Ballodiolic Acid A and B: Two New ROS, (•OH), (ONOO−) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth.
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation of compounds
2.4. Ballodiolic Acid A (1)
2.5. Ballodiolic Acid B (2)
2.6. Ballodiolic Acid (3)
2.7. Ballotenic Acid (4)
2.8. β-amyrin (5)
2.9. Alkaline Hydrolysis of Compounds 1 and 2
2.10. Evaluation of Antioxidative Activity
2.10.1. Measurement of Total ROS Generation Inhibition
2.10.2. Measurement of Hydroxyl Radical Generation inhibition
2.10.3. Measurement of ONOO− Scavenging Activity
2.11. Antimicrobial Screening of Compounds 1–5
2.11.1. Stock Solution Preparation
2.11.2. Anti-Bacterial Assay
2.11.3. Anti-Fungal Assay
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability
Acknowledgments
Conflicts of Interest
References
- Bohme, G.A.; Bon, C.; Lemaire, M.; Reibaud, M.; Piot, O.; Stutzmann, J.M.; Doble, A.; Blanchard, J.C. Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc. Natl. Acad. Sci. USA 1993, 90, 9191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, J.S.; Ye, Y.Z.; Anderson, P.J.; Chen, J.; Accavitti, M.A.; Tarpey, M.M.; White, C.R. Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species. Biol. Chem. Hoppe. Seyler. 1994, 375, 81. [Google Scholar]
- Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet 1993, 342, 1007. [Google Scholar] [CrossRef]
- Hunt, E.J.; Lester, C.E.; Lester, P.A.; Tackett, R.L. Effect of St. John’s wort on free radical production. Life Sci. 2001, 69, 181. [Google Scholar] [CrossRef]
- Osman, A.K. Trichome micromorphology of Egyptian Ballota (Lamiaceae) with emphasis on its systematic implication. Pak. J. Bot. 2012, 44, 33. [Google Scholar]
- Nasir, E.; Ali, S.I. Flora of West Pakistan; Fakhri Printing Press: Karachi, Pakistan, 1972; p. 627. [Google Scholar]
- Dulger, B.; Sener, A. Evaluation of antimicrobial activity of Ballota accetabulosa. Afr. J. Microbiol. Res. 2010, 4, 1235. [Google Scholar]
- Yilmaz, B.S.; Altanlar, N.; Citoglu, G.S. Antilisterial activity of Ballota species growing in Turkey. J. Fac. Pharm. 2006, 34, 155. [Google Scholar]
- Savona, G.; Piozzi, F.; Hanson, J.R.; Siverns, M. Structure of three new diterpenoids from Ballota Species. J. Chem. Soc. Perkin Trans. 1977, 1, 322. [Google Scholar] [CrossRef]
- Savona, G.; Piozzi, F.; Hanson, J.R. 13-Hydroxyballonigrinolide, a new diterpenoid from Ballota lanata. Phytochemistry 1978, 17, 213. [Google Scholar] [CrossRef]
- Savona, G.; Piozzi, F.; Marino, M. Rupestralic acid, a new diterpene lactone. Heterocycles 1977, 7, 161. [Google Scholar]
- Bruno, M.; Bondi, M.L.; Piozzi, F.; Arnold, N.A.; Simmonds, M.S. Occurrence of 18-hydroxyballonigrin in Ballota saxatilis ssp.saxatilis from Lebanon. Biochem. Syst. Ecol. 2001, 29, 429. [Google Scholar] [CrossRef]
- Douglas, E.A.; Davies-Coleman, M.T. Transformation of hispanolone from Ballota africana into 15, 16-epoxy-9-hydroxylabda-13(16), 14-diene. South. Afr. J. Chem. 1990, 43, 117. [Google Scholar]
- Savona, G.; Piozzi, F.; Hanson, J.R.; Siverns, M. Structure of ballotinone, a diterpenoid from Ballota nigra. J. Chem. Soc. Perkin Trans. 1976, 1, 1607. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Kupaii, M.; Zdero, M.H. Furanolabdanes and related compounds from Ballota aucheri. Phytochemistry 1991, 31, 344. [Google Scholar] [CrossRef]
- Çitoğlu, G.S.; Sever, B.; Antus, S.; Baitz-Gacs, E.; Altanlar, N. Antifungal activities of flavonoids from Ballota glandulosissima. 2003. Pharmarceutical Biol. 2003, 4, 483. [Google Scholar] [CrossRef] [Green Version]
- Kisiel, W.; Piozzi, F. Tangeretin from Ballota nigra. Pol. J. Chem. 1995, 69, 476. [Google Scholar]
- Ferreres, F.; Tomas-Barberan, F.A.; Tomas-Lorente, F. Lorente Flavonoid compounds from Ballota hirsuta. J. Nat. Prod. 1986, 49, 654. [Google Scholar] [CrossRef]
- Seidel, V.; Bailleul, F.; Libot, F.; Tillequin, F. A phenylpropanoid glycoside from Ballota nigra. Phytochemistry 1997, 44, 691. [Google Scholar] [CrossRef]
- Ullah, N.; Ahmad, I.; Ahmad, N. In vitro antimicrobial, antiprotozoal activities and heavy metals toxicity of different parts of Ballota pseudodictamnus (L.) Benth. Pak. J. Pharm. Sci. 2017, 30, 2203–2209. [Google Scholar]
- Saeed, M.A.; Sabir, A. Irritant potential of some constituents from seed of Caesalpinia bouducella. J. Asian Nat. Prod. Res. 2003, 5, 35. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Farooq, U.; Hussain, J.; Ullah, F.; Nawaz, S.A.; Choudhary, M.I. Two new diterpenoids from Ballota limbate. Chem. Pharm. Bull. 2004, 52, 441. [Google Scholar] [CrossRef] [Green Version]
- Label, C.P.; Bondy, S.C. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. Int. 1990, 17, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of xanthine oxidase by flavonoids. Biosci. Biotechnol. Biochem. 1999, 63, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Kooy, N.W.; Royall, J.A.; Ischiropoulos, H.; Beckman, J.S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 1994, 16, 149–156. [Google Scholar] [CrossRef]
- Hood, J.R.; Wilkinson, J.M.; Cavanagh, H.M. Evaluation of common antibacterial screening method utilized in essential oil research. J. Essent. Oil Res. 2003, 15, 428. [Google Scholar] [CrossRef]
- Mahesh, B.; Satish, S. Antimicrobial activity of some important medicinal plant against Plants and Human pathogens. J. Agric. Sci. 2008, 4, 839. [Google Scholar]
- Ono, M.; Ito, Y.; Kubo, S.; Nohara, T. Two new iridoids from Vitcis trifoliae Fructus (fruit of Vitex rotundifolia L.). Chem. Pharm. Bull. 1997, 45, 1094. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Cross, R.F.; Palombo, E.A. Identification of antimicrobial component of an ethanolic extract of Australian medicinal plant. Eremophila duttonii. Phytother. Res. 2004, 18, 615–618. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules 2017, 22, 608. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, J.; Li, D.; Shang, C.; Peng, L.; Pan, S. The structure-antifungal activity relationship of 5, 7-dihydroxyflavonoids against Penicillium Italicum. Food Chem. 2017, 224, 26–31. [Google Scholar] [CrossRef]
- Citoğlu, G.S.; Coban, T.; Sever, B.; İşcan, M. Antioxidant properties of Ballota species growing in Turkey. J. Ethnopharmacol. 2004, 92, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Couladis, M.; Tzakou, O.; Verykokidou, E.; Harvala, C. Screening of some Greek aromatic plants for antioxidant activity. Phytother. Res. 2003, 17, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Couladis, M.; Chinou, I.B.; Tzakou, O.; Loukis, A. Composition and antimicrobial activity of the essential oil of Ballota pseudodictamnus L. Bentham. Phytother. Res. 2002, 16, 723–726. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, X.; Xiao, J.; Zhong, Q.; Kuang, Y.; Cao, Y.; Chen, Y. Effects on longevity extension and mechanism of action of carnosic acid in Caenorhabditis elegans. Food Funct. 2019, 10, 1398–1410. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I.; Halliwell, B.; Aeschbach, R.; Loligers, J. Antioxidant and pro-oxidant properties of active rosemary constituents: Carnosol and carnosic acid. Xenobiotica 1992, 22, 257–268. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, X.; Su, Z.; Xiao, J.; Lv, M.; Cao, Y.; Chen, Y. Carnosol improved lifespan and healthspan by promoting antioxidant capacity in Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2019, 2019, 5958043. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtic, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant. Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnunni, M.; Wolleb, U.; Mueller, O.; Pfeifer, A.; Aeschbacher, H.U. Natural antioxidants as inhibitors of oxygen species induced mutagenicity. Mutat. Res. 1992, 269, 193–200. [Google Scholar] [CrossRef]
- Del Bano, M.J.; Castillo, J.; Benavente-Garcia, O.; Lorente, J.; Martin-Gil, R.; Acevedo, C.; Alcaraz, M. Radioprotective-antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays. J. Agric. Food Chem. 2006, 54, 2064–2068. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Morris-Natschke, S.L.; Lee, K.H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 2016, 33, 1166–1226. [Google Scholar] [CrossRef] [Green Version]
- Kannaste, A.; Laanisto, L.; Pazouki, L.; Copolovici, L.; Suhorutsenko, M.; Azeem, M.; Toom, L.; Borg-Karlson, A.K.; Niinemets, U. Diterpenoid fingerprints in pine foliage across an environmental and chemotypic matrix: Isoabienol content is a key trait differentiating chemotypes. Phytochemistry 2018, 147, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Fahim, F.A.; Esmat, A.Y.; Fadel, H.M.; Hassan, K.F. Allied studies on the effect of Rosmarinus officinalis L. on experimental hepatotoxicity and mutagenesis. Int. J. Food Sci. Nutr. 1999, 50, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Mabkhot, Y.; Badshah, S.L. Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules 2019, 24, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndjoubi, K.O.; Sharma, R.; Badmus, J.A.; Jacobs, A.; Jordaan, A.; Marnewick, J.; Warner, D.F.; Hussein, A.A. Antimycobacterial, cytotoxic, and antioxidant activities of abietane diterpenoids isolated from Plectranthus madagascariensis. Plants 2021, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- González-Cofrade, L.; Oramas-Royo, S.; Cuadrado, I.; Amesty, Á.; Hortelano, S.; Estevez-Braun, A.; de Las Heras, B. Dehydrohispanolone derivatives attenuate the inflammatory response through the modulation of inflammasome activation. J. Nat. Prod. 2020, 83, 2155–2164. [Google Scholar] [CrossRef]
- Núñez, S.; San-Martín, A.; Corsini, G. Antimicrobial activities of diterpenoids and aemisynthetic derivatives from Azorella compacta. J. Chil. Chem. Soc. 2018, 63, 4. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.A.; Houghton, P.; Hylands, P.J. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry 2007, 68, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, C.E.; Garcia, C.; Pereira, F.; Mota, J.; Pereira, P.; Cebola, M.J.; Reis, C.P.; Correia, I.; Piedade, M.F.; da Piedade, M.E.M.; et al. Characterization of the antimicrobial abietane 7α-Acetoxy-6β-hydroxyroyleanone. Mol. Pharm. 2018, 15, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Proshkina, E.; Plyusnin, S.; Babak, T.; Lashmanova, E.; Maganova, F.; Koval, L.; Platonova, E.; Shaposhnikov, M.; Moskalev, A. Terpenoids as potential geroprotectors. Antioxidants 2020, 9, 529. [Google Scholar] [CrossRef] [PubMed]
Position | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δ(1H) | δ(13C) | δ (1H) | δ(13C) | δ(1H) | δ(13C)[M1] | |
1 | 0.79–0.88 (m) | 17.9 | 0.81–0.90 (m) | 17.6 | 0.80–0.89 (m) | 17.5 |
2 | 2.17–2.37 (m) | 27.7 | 2.15–2.33 (m) | 27.5 | 2.14–2.34 (m) | 27.4 |
3 | 6.82 (br s) | 141.0 | 6.81 (br s) | 140.8 | 6.79 (br s) | 140.0 |
4 | - | 141.9 | - | 141.5 | - | 141.3 |
5 | - | 37.2 | - | 37.4 | - | 37.5 |
6 | 2.39–2.40 (m) | 35.3 | 2.35–2.38 (m) | 35.5 | 2.35–2.38 (m) | 35.5 |
7 | 1.38–1.50 (m) | 27.5 | 1.36–1.47 (m) | 27.3 | 1.38–1.49 (m) | 27.2 |
8 | 1.44 (m) | 36.4 | 1.45 (m) | 36.3 | 1.46 (m) | 36.1 |
9 | - | 38.5 | - | 38.4 | - | 38.6 |
10 | 1.38 (d, 10.3) | 46.8 | 1.35 (d, 10.3) | 46.6 | 1.36 (d, 10.3) | 46.6 |
11 | 1.35–1.45 (m) | 35.5 | 1.37–1.43 (m) | 35.7 | 1.36–1.44 (m) | 35.8 |
12 | 1.63–1.68 (m) | 24.8 | 1.62–1.70 (m) | 24.7 | 1.61–1.69 (m) | 24.9 |
13 | 1.55 (m) | 39.9 | 1.56 (m) | 39.5 | 1.58 (m) | 39.8 |
14 | 1.20–1.27 (m) | 29.9 | 1.22–1.28 (m) | 29.6 | 1.23–1.29 (m) | 29.7 |
15 | 3.69–4.1 (m) | 62.7 | 3.67–4.1 (m) | 62.3 | 3.65–4.0 (m) | 66.3 |
16 | 3.75–3.79 (m) | 61.8 | 3.73–3.78 (m) | 61.5 | 3.70–3.77 (m) | 61.1 |
17 | 0.77 (d, 5.1) | 16.3 | 0.78 (d, 5.3) | 16.1 | 0.76 (d, 5.3) | 15.9 |
18 | - | 172.7 | - | 172.5 | - | 172.0 |
19 | 1.23 (s) | 20.6 | 1.24 (s) | 20.4 | 1.21 (s) | 20.5 |
20 | 0.73 (s) | 18.7 | 0.71 (s) | 18.5 | 0.70 (s) | 18.4 |
1′ | - | 166.3 | - | 165.9 | - | - |
2′ | 6.47 (d, 16.3) | 117.0 | 6.45 (d, 16.2) | 117.3 | - | - |
3′ | 7.55 (d, 16.3) | 144.7 | 7.55 (d, 16.2) | 144.9 | - | - |
4′ | - | 125.9 | - | 126.4 | - | - |
5′ | 7.40 (d, 8.1) | 130.2 | 7.15 (d, 2.3) | 112.9 | - | - |
6′ | 6.87 (d, 8.1) | 116.0 | - | 148.2 | - | - |
7′ | - | 159.3 | - | 150.3 | - | - |
8′ | 6.87 (d, 8.1) | 116.0 | 6.75 (d, 8.1) | 116.0 | - | - |
9′ | 7.40 (d, 8.1) | 130.2 | 7.07 (dd, 8.1, 2.3) | 124.1 | - | - |
Sample | Solvent Fractions | IC50 [µg/mL] a | ||
---|---|---|---|---|
•OH b | Total ROS c | ONOO− d | ||
n-hexane | 79.17 ± 0.05 | >300 | 80.37 ± 0.03 | |
Root | CHCl3 | 47.28 ± 0.07 | 80.19 ± 0.03 | 41.23 ± 0.07 |
EtOAc | 19.10 ± 0.05 | 65.13 ± 0.05 | 20.18 ± 0.05 | |
n-BuOH | 31.51 ± 0.03 | 90.41 ± 0.06 | 61.16 ± 0.04 | |
H2O | 97.37 ± 0.05 | >400 | 89.12 ± 0.05 | |
Stem | n-hexane | 83.41 ± 0.03 | >400 | 78.25 ± 0.05 |
CHCl3 | 55.13 ± 0.05 | 87.21 ± 0.01 | 50.47 ± 0.06 | |
EtOAc | 29.15 ± 0.06 | 75.09 ± 0.05 | 26.07 ± 0.03 | |
n-BuOH | 40.09 ± 0.01 | 99.34 ± 0.03 | 60.49 ± 0.05 | |
H2O | 91.12 ± 0.05 | >400 | 87.17 ± 0.06 | |
Leaves | n-hexane | 77.39 ± 0.06 | >400 | 85.13 ± 0.07 |
CHCl3 | 59.25 ± 0.03 | 89.45 ± 0.06 | 52.26 ± 0.05 | |
EtOAc | 31.15 ± 0.05 | 73.27 ± 0.03 | 30.18 ± 0.01 | |
n-BuOH | 45.20 ± 0.01 | 99.19 ± 0.05 | 67.38 ± 0.07 | |
Trolox e | 6.30 ± 0.03 | 40.05 ±0.07 | - | |
DL-Penicillamine f | - | - | 2.07 ± 0.09 |
Compound | IC50[µM] a | ||
•OH b | Total ROS c | ONOO− d | |
1 | 09.15 ± 0.07 | 64.09 ± 0.02 | 8.16 ± 0.01 |
2 | 07.22 ± 0.03 | 58.10 ± 0.07 | 6.23 ± 0.04 |
3 | 12.17 ± 0.04 | 69.15 ± 0.08 | 10.27 ± 0.02 |
4 | 19.08 ± 0.05 | 87.91 ± 0.04 | 21.13 ± 0.09 |
5 | 34.10 ± 0.07 | 148.55 ± 0.05 | 69.01 ± 0.05 |
Trolox e | 2.51 ±0.03 | 35.06 ± 0.07 | - |
DL-Penicillamine f | - | - | 1.09 ± 0.07 |
Name of Bacterial Strain | Zone of Inhibition (mm) | |||||
---|---|---|---|---|---|---|
Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Standard Drug Levofloxacin | |
E. coli | 11 ± 0.01 | 12 ± 0.03 | 10 ± 0.01 | 8 ± 0.09 | 7 ± 0.02 | 16 ± 0.01 |
P. aeruginosa | 8 ± 0.02 | 9 ± 0.02 | 7 ± 0.08 | 5 ± 0.06 | 0 ± 0.01 | 19 ± 0.02 |
S. typhi | 13 ± 0.09 | 11 ± 0.04 | 9 ± 0.06 | 2 ± 0.04 | 6 ± 0.06 | 24 ± 0.03 |
B. subtilis | 5 ± 0.053 | 7 ± 0.02 | 4 ± 0.03 | 2 ± 0.05 | 3 ± 0.04 | 22 ± 0.02 |
S. aureus | 7 ± 0.02 | 9 ± 0.01 | 6 ± 0.01 | 3 ± 0.02 | 5 ± 0.03 | 20 ± 0.01 |
Name of Fungal Strain | Zone of Inhibition (%) | |||||
---|---|---|---|---|---|---|
Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Standard Drug Miconazole | |
A. flavus | 45% | 47% | 35% | 22% | 25% | 100% |
F. solani | 30% | 34% | 27% | 9% | 15% | 100% |
A. fumigatus | 33% | 39% | 30% | 11% | 17% | 100% |
A. nigar | 21% | 25% | 17% | 15% | 11% | 100% |
C. glabrata | 25% | 29% | 22% | 17% | 7% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fozia; Shaheen, A.; Ahmad, I.; Amin, S.B.; Ahmad, N.; Ullah, R.; Bari, A.; Sohaib, M.; Hafiz Majid, M.; Alobaid, A. Ballodiolic Acid A and B: Two New ROS, (•OH), (ONOO−) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth. Pharmaceutics 2021, 13, 402. https://doi.org/10.3390/pharmaceutics13030402
Fozia, Shaheen A, Ahmad I, Amin SB, Ahmad N, Ullah R, Bari A, Sohaib M, Hafiz Majid M, Alobaid A. Ballodiolic Acid A and B: Two New ROS, (•OH), (ONOO−) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth. Pharmaceutics. 2021; 13(3):402. https://doi.org/10.3390/pharmaceutics13030402
Chicago/Turabian StyleFozia, Asmat Shaheen, Ijaz Ahmad, Syed Badar Amin, Nisar Ahmad, Riaz Ullah, Ahmed Bari, Muhammad Sohaib, Mahmood Hafiz Majid, and Abdulrahman Alobaid. 2021. "Ballodiolic Acid A and B: Two New ROS, (•OH), (ONOO−) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth." Pharmaceutics 13, no. 3: 402. https://doi.org/10.3390/pharmaceutics13030402
APA StyleFozia, Shaheen, A., Ahmad, I., Amin, S. B., Ahmad, N., Ullah, R., Bari, A., Sohaib, M., Hafiz Majid, M., & Alobaid, A. (2021). Ballodiolic Acid A and B: Two New ROS, (•OH), (ONOO−) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth. Pharmaceutics, 13(3), 402. https://doi.org/10.3390/pharmaceutics13030402