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Supplementary Material S1. Preclinical PK and PD Data 
A detailed overview of the performed preclinical PK and PD study is reported else-

where [1]. Briefly, female outbred RjOrl:Swiss (CD-1) and inbred Balb/cJRj mice (6–8 
weeks old; body weight: ∼25 g (Janvier Labs, Saint Berthevin, France)) were infected in-
tranasally with 1–4 × 106 CFU S. pneumoniae serotype 1 (clinical isolate E1586, MICAMX 0.016 
mg/L) to cause pneumonia. The mouse model is a robust model of pneumococcal invasive 
diseases [2–4] and has been used extensively to investigate the antibiotic treatments and 
the stimulation of the innate immunity by TLR4 agonists [5]. Using inbred and outbred 
mice also allowed to differ between cohorts being characterized as genetically identical or 
heterogenous that can be studied in exploratory studies or as representation of variations 
within a population like humans. The individually assessed and afterwards pooled stud-
ies being in line with European regulations and ethical guidelines (Animal facility agree-
ment C59-350009, Institut Pasteur de Lille, APAFIS#5164, protocol 2015121722429127_v4) 
comprised of PK (AMX concentrations in serum) and PD (bacterial numbers in lung and 
spleen, survival) investigations differentiating between various study groups (no treat-
ment, monotherapy of either AMX (4 doses in total) or MPLA, combination therapy of 
AMX and MPLA): 12 h post infection, mice were either not treated or administered intra-
peritoneally with a standard dose (2.0 mg/kg) of MPLA from S. minnesota R595 (Re) 
TLRpureTM (Innaxon, Tewkesbury, UK), intragastrically by oral gavage with different 
doses of AMX (Sigma-Aldrich, St. Louis, MO, USA; PK study: 0.4, 14 mg/kg; PD study: 
0.2, 0.4, 1.2 mg/kg) or a combination of both drugs (with AMX: PK study: 0.4, 14 mg/kg; 
PD study: 0.2, 0.4, 1.2 mg/kg). The respective doses were selected based on pre-investiga-
tions by Casilag at el. [1] to enable an appropriate immune system stimulation and ade-
quate antibiotic effect in mice. To reliably quantify AMX with concentrations above the 
lower limit of quantification (LLOQ) in the PK experiments, a comparably high dose of 
14.0 mg/kg AMX was selected. 

To determine AMX concentrations, serum was collected by retroorbital bleeding 
with 1–2 samples per individual mouse from in total 106 RjOrl:Swiss mice up to 12 h after 
antibiotic administration (0.167, 0.5, 1, 2, 3, 6, 12 h). Per time point and study group, 3–4 
serum samples were obtained from 3 to 4 individual mice. In the PD study altogether 634 
RjOrl:Swiss and Balb/cJRj mice were investigated: At predefined time points after infec-
tion and before and after treatment (–12, –8, –4, 0, 1, 2, 6, 12, 18, 24, 36 h), mice were sacri-
ficed, respective organs were harvested and homogenized in 1 mL phosphate buffered 
saline and viable CFU per lung and spleen, respectively, were determined using standard 
droplet plate assays with appropriate dilution steps [1]. Depending on the study group, a 
varying number of time points were investigated per study group (maximum of 10 time 
points for untreated mice; minimum of one time point (12 h after treatment) for study 
groups treated with 0.2 mg/kg AMX) with at least 6 mice per time point and study group. 
To assess the survival of mice in the respective study groups, an additional study was 
performed to monitor mortality of 196 mice every 24 h over 14 d after infection. Further 
details of the established murine model and the preclinical study groups can be found in 
the report by Casilag et al. [1]. 
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Supplementary Material S2. Methods of the PK/PD Model Development and Evalua-
tion 
Pharmacometric Analysis 

All modelling and simulation tasks were performed using NONMEM® 7.4.1 (ICON 
Clinical Research LLC, Gaithersburg, MD, USA) which was executed by PsN (version 
4.7.0 [6]). As compiler, GFortran (version 6.3.0, GNU Compiler Collection) for macOS 
High Sierra (Apple Inc., Cupertino, CA, USA) was used. Additional software tools to rec-
ord, visualize, and evaluate the modelling results were Pirana (version 2.9.7 [7]) including 
XQuartz (version 2.7.11), RStudio (version 1.2.1335), and R (version 3.6.0) with packages 
xpose4 (version 4.6.1), ggplot2 (version 3.2.1), and vpc (version 1.1.0). For parameter esti-
mation, Laplacian estimation with interaction and due to stability reasons first-order esti-
mation were used for the pharmacometric PK/PD and TTE model, respectively. To handle 
samples with concentrations below the LLOQ, the so-called M3 method, which estimates 
the likelihood that the concentration is below the LLOQ, was used [8]. 

For comparison between nested or non-nested models, analysis of the objective func-
tion value (OFV) or Akaike Information Criterion (AIC) [9], respectively, was performed. 
A decrease of more than 3.84 (p ≤ 0.05 at α = 0.05, df = 1) of the OFV was defined as statis-
tically significant. In addition, model evaluation was performed by considering goodness-
of-fit (GOF) plots, simulation-based diagnostics (e.g., VPC), log-likelihood profiling (LLP) 
and bootstrap analysis [10]. For the VPC, 1000 simulations including interindividual var-
iability (IIV (PK data)) or unexplained variability (PK/PD data) based on the original da-
taset were performed resulting in a 90% prediction interval and a 90% confidence interval 
(CI) around the predicted percentiles (5tt, 50th, and 95th percentile). For final models, a 
nonparametric bootstrap analysis with 1000 bootstrap samples with replacement strati-
fied to the respective study groups was performed to determine the precision and accu-
racy (95% CI) of the bootstrap parameter estimates [11]. These were compared to the final 
model-predicted parameter estimates of the original dataset. 

Pharmacokinetic Submodel 
For AMX concentrations in serum, one-, two-, and three-compartment models after 

oral administration with linear and nonlinear absorption and elimination processes and 
with or without lag time were investigated. Potential covariates such as mouse type 
(RjOrl:Swiss, Balb/cJRj), MPLA coadministration (yes/no) and the dose of AMX (0.4 
mg/kg, 14 mg/kg) were investigated: Their influence on the model parameters clearance, 
volume of distribution, intercompartmental clearance or absorption rate constant as cate-
gorial (mouse type, MPLA coadministration) or continuous (AMX dose) covariate was 
evaluated. The influence of MPLA coadministration on certain model parameters was 
evaluated by allowing MPLA as binary covariate to change respective PK model param-
eters proportionally with the AMX dose: ܲ = ଵߠ + ଶߠ ∙  (1) ܧܱܵܦ

 

where θ1 is the typical model predicted value of a PK parameter P in mice that were not 
treated with MPLA and θ2 is a value for the influence altering θ1 in case of MPLA coad-
ministration and also depending on the dose of AMX (“DOSE”). Sampling twice per indi-
vidual mouse due to the developed highly sensitive and little sample volume requiring 
bioanalytical method, enabled estimation of IIV for the PK data. This source of variability 
was included for various parameters in an exponential stochastical submodel, assuming 
PK parameters to be lognormally distributed. The RUV characterising, e.g., experimental 
imprecision, e.g., in the bioanalytical method and blood sampling was investigated as ad-
ditive, proportional and combined RUV model. 
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Bacterial Disease Submodel 
To describe the growth of bacteria in untreated mice, a bacterial disease submodel 

was developed. Based on the visual time course of the bacterial data, the number of bac-
teria in the lung (Nbacteria, lung) was characterized by a time-delayed (klag) first-order growth 
rate constant (kg) describing the natural growth of the bacterial strain [12]. To also capture 
treatment-unrelated killing and natural death processes of bacteria, an additional first-
order rate constant (kkill,lung) term was introduced [13]: ݀ ܰ௧,௨݀ݐ = ݇ ∙ ቀ1 − ൫݁ିೌ௧൯ቁ ∙ ܰ௧,௨ − ݇,௨ ∙ ܰ௧,௨ (2) 

Additional implementations such as limiting bacterial growth to a maximum value 
or different models, e.g., bacterial killing as Emax model [12,13], introducing prebacterial 
compartments (i.e., bacteria which do not replicate yet) [13] or a simplification without 
klag, were investigated and evaluated for improvement in OFV or AIC. 

In the spleen, implementation of an analogous growth model as in lung was investi-
gated in detail by applying growth, kill, and death kinetics. The transit process of bacteria 
from lung to spleen was investigated by transit models being able to delay the transition 
from one to another comportment more physiologically than simple lag times. The first-
order transit rate constant (ktr) was computed by dividing the actual number of transit 
compartments (n) by the estimated mean transition time (MTT): ݇௧  =  ݊ + ܶܶܯ1  (3) 

To more specifically estimate the number of transit compartments, an advanced ap-
proach was utilized as proposed by Savic et al. [14] using the Stirling approximation. 

Effect Compartment Submodel 
To link the PK submodel to the time-delayed PD effect of AMX at target sites in lung 

and spleen, effect compartments were introduced [13,15,16]. Thus, by allowing the trans-
fer of AMX from serum to a lung or spleen compartment, a concentration-dependent time 
delay was introduced between the respective compartments and different in- and outflow 
kinetics (first-order, Michaelis Menten) were investigated. By, e.g., using first-order in- 
and outflow, the concentration in the effect compartment Ce was determined as follows: ݀ܥ݀ݐ = ݇ ∙ ௦௨ܥ − ݇ ∙   (4)ܥ

where ke0 is a first-order rate constant for the antibiotic transfer and Cserum and Ce the con-
centrations of AMX in serum and the effect compartment, respectively. 

Disease and Treatment Submodel 
The effect of AMX on certain bacterial disease parameters (kg, klag, kkill,lung) or as bac-

terial killing process was characterized by investigating different effect models in the lung 
and spleen compartment such as a simple linear, a power, an ordinary Emax or a sigmoidal 
Emax model: In comparison, the sigmoidal Emax model served as reference and the alterna-
tive models were evaluated for worsening in the model performance: ܧ(ܥ) = ∙ ௫ܧ ହுܥܧுܥ  ு (5)ܥ +

where E(Ce) is the drug effect of a defined effect compartment antibiotic concentration, 
Emax is the maximum effect, EC50 is the AMX concentration to achieve half-maximum ef-
fect, Ce is the apparent AMX concentration in either lung or spleen and H is the Hill factor 
[13]. 

Since no PK information for MPLA was collected and only one dose of MPLA was 
investigated, the influence of MPLA treatment was analyzed as binary covariate (yes/no) 
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and studied for its ability to increase the killing effect characterized by, e.g., kkill, lung (Equa-
tion (2)), mathematically implemented as proportionality factor. 

To characterize if MPLA had a significant effect on the efficacy of AMX, the potential 
of MPLA to modify the effect of AMX was investigated, e.g., by implementing an influ-
ence on the maximum effect Emax or the concentration of AMX to achieve half of the max-
imum effect EC50 according to the General Pharmacodynamic interaction model proposed 
by Wicha et al. [17] as fractional change of respective effect parameters. Determined 95% 
CI of the estimated change parameter were evaluated, where the inclusion of 1 in the 95% 
CI indicated no significant change. 

RUV was estimated and implemented additively on a logarithmic scale. For the 
pooled studies, implementation of IIV was impossible due to the fact that only one sample 
was collected for quantification of bacteria per organ from each individual mouse. This 
setting did not allow to reliably estimate more than one hierarchical level of variability 
simultaneously. 

Time-to-Event Analysis 
In order to investigate survival, a TTE analysis was performed based on reported 

survival of mice. Assuming a specific distribution that is able to describe the risk of ob-
serving an event, in this case death, at a specific time point a hazard function can be gen-
erated quantifying the risk of a mouse changing from alive to dead [18]. Of several existing 
parametrisations being used as hazard functions h(t), e.g., constant hazard distribution 
[19], Gompertz [19,20] and Weibull hazard distribution functions [19,21,22], log-logistic 
function [23], log-normal function [23,24], or surge function [25], the surge function was 
chosen as the most suited dynamic risk descriptor for the survival data: ℎ(ݐ) = ݐ)ܣܵ − ܲܶ)ଶܹܵଶ ൨ + 1 (6) 

where SA is the surge amplitude, PT is the peak time, SW is the surge width at half-max-
imum intensity, and γ is a shape parameter of the peak. 

Variability in the hazard can be explained by potential covariates allowing differen-
tiation between the study groups. Given the hazard function h(t), the survival function 
S(t) indicating the probability of being alive until a certain study time t can be derived. 
The same baseline hazard was assumed for all individuals, as only one observation per 
individual mouse existed due to the nature of the study and no IIV could thus be esti-
mated. Potential covariates were included exponentially as change in hazard on overall 
survival to generate a link between the PK/PD model and the TTE model [18,26,27]: ℎ௩(ݐ) = ℎ(ݐ) ∙ ݁ఉభ௫భାఉమ௫మା..ାఉ௫ (7) 

where βi (i=1, …, n) are coefficients characterising the extent of potential covariate effects 
of different covariate values xi (i=1, …, n). As PK predictors, mono- or combination ther-
apy, the dose of AMX, Cmax of AMX, the area under the concentration-time curve 
(AUCAMX) of AMX, or the actual AMX concentration at a certain time t (C(t)) and respec-
tive combinations of single covariates were investigated. PD predictors included bacterial 
numbers at 12 h or 36 h in lung or in spleen (Clung, time, Cspleen, time), as well as the area under 
the bacterial number-time curve in lung or spleen (AUClung, AUCspleen) or the actual bacte-
rial number at time t (CFU(t)). In addition, PK/PD parameters as T>MIC, T>EC50, the AUCAMX 
divided by the MIC (AUCAMX/MIC) or Cmax divided by the MIC (Cmax/MIC) were evalu-
ated. 
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Supplementary Material S3. Results of the PK/PD Model 
Pharmacokinetic Submodel 

A two-compartment model for serum concentrations of AMX (Figure S1), parame-
terized in terms of clearance (CLAMX = 124 mL/h), intercompartmental flow (Q = 71.9 
mL/h), volume of distribution of the central (Vc = 15.4 mL), and peripheral (Vp = 50.7 mL) 
compartment with first-order absorption kinetics (ka = 5.04 h–1) including a lag time (tlag = 
0.125 h) as well as first-order elimination kinetics best described the data. Parameter esti-
mates for mice were plausible and are shown in Table S1. Investigation of other compart-
mental models or nonlinear absorption or elimination kinetics did not improve the model 
performance. Parameter estimates were estimated with acceptable RSEs (<25.5%) and a 
proportional RUV model (28.2% coefficient of variation). IIV was included on CLAMX 
(23.4% CV) and Q (25.7% CV). Prediction-corrected VPCs displayed a good predictive 
performance of the PK model over the entire investigated time period and also captured 
fractions of samples that were below the LLOQ (Figure S2) as well as model estimates 
were within the 95% CI of the bootstrap analysis (Table S1). Still, higher variability was 
observed at higher AMX concentrations between 0 and 0.5 h after treatment (Figure S2A). 

Bacterial Disease Submodel 
As described in Figure S1 (right), the final bacterial disease submodel consisted of a 

time-delay (klag = 0.0595 h–1), bacterial growth (kg = 0.477 h–1) and treatment-unrelated kill-
ing and natural death effects (kkill,lung = 0.274 h–1) in lung. The initial bacterial number of 
6.12 log10 CFU/lung in lung was precisely estimated and in the range with the intranasally 
administered number of S. pneumoniae (≈6 log10 CFU). Here, a simultaneous and at the 
same time reliable estimation of klag along with kg was challenging during the entire de-
velopment process of the PK/PD model with a higher uncertainty especially for klag 
(46.2%). However, given the underlying data of the bacterial growth submodel, simplifi-
cations or other implementations were not possible without neglecting important trends 
of initial killing or delayed growth in the data. Here, all parameters were essential to char-
acterize the bacterial growth kinetics sufficiently, and hence a higher uncertainty was ac-
cepted. 

The transit of bacteria from lung to spleen was best described by exactly estimating 
the number of transit compartments leading to a MTT of 42.0 h. Due to the marked delay 
in transition of bacteria determined in spleen about 3 h after treatment, a high number of 
compartments (n = 23) as well as the concomitant high MTT were plausible, especially 
considering the different barriers that bacteria had to overcome to transit from lung to 
spleen. In the spleen, the increase in bacterial numbers was only driven by the inflow from 
lung leading to accumulation of bacteria. The reliable estimation of bacterial growth as 
well as natural death and treatment-unrelated killing effects as a first-order killing rate 
constant kkill,spleen was not supported by the underlying data. Due to the setting of the study 
(e.g., study period of 48 h), bacteria reducing effects only occurred in presence of at least 
one drug. 

Effect Compartment Submodel 
Two separate effect compartments with first-order in- and outflow kinetics allowed 

a virtual transfer of AMX into lung (ke0, lung = 0.125 h–1) and spleen (ke0, spleen = 0.0435 h–1), 
ending up in a delayed increase and slower elimination compared to serum (t1/2,spleen = 15.9 
h; t1/2,lung = 5.54 h; t1/2,serum = 0.0861 h) with lower maximum concentrations (Figure S5). 
Hence, the antibiotic effect lasted over a longer time than AMX was actually above the 
MIC in serum. 
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Disease and Treatment Submodel 
The effect of AMX on S. pneumoniae in the lung was best characterized by a sigmoidal 

Emax model as drug-dependent bacterial killing process. The concentration-effect relation-
ship was steep indicated by the estimated high Hill factor, which was not quantifiable 
with high precision. Nevertheless, H was significantly higher than 1 as indicated by a LLP 
(95% confidence interval: 1.96–105) and was fixed to 20 to increase model stability [28]. 
Contrarily, a power model characterized by a first-order killing rate constant (kAMX) with 
a separate Hill factor representing the slope of the AMX effect compartment concentration 
and effect relationship in spleen was most stable and best captured killing effects in 
spleen. More complex implementations of the AMX effect in spleen, such as a sigmoidal 
Emax model, did not improve the model performance. Comparison of the AMX effect in 
lung and spleen did not only reveal that different mathematical implementations were 
better able to capture the effect of AMX in the respective compartments, but also the kill-
ing effect was substantially increased in spleen. In addition, no other killing effects were 
present within the structure of the PK/PD model in case of AMX monotherapy. Whereas 
in the lung, the effect of MPLA was implemented as its ability to enhance the efficacy of 
kkill,lung, in spleen the MPLA-related killing was estimated as a separate first-order killing 
rate constant and independent of natural death and treatment-unrelated killing effects. 
These were not able to be included in the spleen given manifold processes affecting the 
bacterial numbers in spleen. In case of combination therapy with MPLA neither the im-
plementation of MPLA as influence on the maximum effect of AMX (∆Emax, p = 0.944, df 
= 1, α = 0.05) nor on the potency of AMX (∆EC50, p = 0.272, df = 1, α = 0.05) revealed a 
significant change of the OFV in a LRT. In addition, the 95% CI of a LLP included param-
eter estimates of 1 for ∆Emax (∆Emax = 1.01; 95%CI 0.875–1.16) and ∆EC50 (∆EC50 = 0.772; 
95% CI 0.415–1.23), respectively, and no improvement in GOF plots was observed indi-
cating only additive effects. 

 
Figure S1. Measured and model-predicted amoxicillin (AMX) concentrations (n = 106 with 15.1% 
below the lower limit of quantification (LLOQ) of 0.01 µg/mL) of the nonlinear mixed-effects sub-
model for pharmacokinetic data with or without monophosphoryl lipid A (MPLA) coadministra-
tion at 0 h. Black triangles: Measurements of AMX monotherapy; Red circles: Measurements of 
combination therapy of AMX and MPLA; Lines: 50th percentile of model-predicted data after ad-
ministration of 0.4 mg/kg (dashed) or 14 mg/kg (solid) AMX; LLOQ (horizontal; dot dashed); Col-
ors: AMX monotherapy (black), combination therapy of AMX and MPLA (red). 
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Figure S2. Prediction-corrected visual predictive check (n = 1000 simulations with interindividual 
variability and unexplained variability) of the developed pharmacokinetic submodel for amoxicil-
lin concentrations (n = 106 with 15.1% below the lower limit of quantification (LLOQ) of 0.01 
µg/mL) in mouse serum with or without Monophosphoryl lipid A coadministration in a normal 
(A) and semi-logarithmic (B) representation and fraction of samples being below the LLOQ (C): 
Circles: Measurements; Lines: 50th percentile (solid), 5th, and 95th percentile (dashed) of meas-
ured (red) and simulated (black) amoxicillin concentrations and LLOQ (horizonal, dashed, grey); 
Shaded area: 90% confidence interval around simulated percentiles. 

 
Figure S3. Individual measured (Triangles: Amoxicillin monotherapy, circles: Combination therapy of amoxicillin and 
monophosphoryl lipid A) and model-predicted (line) bacterial numbers of Streptococcus pneumoniae serotype 1 in lung 
(left) and spleen (right) at 36 h after drug administration of mice treated with different doses of amoxicillin in monotherapy 
(black) and in a combined treatment with monophosphoryl lipid A (red). The lower limit of quantification is indicated as 
dashed line. 



Pharmaceutics 2021, 13, 469  8 of 10 
 

 

 
Figure S4. Model-predicted hazard (left) and cumulative hazard (right) in mice being infected with Streptococcus pneu-
moniae serotype 1 and being untreated (AMX-/MPLA-), treated with AMX without (AMX0.4/MPLA-, AMX1.2/MPLA-) or 
with (AMX0.4/MPLA+, AMX1.2/MPLA+) MPLA coadministration or treated with MPLA (AMX-/MPLA+) administered 
at 12 h after infection (i.e., t = 0 h in plot) from a time-to-event analysis using a surge function hazard model. Abbreviations: 
AMX: Amoxicillin (0.40 mg/kg or 1.20 mg/kg); MPLA: Monophosphoryl lipid A (2.00 mg/kg); +: Treatment with respective 
drug; -: No treatment with respective drug. 

 
Figure S5. Model-predicted AMX concentrations in the central compartment (black), and respec-
tive effect compartments in lung (dark grey) and spleen (light grey) over 36 h after treatment with 
Streptococcus pneumoniae serotype 1 in mice with drug administration at 0 h (dashed vertical line). 
Different study groups are displayed: Mice treated with AMX (AMX0.2/MPLA-, AMX0.4/MPLA-, 
AMX1.2/MPLA-) or in a combined treatment (AMX0.2/MPLA+, AMX0.4/MPLA+, 
AMX1.2/MPLA+) with MICAMX (dotted horizontal line (0.016µg/mL)). Abbreviations: AMX: Amox-
icillin (0.20 mg/kg, 0.40 mg/kg, or 1.20 mg/kg); MICAMX: Minimal inhibitory concentration of AMX; 
MPLA: Monophosphoryl lipid A (2.00 mg/kg); +: Treatment with respective drug; -: No treatment 
with respective drug. 
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Table S1. Model predicted parameter estimates including bootstrap results (convergence rate of 86.5%) of the pharmaco-
kinetic submodel of amoxicillin and monophosphoryl lipid A. 

Parameter Parameter Estimate Bootstrap 
[unit] Estimate (%RSE) Median 95% CI 

Structural Submodel 
ka [h–1] 5.04 * 5.04 * - 
tlag [h] 0.125 (10.0) 0.116 0.0400–0.156 

Vc/F [mL] 15.4 (25.5) 17.5 4.41–37.0 
Vp/F [mL] 50.7 (10.1) 50.4 38.3–60.6 

Q/F [mL/h] 71.9 (17.4) 66.2 33.3–132 
CLAMX/F [mL/h] 124 (5.90) 122 108–139 

FCAMX+MPLA [mL/h/µg] –0.145 (18.1) –0.138 –0.186 to (–0.0958) 
Interindividual Variability 

CL, %CV 23.4 (14.3) 21.7 14.9–28.4 
Q, %CV 25.7 (43.2) 39.2 8.60–87.1 

Residual Unexplained Variability 
Proportional, %CV 28.2 26.5 15.2–33.0 

Abbreviations: AMX: Amoxicillin; CI: Confidence interval; CLAMX: Clearance of AMX; CV: Coefficient of variation; F: Bio-
availability of AMX fixed to 1; FCAMX+MPLA: Fractional change of CLAMX in presence of MPLA depending on the AMX dose 
implemented as covariate; ka: First-order absorption rate constant; MPLA: Monophosphoryl lipid A; Q: Intercompart-
mental clearance; RSE: Relative standard error; tlag: Lag time; Vc: Central volume of distribution; Vp: Peripheral volume of 
distribution; *Fixed parameter estimate based on model development process (sensitivity analysis, log-likelihood profiling 
and bootstrap results) for stability reasons. 
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