymer degradation. J. Control. Release 1999, 59, 23–32. [Google Scholar] [CrossRef]
- Fialho, S.; Rêgo, M.B.; Siqueira, R.C.; Jorge, R.; Haddad, A.; Rodrigues, A.L.; Maia-Filho, A.; Silva-Cunha, A. Safety and Pharmacokinetics of an Intravitreal Biodegradable Implant of Dexamethasone Acetate in Rabbit Eyes. Curr. Eye Res. 2006, 31, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Amrite, A.C.; Ayalasomayajula, S.P.; Cheruvu, N.P.S.; Kompella, U.B. Single Periocular Injection of Celecoxib-PLGA Microparticles Inhibits Diabetes-Induced Elevations in Retinal PGE2, VEGF, and Vascular Leakage. Investig. Opthalmol. Vis. Sci. 2006, 47, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuppermann, B.D.; Herrero-Vanrell, R.; Cardillo, J.A. Clinical applications of the sustained-release dexamethasone implant for treatment of macular edema. Clin. Ophthalmol. 2011, 5, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dujaili, L.J.; Clerkin, P.P.; Clement, C.; E McFerrin, H.; Bhattacharjee, P.S.; Varnell, E.D.; E Kaufman, H.; Hill, J.M. Ocular herpes simplex virus: How are latency, reactivation, recurrent disease and therapy interrelated? Futur. Microbiol. 2011, 6, 877–907. [Google Scholar] [CrossRef] [Green Version]
- Herschler, J. Increased Intraocular Pressure Induced by Repository Corticosteroids. Am. J. Ophthalmol. 1976, 82, 90–93. [Google Scholar] [CrossRef]
- Mohan, R.; Muralidharan, A.R. Steroid induced glaucoma and cataract. Indian J. Ophthalmol. 1989, 37, 13–16. [Google Scholar] [PubMed]
- Ayalasomayajula, S.; Kompella, U.B. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur. J. Pharmacol. 2005, 511, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Veloso, A.A.; Zhu, Q.; Herrero-Vanrell, R.; Refojo, M.F. Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Investig. Ophthalmol. Vis. Sci. 1997, 38, 665–675. [Google Scholar]
- Visscher, G.E.; Robison, R.L.; Maulding, H.V.; Fong, J.W.; Pearson, J.E.; Argentieri, G.J. Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J. Biomed. Mater. Res. 1985, 19, 349–365. [Google Scholar] [CrossRef] [PubMed]
Anterior Pole Evaluation [23] | ||
---|---|---|
Conjunctival congestion | 0 | Normal, blanched to reddish pink conjunctiva |
1 to 3 | From reddish color confined to the palpebral conjunctiva to dark red color of both palpebral and bulbar conjunctiva | |
Conjunctival swelling | 0 | Normal, no swelling |
1 to 4 | From swelling above normal without eversion of the lids to swelling with pronounced eversion of the lids | |
Conjunctival discharge | 0 | Normal, no discharge |
1 to 3 | From discharge above normal and restricted to the inner portion of the eye to discharge flowing over the eyelids | |
Aqueous flare | 0 | Absence of visible light beam in the anterior chamber |
1 to 3 | From Tyndall effect barely discernible to Tyndall beam easily discernible | |
Light reflex | 0 | Normal pupillary response |
1 or 2 | From sluggish to fixed pupillary response | |
Iris involvement | 0 | Normal iris without hyperemia |
1 to 4 | From minimal injection of secondary vessels to marked injection of secondary and tertiary vessels with marked swelling of the iris stroma | |
Cornea | 0 | Normal |
1 to 4 | From some loss of transparency to marked loss of transparency of the entire thickness of the corneal stroma | |
Surface of cornea cloudiness | 0 | Normal |
1 to 4 | From 1–25% to 76–100% area of stromal cloudiness | |
Pannus | 0 | Absence |
1 or 2 | From vascularization without vessels invading the cornea to vessels invading 2 mm or more of the cornea | |
Fluorescein staining | 0 | Absence |
1 to 4 | From slight and confined to a small focus to extreme fluorescein staining | |
Lens | Normal/abnormal | |
Posterior Pole Evaluation | ||
Vitreous opacity | Yes/No | |
Vascular congestion | Yes/No | |
Vitreous and/or retinal hemorrhage | Yes/No | |
Retinal detachment | Yes/No |
Formulation | HS (rpm) | Y (%) | Size Distribution (%) | ||||
---|---|---|---|---|---|---|---|
>106 µm | 106–53 µm | 53–38 µm | 38–20 µm | 20–2 µm | |||
1 | 5500 | 59.4 ± 1.4 | 9.8 ± 2.8 | 48.1 ± 2.2 | 16.9 ± 0.8 | 16.8 ± 0.2 | 8.4 ± 0.6 |
2 | 8500 | 60.4 ± 3.0 | - | 19.5 ± 5.2 | 32.0 ± 1.3 | 32.7 ± 2.9 | 15.8 ± 1.1 |
3 | 9500 | 60.2 ± 2.8 | - | 18.1 ± 1.7 | 28.8 ± 2.6 | 33.3 ± 1.2 | 19.8 ± 3.7 |
4 | 10,500 | 59.9 ± 1.2 | - | 16.0 ± 3.7 | 26.7 ± 0.6 | 34.1 ± 2.3 | 23.3 ± 1.1 |
Formulation | µg Dx/mg MS | EE (%) | ||
---|---|---|---|---|
53–38 µm | 38–20 µm | 53–38 µm | 38–20 µm | |
1 | 154.3 ± 4.7 | 131.1 ± 4.7 | 92.5 ± 3.0 | 78.6 ± 2.7 |
2 | 161.4 ± 2.5 | 150.1 ± 4.9 | 86.7 ± 1.4 | 89.9 ± 2.9 |
3 | 164.0 ± 6.0 | 162.7 ± 7.2 | 98.1 ± 3.6 | 97.3 ± 4.3 |
4 | 172.0 ± 0.9 | 146.7 ± 1.8 | 103.2 ± 0.4 | 94.0 ± 1.1 |
Drug Release | Korsmeyer-Peppas Model | Heller and Baker Model | ||||
---|---|---|---|---|---|---|
Phase | r2 | n (CL) | Phase | r2 | Kc (days−1) | |
Dx-MS | 1 | 0.987 | 0.51 (0.46–0.56) | 1 | 0.977 | 0.16 |
2 | 0.995 | 2.79 (2.66–2.91) | 2 | 0.991 | 0.34 | |
Dx-MS, 25 kGy | 1 | 0.993 | 0.46 (0.41–0.51) | 1 | 0.995 | 0.30 |
2 | 0.996 | 2.06 (1.96–2.16) |
Sign | Prescreen | 1 day | 7 days | 14 days | 28 days | 42 days | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RE | LE | RE | LE | RE | LE | RE | LE | RE | LE | RE | LE | |
Conjunctival congestion | 1/20 | 2/20 | 5/20 | 19/20 * | 0/15 | 7/15 ** | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Conjunctival discharge | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Conjunctival swelling | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Aqueous flare | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Light reflex | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Iris involvement | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Surface of cornea cloudiness | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Pannus | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Fluorescein staining | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Lens | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Vitreous opacity | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Vascular congestion | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Vitreous and retinal hemorrhage | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Retinal detachment | 0/20 | 0/20 | 0/20 | 0/20 | 0/15 | 0/15 | 0/11 | 0/11 | 0/7 | 0/7 | 0/6 | 0/6 |
Eyes Evaluated | Inflammation at the Injection Site | Presence of Foreign Body Giant Cell Reaction | Presence of Microparticles Residues |
---|---|---|---|
Rabbit 1 and 2 RE (control) | − (Absent) | − (Absent) | − (Absent) |
Rabbit 1 LE (Dx-MS) | − (Absent) | − (Absent) | − (Absent) No significant residues; occasional foamy macrophages |
Rabbit 2 LE (Dx-MS) | − (Absent) | − (Absent) | +/− (focal) Scattered occasional residues; single foamy macrophage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa-Alfaro, D.; Andrés-Guerrero, V.; Fernandez-Bueno, I.; García-Gutiérrez, M.T.; Gil-Alegre, E.; Molina-Martínez, I.T.; Pastor-Jimeno, J.C.; Herrero-Vanrell, R.; Bravo-Osuna, I. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies. Pharmaceutics 2021, 13, 228. https://doi.org/10.3390/pharmaceutics13020228
Barbosa-Alfaro D, Andrés-Guerrero V, Fernandez-Bueno I, García-Gutiérrez MT, Gil-Alegre E, Molina-Martínez IT, Pastor-Jimeno JC, Herrero-Vanrell R, Bravo-Osuna I. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies. Pharmaceutics. 2021; 13(2):228. https://doi.org/10.3390/pharmaceutics13020228
Chicago/Turabian StyleBarbosa-Alfaro, Deyanira, Vanessa Andrés-Guerrero, Ivan Fernandez-Bueno, María Teresa García-Gutiérrez, Esther Gil-Alegre, Irene Teresa Molina-Martínez, José Carlos Pastor-Jimeno, Rocío Herrero-Vanrell, and Irene Bravo-Osuna. 2021. "Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies" Pharmaceutics 13, no. 2: 228. https://doi.org/10.3390/pharmaceutics13020228
APA StyleBarbosa-Alfaro, D., Andrés-Guerrero, V., Fernandez-Bueno, I., García-Gutiérrez, M. T., Gil-Alegre, E., Molina-Martínez, I. T., Pastor-Jimeno, J. C., Herrero-Vanrell, R., & Bravo-Osuna, I. (2021). Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies. Pharmaceutics, 13(2), 228. https://doi.org/10.3390/pharmaceutics13020228