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Abstract: Transmembrane transport of metformin is highly controlled by transporters including
organic cation transporters (OCTs), plasma membrane monoamine transporter (PMAT), and mul-
tidrug/toxin extrusions (MATEs). Hepatic OCT1, intestinal OCT3, renal OCT2 on tubule basolateral
membrane, and MATE1/2-K on tubule apical membrane coordinately work to control metformin
disposition. Drug–drug interactions (DDIs) of metformin occur when co-administrated with perpe-
trators via inhibiting OCTs or MATEs. We aimed to develop a whole-body physiologically based
pharmacokinetic (PBPK) model characterizing interplay of OCTs and MATEs in the intestine, liver,
and kidney to predict metformin DDIs with cimetidine, pyrimethamine, trimethoprim, ondansetron,
rabeprazole, and verapamil. Simulations showed that co-administration of perpetrators increased
plasma exposures to metformin, which were consistent with clinic observations. Sensitivity analysis
demonstrated that contributions of the tested factors to metformin DDI with cimetidine are gastroin-
testinal transit rate > inhibition of renal OCT2 ≈ inhibition of renal MATEs > inhibition of intestinal
OCT3 > intestinal pH > inhibition of hepatic OCT1. Individual contributions of transporters to
metformin disposition are renal OCT2 ≈ renal MATEs > intestinal OCT3 > hepatic OCT1 > intestinal
PMAT. In conclusion, DDIs of metformin with perpetrators are attributed to integrated effects of
inhibitions of these transporters.

Keywords: drug–drug interaction (DDI); metformin; organic cation transporters (OCTs); physiologi-
cally based pharmacokinetic model (PBPK); multidrug/toxin extrusions (MATEs); pharmacokinetics

1. Introduction

Metformin is widely used for the treatment of type 2 diabetes. Under physiolog-
ical pH, metformin is highly ionized, and its transmembrane transport is mainly me-
diated by transporters, which mainly include organic cation transporter 1–3 (OCT1-3),
multidrug/toxin extrusions (MATE1 and MATE2-K) and plasma membrane monoamine
transporter (PMAT) [1]. These transporters are distributed in different organs, such as the
intestine, liver, and kidney, indicating that disposition of metformin should be attributed
to the integrated effect of OCT1-3, MATEs and PMAT in intestine, liver and kidney. OCT1
and OCT2 are mainly expressed on basolateral membrane of enterocytes and show low
expression levels in the human enterocytes [2–4], inferring a limited role in intestinal
absorption of metformin. OCT3 shows a relatively higher expression level on the apical
membrane of human enterocytes [3,5]. Several mouse experiments also have demonstrated
that silencing OCT3 remarkably impairs intestinal absorption of metformin, whose bioavail-
ability was reported to significantly decreased by 30–53% of wild type mice [6,7]. A single
nucleotide polymorphism (SNP) rs12194182 (C > T) of SLC22A3 was reported to be linked
to lower mean HbA1c levels in Jordanian type 2 diabetic patients treated with metformin.
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The subjects with the CC genotype of rs12194182 exhibit the lowest mean HbA1c levels,
while patients with the CT and TT genotypes possess higher HbA1c levels [8]. The mean
reduction in HbA1c levels following 3-month metformin treatment is higher in Iranian
patients with the A allele of rs2292334 (G > A) than in those with the homozygous G
allele [9]. Pharmacokinetic analysis showed that Jordanian volunteers with a SLC22A3
rs8187722 variant have higher metformin Cmax and AUC values than the wild SLC22A3
volunteers. Similarly, volunteers with the heterozygote SLC22A3 rs2292334 variant also
have significantly higher metformin Cmax and AUC values than the wild-type SLC22A3
genotype [10]. These results demonstrate roles of intestinal OCT3 in intestinal absorption of
metformin. The absorbed metformin is principally eliminated as unchanged drug via urine.
Renal clearance of metformin is 510 mL/min, which is 4.3 folds of glomerular filtration
rate (120 mL/min) [11], indicating that renal clearance of metformin is mainly attributed
to active secretion via renal tubules. In kidney, metformin is mainly taken into tubule
epithelial cells by OCT2 expressed on the basolateral membrane of tubules, then is pumped
out of cells to urine via MATE1/2-K expressed on the apical membrane of tubules [1,12].
OCT1 expressed on the sinusoidal membrane of hepatocytes mediates hepatic uptake
of metformin [12]. MATE1 expressed on the canalicular membrane of hepatocytes may
mediate biliary secretion, but its biliary clearance is negligible.

Metformin is commonly co-administrated with other drugs. Potential drug-drug
interactions (DDIs) of metformin with inhibitors of these transporters have been demon-
strated when co-administrated with some drugs including cimetidine, pyrimethamine,
trimethoprim, dolutegravir, vandetanib, ondansetron, and rabeprazole [13–20]. These
perpetrators are inhibitors of OCTs [12,17–20]. Cimetidine, pyrimethamine, trimethoprim,
and ondansetron are also strong inhibitors of MATE transporters [12]. Cimetidine and
trimethoprim are also recommended as clinical inhibitors for MATEs by FDA [21]. Impor-
tantly, their inhibitions on MATEs are greatly stronger than those on OCTs. For example,
cimetidine Ki values for MATE1 and MATE2-K are about 188 and 76 times lower than
those for OCT2 inhibition, respectively. Similarly, pyrimethamine Ki values for MATE1
and MATE2-K are 55 and 81 folds lower than those for OCT2 inhibition, respectively.
Trimethoprim Ki values for MATE1 and MATE2-K are 52 and 391 folds lower than those for
OCT2 inhibition [12]. These results indicate that DDIs of metformin induced by cimetidine,
pyrimethamine, trimethoprim and ondansetron may be mainly attributed to inhibitions
of MATEs.

DDIs of metformin with perpetrators are of clinical concern as elevated plasma concen-
trations of metformin, which are often associated with an increased risk of lactic acidosis
(from Glucophage® label). It’s necessary to assess DDIs of metformin with perpetrators to
avoid serious clinical consequences. The physiologically based pharmacokinetic (PBPK)
model is considered to a powerful tool to explore and quantitatively predict the phar-
macokinetics of drugs and the magnitude of DDIs. It is widely applied at increasingly
early stages during drug development and is recommended by the US Food and Drug
Administration [22] and the European Medicines Agency [23] for the design of clinical
DDI trials and population pharmacokinetic studies. Several investigators have success-
fully developed PBPK model to illustrate transporter-mediated DDI of metformin with
cimetidine [24–26]. Several investigators have successfully developed a PBPK model to
illustrate transporter-mediated DDI of metformin with cimetidine [24–26]. However, these
studies have focused on transporter-mediated renal secretion without considering intesti-
nal absorption and hepatic disposition of metformin, which does not explain why some
drugs (such as verapamil, trimethoprim and rabeprazole) increase plasma exposure to met-
formin, but little affect or even attenuate antihyperglycemic activity of metformin [15,27].
Roles of intestinal OCT3 and PMAT in intestinal absorption of metformin have been
demonstrated [3,5–7,28,29]. Inhibition of intestinal OCTs by these perpetrators is also pos-
sibly attributed to low concentration of metformin following oral co-administration. Func-
tions of intestinal OCT3 are dependent on pH values. Moreover, the expressions of OCT3
protein and pH values in intestine are regional [30,31]. These indicate that the perpetrators
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(cimetidine and rabeprazole) may also induce DDI with metformin via affecting intestinal
pH values.

The aim of the study was to develop a whole-body PBPK model characterizing
interplay of OCTs and MATE1/2-K in intestine, liver and kidney to predict DDIs of
metformin with six perpetrators including cimetidine, pyrimethamine, trimethoprim,
ondansetron, rabeprazole and verapamil. The Michaelis–Menten (M-M) model was used to
illustrate non-linear intestinal absorption of metformin. The concentrations of metformin
in liver were simultaneously simulated. The predicted plasma concentration profiles, peak
concentration (Cmax) and area under curve (AUC) of metformin were compared with
clinic reports. Individual contributions of liver OCT1, intestinal OCT3 (as well as PMAT),
renal OCT2 and renal MATEs to metformin disposition and their integrated effects were
investigated, respectively. Gastrointestinal transit rate, intestinal pH values and Ki values
for OCT2, OCT3 and MATEs were selected for sensitivity analysis.

2. Materials and Methods
2.1. Collection of Data

DDIs of metformin with perpetrators were collected from publications on PubMed
based on the following criterions. (1) Data may come from healthy subjects following single
dose or multidose of metformin when co-administrated with perpetrators; (2) metformin
and perpetrators were orally administrated to healthy subjects in immediate release formu-
lation; (3) pharmacokinetic profiles or pharmacokinetic parameters such as Cmax and AUC
are shown; (4) DDI data may come from different reports; (5) perpetrators are inhibitors of
OCTs or MATEs, whose Ki or IC50 values for these transporters are shown.

Model parameters for illustrating pharmacokinetics of metformin and perpetrators
as well as DDIs of metformin with perpetrators used in the PBPK model were selected ac-
cording to following criterions. (1) The optimal parameters of metformin, cimetidine,
ondansetron, trimethoprim and verapamil used in the PBPK model were previously
reported [24–26,32–34]; (2) absorption parameter of metformin was derived from data
in Caco-2 cells; (3) the reported Ki values of some perpetrators often showed large varia-
tions. In order to fully investigate risks of DDIs, the smallest Ki values (strongest inhibition)
were selected. The selected model parameters are listed in Table 1.

Table 1. Pharmacokinetic parameters used for model simulation. Metformin (Met), cimetidine (Cim), pyrimethamine (Pyr),
trimethoprim (Tri), ondansetron (Ond), rabeprazole (Rab) and verapamil (Ver).

Parameter Unit Met Cim Pyr Tri Ond Rab Ver

fub
a 1 [25] 0.82 [24] 0.15 [35] 0.43 [32] 0.325 [33] 0.04 [36] 0.14 [37]

Rb 1 [25] 0.97 [24] 0.86 [38] 1.29 [39] 0.83 [33] 0.75 [36] 0.68 [37]
Peff cm/min 0.00311 [40] 0.012 [24] / / 0.012 [33] 0.0156 [34]
ka mL/min / / 0.062 [41] 0.0355 [32] 0.029 b [42] /

CLtotal mL/min / / 3.62 [43] / / /
CLint,met,h mL/min 110.57 [25] 188.3 [24] 27.29 [43] 52.4 [32] 1365.14 [33] 955.6 [44] 17883 [34]
CLint,OCT1 mL/min 63.95 [25] 200 [24] / / / /
CLint,OCT2 mL/min 256.45 [25] 539.8 [25] / / / /
CLint,MATE mL/min 299.8 [25] 532.2 [25] / / / /

CLrenal mL/min 132.9 132.9 0.47 [45] 77.86 [32] / /
Ki,OCT1 µM / 101 [12] 4.46 [12] 27.7 [12] 0.27 [46] 3.0 [47] 9.62 [46]
Ki,OCT2 µM / 2.97 [48] 0.61 [48] 19.8 [48] 0.89 [46] 5.7 [47] 3.24 [46]
Ki,OCT3 µM / 45.7 [49] >100 [48] 12.3 [48] 17.4 [49] 3.0 [47] 3.6 [46]
Ki,MATE µM / 0.65 [49] 0.02 [48] 0.51 [48] 0.01 [49] 4.60 [49] /

a fub and Rb is unbound fraction of drug in blood and blood/plasma ratio, respectively. Peff is effective permeability. CLtotal, CLint, and
CLrenal are total clearance, intrinsic clearance and renal clearance, respectively. Ki is inhibition constant. b ka of rabeprazole was simulated
based on the observed data from reference.
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2.2. Development of PBPK Model

A whole-body PBPK model involving interplay of OCTs and MATEs in intestine, liver
and kidney (Figure 1) was developed. The formulas for building the whole-body PBPK
model are shown as follows.
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filtration rate.

In the gastrointestinal tract:
The gut lumen and gut wall (enterocytes) are divided into duodenum, jejunum, ileum,

caecum and colon according to their physiological and anatomical characteristics. It is
assumed that absorption and metabolism of drug only occur in duodenum, jejunum and
ileum. M-M model is used to illustrate non-linear intestinal absorption of metformin.
Contribution of intestinal OCT3 and intestinal PMAT to apical to basolateral side of met-
formin were assumed to be 50% and 20% based on previous reports [6,7] and report [28],
respectively. The rested 30% is due to other transporters. Thus, the drug amount in stomach
(A0), drug amount in intestinal lumen (Ai, i = duodenum, jejunum and ileum), and in the
enterocytes (Agwi) are illustrated as follows.

dA0/dt = −Kt0 × A0 (1)

dAi/dt = Kti−1×Ai−1 − Kti×Ai − 30% × ka,i× Ai − PBSFi ×
(V max_OCT3 × Agwi/Vgwi/Kg:b)/

(
Km_OCT3 + Agwi/Vgwi/Kg:b

)
× Tsf,ex,i × Tsf,pH,i_OCT3 −

PBSFi × (V max_PMAT × Agwi/Vgwi/Kg:b)/(K m_PMAT + Agwi/Vgwi/Kg:b) × Tsf,pH,i_PMAT

(2)

dAgwi/dt = Qgwi × Aart/Vart + 30% × ka,i×Ai + PBSFi × (V max_OCT3× Agwi/Vgwi/Kg:b)

/
(

Km_OCT3+ Agwi/Vgwi/Kg:b

)
× Tsf,ex,i × Tsf,pH,i_OCT3

+PBSFi × Vmax_PMAT × Agwi/Vgwi/Kg:b

/
(

Km_PMAT+ Agwi/Vgwi/Kg:b

)
× Tsf,pH,i_PMAT − Qgwi × Agwi/Vgwi/Kg:b

(3)
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where Kt0 is constants of gastric emptying rate for stomach. Kti and ka,i are constants of
gastric emptying rate and drug absorption rate. Kg:b is ratio of drug concentration in gut
to blood. The ka,i values were cited from literatures or estimated using human intesti-
nal effective permeability from apical to basolateral side (Peff,man,A-B) through equation
ka,i = 2 × Peff,A−B/ri . ri values are intestinal radius of duodenum, jejunum and ileum,
which are 2.0, 1.63 and 1.45 cm [50], respectively. Qgwi and Vgwi are blood flow and volume
of the corresponding enterocytes, respectively. Aart and Vart are amount of drug in artery
blood and volume of artery blood, respectively. Vmax and Km are the maximum velocity
and Michaelis–Menten constant for metformin. The values of Km and Vmax for metformin
absorption by OCT3 and PMAT were reported to be 2.46 mM, 12.08 nmol/mg/min and
1.68 mM, 15.28 nmol/mg/min, respectively [51,52]. PBSFs are total amounts of intestinal S9
protein in duodenum, jejunum and ileum, which were calculated to be 2790.65, 14,465.81,
and 11,219.5 mg protein based on the previous reports [53,54]. The expression of intestinal
OCT3 is regional [31], thus, transporter-mediated parameters in the ith gut segment is
also corrected by a relative transporter scaling factor (Tsf,ex,i). The expressions of OCT3
in jejunum was assumed to be 1. According to previous report [31], the Tsf,ex,i values of
OCT3 in duodenum, jejunum and ileum were calculated to be 1.19:1:1.155. Function of
intestinal OCT3 is dependent on pH. According to a previous report [30], pH values in
duodenum, jejunum and ileum were set to be 5.5, 6.5 and 7.5, respectively. Based on reports
on cells [29,51], Tsf,pH,i was defined as relative values of OCT3 and PMAT function with
different pH. The estimated Tsf,pH,i values in duodenum, jejunum and ileum for OCT3 and
PMAT were 0.35, 0.74, 1 and 1, 0.48, 0.11, respectively.

In the presences of perpetrators, Vmax for OCT3 (VI
max) in the intestine, it is rewritten as:

VI
max= Vmax/

(
1 + AI

i/Vi/Ki, OCT3

)
(4)

where AI
i and Vi are amount of perpetrator in the ith intestine lumen and volume of the

ith intestinal lumen. Superscript “I” indicates perpetrators. The Vi values of duodenum,
jejunum and ileum were estimated to 314.2, 2170.19 and 2609.05 mL based on their length
and radius [50,55]. Ki, OCT3 is inhibition constant of perpetrator on OCT3.

For perpetrators in intestinal lumen and in the enterocytes

dAi/dt = Kti−1×Ai−1 − Kti×Ai − ka,i×Ai (5)

dAgwi/dt = Qgwi×Aart/Vart+ka,i×Ai − Qgwi × Agwi/Vgwi/Kg:b (6)

In the liver compartment:
For metformin and cimetidine, the liver compartment is divided into hepatic blood

and hepatocytes. Hepatic uptake of drugs is mainly controlled by OCT1.
In hepatic blood (Ah,b),

dAh,b/dt = (Q h × Aart)/Vart
+∑(Q gwi × Agwi

/Vgwi × Kg:b) + (Q sp × Asp)/(V sp × Ksp:b) −
(
(Qh+Qsp + ∑ Qgwi) × Ah,b

)
/Vh,b −

(
CLint,up,OCT1/

(
1 + (f I

ub × AI
h,b)/(V h,b×Ki,OCT1)

)
)× fub×Ah,b

/Vh,b + fub×CLint,pd×(A h,c/(Vh,c×Kh:b) − Ah,b/Vh,c)

(7)

In hepatocytes (Ah,c):

dAh,c/dt = CLint,up,OCT1/
(

1 + ( f I
ub × AI

h,b)/(V h,b × Ki,OCT1)
)
× fub × Ah,b

/Vh,b − fub × CLint,pd × (A h,c/(Vh,c × Kh:b)−Ah,b/Vh,b)

−fub×CLint,met × Ah,c/(Vh,c×Kh:b)

(8)

where Vh,b and Vh,c are volume of hepatic blood and hepatocytes, which were assumed to
be 608.3 mL and 1081.7 mL, respectively. Kh:b and Qh are ratio of drug concentration in liver
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to blood and blood flow in hepatic artery, separately. CLint,up,OCT1, CLint,pd and CLint,met
are OCT1-mediated intrinsic clearance of uptake, efflux clearance from hepatocytes to
blood and metabolic clearance, respectively. fub is unbound fraction of drug in blood.
Ki, OCT1 is inhibition constants of perpetrators on OCT1-mediated uptake. Subscript “sp”
indicates spleen.

CLint,met in liver may be back-calculated from observed total liver clearance (CLliver)
using the equations.

CLliver= CLsystem − CLrenal (9)

CLliver = (f ub×CLint,met × QL)/(fub×CLint,met+QL) (10)

where CLsystem and CLrenal are system clearance and renal clearance. QL is total hepatic
blood flow, which equaled to Qsp + Qh + Qgwi.

The amount of other perpetrators in liver (Ah) is illustrated by a well-stirred model, i.e.,

dAh/dt = (Q h×Aart)/Vart + ∑
(

Qgwi×Agwi

)
/(

Vgwi×Kg:b

)
+(Q sp×Asp)/(V sp×Ksp:b) − (Q h×Ah)/Vh − fub×CLint,met×Ah/(Vh×Kh:b)

(11)

In the renal compartment:
For metformin and cimetidine, renal excretion of drug mainly occurs via glomerular

filtration and renal secretion. It was assumed that reabsorption does not occur. Renal
compartment consists of blood compartment and tubule. The renal secrete clearance
(CLren) of drug is controlled by OCT2 and MATE1/MATE2-K in series.

Amounts of drugs in renal blood compartment (Ar,b) and in tubule(Ar,e) are illustrated
as follows.

dAr,b/dt = (Q r×Aart)/Vart − (Q r×Ar,b)

/Vr,b − (RAF×CL int,up,OCT2)/(1 + (f I
ub × AI

r,b)/(V r,b×Ki,OCT2))× fub×Ar,b

/Vr,b+ CLint,up,OCT2/
(

1 + fI
ub × AI

r,e/(V r,e×Ki,OCT2

))
× fub× Ar,e

/(Vr,e×Kr:b)− fub×GFR×Ar,b/Vr,b

(12)

dAr,e/dt = (RAF×CL int,up,OCT2)/
(

1 + (f I
ub × AI

r,b)/(V r,b×Ki,OCT2)
)
× fub×Ar,b

/Vr,b− CLint,up,OCT2

/(1 + (fI
ub × AI

r,e/(V r,e×Ki,OCT2))×
fub×Ar,e/(V r,e×Kr:b)) − (RAF×CL int,eff,MATE)/(1 + (f I

ub × AI
r,e)/(V r,e×Ki,MATE)) ×

fub×Ar,e/(Vr,e×Kr:b)

(13)

where Vr,b and Vr,e are renal blood volume and tubule volume, respectively. Vr,b was
reported to be 33.8 mL [56], thus Vr,e was estimated to be 246.2 mL. Kr:b and Qr are ratio of
drug concentration in renal to blood and blood flow in renal, respectively. OCT2-mediated
uptake clearance (CLint,up,OCT2) and MATE-mediated efflux clearance (CLint,eff,MATE) of met-
formin were reported to be 14.2 µL/min/106 tubules and 16.6 µL/min/106 tubules [25]. Re-
nal uptake of cimetidine is mediated by OAT3 and OCT2. The OAT3-mediated uptake clear-
ance and OCT2-mediated uptake clearance were reported to be 7.63 and 29.89 µL/min/106

tubules [25], respectively. MATE1-mediated efflux clearance and MATE2-K-mediated
efflux clearance of cimetidine were reported to be 17.67 and 11.87 µL/min/106 tubules,
separately [25]. It was assumed that 60 million proximal tubule cells per gram kidney, and
4.3 g of kidney per kilogram of body weight [57]. GFR is glomerular filtration rate, which
was set to be 120 mL/min/70 kg. RAF is empirical scaling factor, being set to be 3.0 [25].
Ki,OCT2 and Ki,MATE is inhibition constants of perpetrators on OCT2-mediated uptake and
MATE-mediated efflux.

Well-stirred model was also used to illustrate disposition of other perpetrators in
kidney (Ar), i.e.,

dAr/dt = (Q r×Aart)/Vart − (Q r×Ar)/Vr− fub × CLint, renal × Ar/(Vr×Kr:b) (14)
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CLint,renal is also back-calculated from observed renal clearance (CLrenal) using
Equation (15).

CLrenal = (fub×CLint,renal×Qr)/(fub×CLint,renal+Qr) (15)

In artery blood (Art) and venous blood (Aven).
Amounts of drug in artery blood (Art) and venous blood (Aven) are illustrated by

dAart/dt = Qtotal×((A lu/Vlu)/Klu:b − Aart/Vart) (16)

dAven/dt =∑ Qj × (A j/Vj)/Kj:b− Qtotal ×(A ven/Vven) (17)

where Qtotal, Vlu, Vven, Alu and Klu:b are cardiac output, lung volume, venous volume,
amount of drug in lung and ratio of drug concentration in lung to blood, respectively.
Subscript “j” indicates other tissues in human body, such as heart, brain, muscle, adipose,
skin, and rest tissues.

Phoenix WinNonlin 8.1 (Pharsight, St. Louis, MO, USA) was used for coding and
solving of the PBPK model as well as estimating corresponding kinetic parameters (Cmax
and AUC).

2.3. Model Validation

Plasma concentration profiles and the plasma exposure parameters (AUC and Cmax) of
metformin and 6 perpetrators following oral administration to human were first simulated
using the developed PBPK model and the developed PBPK model was validated by
visual predictive checks (VPCs). The 5th, 50th, and 95th percentiles of the simulations
and their 90% confident intervals were plotted along with the observed data. Following
validation, the developed PBPK model was further used to predict DDIs of metformin
with perpetrators. The predictions were compared with clinic observations. Extent of
DDI was assessed as ratio of AUC (AUCR) or of Cmax (CmaxR) with perpetrators and
without perpetrators. Fold errors, ratios of prediction to observation, were often used to
assess prediction. The predictions were considered successful if the ratio of predication to
observation fell within 0.5 and 2.0 [58,59]. Both relative squared error (RSE) (Equation (18))
and the geometric mean-fold error (GMFE) (Equation (19)) were further introduced to
describe the difference between predictions and observations [60,61].

RSE =
∑n

i=1 (Pre i−Obsi)
2

∑n
i=1

(
Obs−Obsi

)2 ×100% (18)

GMFE = 10
1
n ∑n

i=1 |log10(
Prei
Obsi

)| (19)

where Prei, Obsi, and Obs represent the predicted parameters, the observed parameters
and their average values of observations, respectively. n is the number of predictions.

2.4. Sensitivity Analysis of Model Parameters

Renal secretion of the metformin is attributed to interplay of renal OCT2 and MATEs.
Intestinal absorption of metformin is mediated by intestinal OCT3, PMAT and other
transporters. The function of intestinal OCT3 is dependent on pH. Gastrointestinal transit
also affects intestinal absorption of metformin. Sensitivity analysis was operated on Ki, OCTs,
Ki, MATE, intestinal pH and constant of gastrointestinal transit rate.

Metformin is substrates of OCT1, OCT2, OCT3, PMAT, MATE1 and MATE2-K. These
transporters are differently expressed in intestine, liver and kidney. The individual con-
tributions of intestinal OCT3 (Vmax,OCT3), intestinal PMAT (Vmax,PMAT), hepatic OCT1
(CLint,up,OCT1), renal OCT2 (CLint,up,OCT2) and renal MATEs (CLint,efflux,MATE) to metformin
disposition were investigated.
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3. Results and Discussion
3.1. Collection of DDI Data

Six perpetrators including cimetidine, pyrimethamine, trimethoprim, ondansetron,
rabeprazole, and verapamil were selected to investigate DDIs with metformin. Some
diseases (such as diabetes and renal failure) altered metformin disposition via affecting
physiological parameters of body and expressions/function of drug transporters. For
example, diabetes was reported to alter pharmacokinetics of metformin via affecting
gastrointestinal transit and renal function [62]. To better investigate the DDI between
metformin and perpetrators and to estimate contributions of drug transporters in the
liver, kidney, and intestine to metformin pharmacokinetics, the clinical PK data mainly
came from healthy volunteers, which come from clinic reports on PubMed. The ratios of
drug concentration in tissue to plasma were calculated (Supplementary Table S2) using
method [63] based on tissue composition and physicochemical parameters of drugs. The
physiological parameters (tissue blood flow and volume) (Supplementary Table S1) and
pharmacokinetic parameters (transporter parameters, metabolism parameters or inhibition
parameter Ki) (Table 1) were cited from corresponding literatures.

Metformin is substrate of OCT1-3 and MATE1/2-K, which are individually expressed
in intestine, liver and kidney. Several evidences have demonstrated that ranks for gene
expressions of transporters in human intestine [28,64,65] are OCT3 > serotonin transporter
(SERT) > PMAT and OCT1. Metformin is a substrate of OCT1, SERT, PMAT and OCT3,
whose apparent Km values are 3.1, 4, 1.68, and 2.46 mM, respectively [28,51], indicating
that metformin affinities to transporters are PMAT > OCT3 > OCT1 > SERT. Based on
expression of transporters and their affinities to metformin, OCT3 and PMAT may be
main uptake transporters for metformin in human intestine. SNPs of OCT3 significantly
affect intestinal absorption of metformin [66,67], demonstrating important roles of OCT3
in intestinal absorption of metformin, and some reports have showed that PMAT, OCT1
and SERT are involved in metformin transport in Caco-2 cells and other cell lines [11,28,51].
Based on data from OCT3 knockout mice and cell lines, we assumed that contribution
of intestinal OCT3 and PMAT to intestinal absorption of metformin was about 50% and
20%, respectively, the rest (30%) was attributed to other transporters including THTR2,
OCT1 and maybe SERT [6,7,66,67]. These results indicate that the intestinal absorption of
metformin is mediated at least partly by OCT3 and PMAT expressed on apical membrane
of enterocytes. Metformin eliminates mainly via renal secretion due to sequential works
of OCT2 and MATE1/2-K on basolateral membrane and apical membrane of tubule,
respectively. Hepatic uptake of metformin is mediated by liver OCT1.

3.2. Quantitatively Predicted Disposition Kinetics for Metformin and Perpetrators

The developed PBPK model considering alliance of OCTs and MATE1/2-K in intestine,
liver and kidney was applied to predict plasma concentrations (Figure 2) and their main
pharmacokinetic parameters Cmax and AUC (Table 2) of metformin and 6 perpetrators
(cimetidine, pyrimethamine, trimethoprim, ondansetron, rabeprazole and verapamil) using
the list parameters (Table 1, Supplementary Tables S1 and S2). The results show that
the most of predicted concentrations are within 0.5–2.0 folds of observed data. In line,
94.1% (32/34) of predicted plasma exposure parameters (Cmax and AUC) also fall within
0.5–2.0 folds of clinic data. RSE for Cmax and AUC were calculated to be 1.1% and 9.6%,
respectively. The estimated GMFE values for Cmax and AUC were 1.004 and 0.890, near to
1.0. All these results demonstrate that both the developed PBPK model and the selected
corresponding parameters are appropriate for describing pharmacokinetics of metformin
and perpetrators.
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Table 2. The predicted (Pre) and observed (Obs) pharmacokinetic parameters of metformin and perpetrators.

Drug Ref. Dose (mg)
Cmax (µg/mL) Ratio AUC0–t (µg·h/mL) Ratio

Pre Obs Pre/Obs Pre Obs Pre/Obs

Metformin [68] 750 1.22 1.5 0.81 11.05 9.4 1.18
[69] 500 0.95 1.55 0.61 7.04 9.08 0.78

Cimetidine [70] 400 2.06 2.20 0.94 9.17 8.03 1.14
[71] 300 1.53 1.53 1.00 6.68 5.22 1.28

Pyrimethamine [72] 50 0.57 0.76 0.75 31.18 76 0.41
[73] 50 0.57 0.37 1.54 31.18 42.83 0.73
[74] 75 0.86 0.86 1.00 46.77 124.6 0.38
[75] 75 0.86 0.60 1.43 46.77 68.34 0.68

Trimethoprim [76] 210 2.18 2.35 0.93 28.26 37.1 0.76
[77] 1400 13.76 12.78 1.08 302.34 299.31 1.01

Ondansetron [78] 8 0.046 0.0272 1.69 0.203 0.198 1.03
[79] 8 0.046 0.037 1.24 0.233 0.254 0.92

Rabeprazole [80] 40 0.40 0.502 0.80 1.27 1.315 0.97
[80] 40 0.40 0.444 0.90 1.27 1.332 0.95
[81] 20 0.20 0.252 0.79 0.63 0.575 1.10

Verapamil [82] 40 0.050 0.033 1.52 0.28 0.22 1.27
[83] 80 0.099 0.13 0.76 0.564 0.387 1.46

Figure 2. Cont.
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Figure 2. Predicted (lines) and observed (points) plasma concentrations of (a) metformin and (b) cimetidine,
(c) pyrimethamine, (d) trimethoprim, (e) ondansetron, (f) rabeprazole (with the lag time because of dosage form)
and (g) verapamil following oral dose to human. The observations were cited from reports [68,70–72,74,76–79,82–87].
(h) Relationship between the observed and predicted plasma concentration of the seven tested agents with different colors.
Solid and dashed lines respectively represent unity and 2-fold errors between observed and predicted data.

M-M model is successfully used to illustrate OCT3-and PMAT-mediated intestinal
absorption of metformin absorption following 50–1000 mg of oral metformin to human
(Figure 3a, Supplementary Tables S3 and S4). The results show that absorption kinetics is
characterized by non-linear kinetics and that the oral clearance (dose/AUC) is increased
along with dose, in line with the observations (Figure 3b), inferring that non-linear phar-
macokinetics of metformin mainly results from transporter-mediated intestinal absorption.
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Figure 3. (a) Predicted plasma concentrations of metformin following different dosage of human. (b) Predicted (line)
and observed (point) relationship between metformin dose and dose/AUC for different dose; shaded area, 0.5–2.0 folds
of prediction; observations were cited from [13,15,16,19,20,27,68,69,84,88–113]. (c) Visual predictive checks (VPCs) of
metformin plasma concentrations to time in 500 mg oral administration for human; solid line, the 50th percentiles; dashed
lines, the 5 and 95th percentiles of the simulated populations; the shaded area, 90% confidence intervals of the simulated
concentrations of the 5, 50 and 95th percentiles; and the point, observations, which were cited from [27,69,91,93,97,114].

Visual predictive checks (VPCs) were made for validating the model in human
populations and assessing the accuracy of the predictions following oral single dose
(500 mg) administration of metformin to human. Intestinal OCT3 (Vmax,OCT3), liver OCT1
(CLint,up,OCT1), renal OCT2 (CLint,up,OCT2), renal MATEs (CLint,efflux,MATEs), and gastroin-
testinal transit rate (Kti) of metformin were investigated as factors for inter-individual
variability. Exponential model and multiplicative residual error model were used to simu-
late the inter-individual variability and intra-individual variability of these parameters. The
parameter estimation method was the first order conditional estimation of Lindstrom-Bates
(FOCE L-B) [115]. Together with standard deviation of intra-individual error, Vmax,OCT3,
CLint,up,OCT1, CLint,up,OCT2, CLint,efflux,MATEs, and Kti, which were regarded as random ef-
fect parameters were simulated with six sets of the observation data. Subsequently, visual
predictive checks were performed on Phoenix NLME module (version 1.3, Certara, Co.,
Princeton, NJ, USA) based on 1000 times of simulations. VPCs were indicated as compari-
son between 5, 50, 95 percentiles of the observations and the corresponding simulations
(Figure 3c). The virtual trial simulation showed that 94.4% observations are within the
fifth and 95th percentiles of the simulated populations, indicating that good predictions for
metformin are achieved by the developed whole-body PBPK model.

3.3. Predicted DDIs of Metformin with Perpetrators

The selected perpetrators are all strong inhibitors of OCTs, some of which (cimetidine,
pyrimethamine, trimethoprim and ondansetron) are stronger inhibitors of MATE1/2-K [12],
indicating that DDIs of metformin with these perpetrators are attributed to the inte-
grated effects of inhibition on intestinal OCT3, renal OCTs, and renal MATE1/2-K. Fol-
lowing validating the developed PBPK model in individual compounds, the PBPK was
scaled to predict DDIs of metformin with 6 perpetrators according to the administration
schedules in Supplementary Table S6. The predictions were compared with clinic data
(Figure 4 and Table 3).
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Figure 4. Predicted (line) and observed (points) plasma concentrations of the metformin alone and co-administrated
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Table 3. The predicted (Pre) and observed (Obs) pharmacokinetic parameters of the indicated agents as well as ratios of AUC (AUCR)
or Cmax (Cmax R) for metformin in absence of perpetrators to that in presence of perpetrators.

Perpetrators
(mg) Drug (mg) Ref.

Cmax (µg/mL) Ratio AUC0–t (µg·h/mL) Ratio

Pre Obs Pre/Obs Pre Obs Pre/Obs

Metformin (250)
[13]

0.67 0.59 1.14 5.12 4.26 1.20
Cimetidine

(400) +cimetidine 0.83 1.02 0.81 7.33 6.23 1.18

CmaxR & AUCR 1.28 1.73 0.74 1.58 1.46 1.08
Metformin (500)

[90]
0.95 1.19 0.80 7.93 6.58 1.21

Cimetidine
(400) +cimetidine 1.33 1.78 0.75 12.09 10.3 1.17

CmaxR & AUCR 1.4 1.5 0.93 1.52 1.57 0.97
Metformin (250)

[14]
0.63 0.852 0.74 4.42 3.77 1.17

Pyrimethamine
(50) +pyrimethamine 1.1 1.35 0.81 13.46 8.68 1.55

CmaxR & AUCR 1.75 1.58 1.10 3.05 2.30 1.32
Metformin (0.1)

[14]
0.00089 0.00042 2.12 0.0029 0.0021 1.38

Pyrimethamine
(50) +pyrimethamine 0.0012 0.0004 3.00 0.0066 0.0023 2.87

CmaxR & AUCR 1.35 0.95 1.42 2.28 1.10 2.08
Metformin (500) [15] 0.93 1.14 0.82 6.95 5.91 1.18

Pyrimethamine
(50) +pyrimethamine 1.61 2.32 0.69 14.52 15.24 0.95

CmaxR & AUCR 1.73 2.04 0.85 2.09 2.58 0.81
Metformin (500)

[16]
1.28 1.3 0.98 8.1 6.8 1.19

Trimethoprim
(200) +trimethoprim 1.42 1.8 0.79 9.24 9.3 0.99

CmaxR & AUCR 1.11 1.38 0.80 1.14 1.37 0.83
Metformin (850)

[103]
1.81 1.17 1.55 16.15 6.69 2.41

Trimethoprim
(200) +trimethoprim 2.07 1.4 1.48 20.37 8.68 2.35

CmaxR & AUCR 1.14 1.2 0.95 1.26 1.3 0.97
Metformin (850)

[19]
1.32 2.28 0.58 12.13 15.2 0.80

Ondansetron
(8) +ondansetron 1.53 2.75 0.56 14.1 18.3 0.77

CmaxR & AUCR 1.16 1.21 0.96 1.16 1.2 0.97
Metformin (500)

[27]
1.42 1.1 1.29 10.24 5.9 1.74

Rabeprazole
(20) +rabeprazole 1.35 1.3 1.04 10.21 6.8 1.50

CmaxR & AUCR 0.95 1.18 0.81 1 1.15 0.87
Metformin (750)

[20]
1.79 4.2 0.43 13.56 24.69 0.55

Rabeprazole
(20) +rabeprazole 1.72 5 0.34 13.29 28.28 0.47

CmaxR & AUCR 0.96 1.19 0.81 0.98 1.15 0.85
Metformin (750)

[99]
1.22 1.51 0.81 10.35 8.22 1.26

Verapamil
(180) +verapamil 1.28 1.64 0.78 11.32 8.84 1.28

CmaxR & AUCR 1.05 1.09 0.96 1.09 1.08 1.01

It was found that most of predicted concentrations are within 0.5–2.0 folds of ob-
served concentrations. In line, 86.4% (57/66) predicted plasma exposure parameters (Cmax
and AUC) for DDI also fall within 0.5–2.0 folds of observations, inferring that the devel-
oped PBPK model may be used to successfully predict the DDIs of metformin and its
possible mechanisms.

Among the tested perpetrators, cimetidine, pyrimethamine, trimethoprim and on-
dansetron show stronger inhibitions on MATE1/2-K than those on OCTs, inferring that
the four perpetrators increase plasma exposure to metformin mainly via inhibiting renal
secretion mediated by MATE1/2-K. However, intestinal concentrations of perpetrators may
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be higher than their Ki values for OCT3 following oral dose. For example, following oral
400 mg cimetidine, 50 mg pyrimethamine, 200 mg trimethoprim and 8 mg ondansetron,
concentration of cimetidine, pyrimethamine, trimethoprim and ondansetron in intestinal
lumen were estimated to be 6.34 mM, 0.80 mM, 2.76 mM, and 109 µM using dose/250 mL,
respectively, which are greatly higher than Ki values for OCT3 (45.7 µM for cimetidine,
>100 µM for pyrimethamine, 12.3 µM for trimethoprim and 17.4 µM for ondansetron),
indicating that inhibition of intestinal OCT3 also contributes to DDIs of metformin, al-
though the contribution of intestinal OCT3 inhibition is contrast to that of renal OCT2 and
MATE1/2-K inhibitions. No evidence demonstrates that verapamil inhibits functions of
MATEs, Ki values of verapamil for OCT2 and OCT3 are similar. Following oral 180 mg
verapamil, concentration of verapamil in intestinal lumen was estimated to be 1.58 mM,
which is higher than Ki values for OCT3 (3.6 µM). The inhibition of intestinal OCT3 by
verapamil partly abolishes the increased plasma exposure to metformin by inhibitions of
renal OCT2, which is in line with little alterations in plasma concentrations of metformin.
Simulation shows that rabeprazole, a weak inhibitor of OCTs and MATE1, does not affect
plasma concentrations of metformin, which is consistent with clinical observations [20].

Liver is a main targeted organ for metformin. Roles of hepatic OCT1 in plasma ex-
posure to metformin is minor, but distribution of metformin in liver is highly controlled
by hepatic OCT1, in turn, affecting antihyperglycemic activity of metformin. Concentra-
tions of metformin in liver were simultaneously simulated following coadministration
of these perpetrators. The simulation data shows that coadministration of trimethoprim,
rabeprazole and verapamil may increase plasma concentrations of metformin, while ob-
viously decreased concentrations of metformin. Although the decreases in concentration
of metformin in liver by the three perpetrators needed to be supported by clinical data,
the simulations partly explained the curious phenomenon that why co-administration
of trimethoprim, rabeprazole and verapamil little affect or attenuate antihyperglycemic
activity of metformin in clinical [15,99,103].

3.4. Sensitivity Analysis

Metformin mainly eliminates via renal secretion, which is highly controlled by renal
OCT2 and MATEs. Intestinal absorption of metformin is mainly mediated by intestinal
OCT3 and PMAT. Effects of Ki values for OCTs and MATEs, intestinal pH values and
gastrointestinal transit rate on DDI of metformin were investigated using cimetidine as a
representative for sensitive analysis. The variabilities of these parameters were based on
the reality and reports. Ki values of cimetidine for OCT2, OCT3, MATE1 and MATE2-K [49]
are reported to vary 657 folds, 11 folds, 61 folds, and 22 folds, respectively. Thus, the
variabilities of Ki values were set to be 0.1, 1 and 10, respectively. Variabilities in gastroin-
testinal transit time were set to be 0.5, 1, and 2. Moreover, function of intestinal OCT3 and
PMAT is dependent on pH values. Based on physiological structural characteristics, three
pH conditions were taken into account. Condition 1 (control): pH values in duodenum,
jejunum and ileum were set to be 5.5, 6.5, and 7.5, respectively. Condition 2: pH values in
duodenum, jejunum and ileum were set to be 6.5, 7.5, and 7.5, respectively. Conditions 3:
pH values in duodenum, jejunum and ileum were set to be 7.5, 7.5, and 7.5, respectively.
It was found that the tested factors remarkably alter DDIs of metformin with cimetidine
(Figure 5). The contribution of gastrointestinal transit rate is the strongest, followed by
Ki,MATEs, Ki,OCT2, Ki,OCT3, intestinal pH, and Ki,OCT1. The decrease in gastrointestinal tran-
sit rate by 50% of control increases AUC of metformin by 39.7%. In contrast, 2-fold increase
gastrointestinal transit rate leads to decrease in AUC of metformin by 38.6%. In line with
a previous report [116], a decrease gastrointestinal transit rates increases plasma exposure
to metformin. Effects of cimetidine on plasma exposure to metformin varied with Ki values
for MATEs/OCTs, which was dependent on their contribution. Alterations in Ki values for
OCT2 and MATE1 significantly altered AUCR of metformin. For example, AUCR values at
0.1 × Ki, 1 × Ki (0.65 µM) and 10 × Ki of MATEs were estimated to be 1.23, 1.54 and 1.98,
respectively. OCT3 mainly affected metformin absorption, altering Cmax of metformin. The
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estimated CmaxR values at 0.1 × Ki, 1 × Ki (45.7 µM) and 10 × Ki of OCT3 were 1.47, 1.28
and 1.03, respectively. Alterations in Ki values for OCT1 little affected plasma exposure to
metformin, consistent with minor roles of OCT1 in metformin disposition.
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Functions of OCT3 and PAMT are also dependent on pH [29,51] and intestinal pH
values are also regional [30]. Both cimetidine and rabeprazole themselves inhibit secretion
of gastrointestinal acids, leading to increase in intestinal pH. However, the effects of pH
on functions of OCTs and PAMT are opposing and the simulation showed that alteration
in intestinal PMAT-mediated metformin absorption by pH increase is larger than that
of intestinal OCT3. The increased intestinal pH enhances OCT3-mediated intestinal ab-
sorption but decrease PMAT-mediated intestinal absorption of metformin, indicating that
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net contributions of increases in intestinal pH by cimetidine and rabeprazole to intestinal
absorption of metformin is minor.

Individual contributions of intestinal OCT3 (Vmax,OCT3) and PMAT (Vmax,PMAT), liver
OCT1 (CLint,up,OCT1), renal OCT2 (CLint,up,OCT2) and MATEs (CLint,efflux,MATEs), and the
integrated effects (CLint,up,OCT2 + CLint,efflux,MATEs) to metformin disposition were also
investigated (Figure 6). Variabilities of these parameters were set to be 0 and 1. The results
demonstrated that both OCT-mediated intestinal absorption and OCT/MATE-mediated
renal secretion showed important roles in metformin disposition, although contributions
of intestinal OCT3 and PMAT to plasma concentrations of metformin are contrary to
those of renal OCT2 and MATEs. Contributions of the individual transporters to AUC
of metformin were assessed using (AUCnon transporter − AUCcontrol)/AUCcontrol) × 100%,
where AUCnon-transporter is AUC of metformin without considering the transporter. The
results (Figure 6b) showed that contributions of these transporters to AUC of metformin are
renal OCT2 (160.30%)≈ renal MATE (159.80%) > intestinal OCT3 (−35.94%) > hepatic OCT1
(15.67%) > intestinal PMAT (−12.06%). A decrease in intestinal absorption of metformin
due to inhibition of intestinal OCT3 may be partly attenuate increase of plasma exposure
to metformin by inhibitions of renal OCT2 and MATE1/2-K.
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Interestingly, compared with deleting renal OCT2 or renal MATEs alone, simultane-
ously deleting renal OCT2 and renal MATE no longer enhanced AUC of metformin, the
AUC of metformin was 12.50 µg·h/mL, which was near to those of deleting renal OCT2
(12.50 µg·h/mL) and renal MATEs (12.48 µg·h/mL). The renal secretion of metformin is
attributed to sequential work of uptake transporter OCT2 and efflux transporter MATEs
(Figure 7), which may partly explain that renal OCTs and MATEs have the same contribu-
tion to drug disposition. The simulation showed that the total clearance for both delete
renal OCT2 and renal MATEs (166.7 mL/min, assume bioavailability to be 50%) is similar
to the GFR (132.9 mL/min).

These simulations have demonstrated importance of OCT1, OCT2, OCT3 and
MATE1/2-K in metformin disposition and metformin antihyperglycemic activity. Dia-
betes was reported to increase plasma exposure to metformin following oral dose, ac-
companied by decrease in renal and system clearance [117]. Creatinine clearance is also
impaired, which highly correlated with renal clearance [117]. Creatinine is excreted into
urine by glomerular filtration and renal tubular secretion mediated by organic anion
transporter 2 (OAT2), OCT2, OCT3 and MATE1/MATE2-K [49]. Animal experiments have
shown that diabetes downregulates expression of renal OCT2 and OCT3 [118,119], partly
explaining decreases in renal clearance and system clearance of metformin which may
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contribute to decrease in creatinine clearance. Moreover, the increase in plasma expo-
sure to metformin under diabetic status is partly attributed to decrease in gastrointestinal
transit time [62].
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However, the developed PBPK model also has some limitations. Here, we assumed
that 70% of intestinal metformin absorption was attributed to intestinal OCT3 and PMAT
expressed on apical membrane of enterocytes, and the rested 30% was due to other trans-
porters (such as OCT1, serotonin reuptake transporter and choline high-affinity transporter),
whether are suitable also needs further investigation. Moreover, some diseases such as dia-
betes affected DDIs of metformin with perpetrators via affecting physiological parameters
of body and expressions/function of drug transporters, which was reported before [62].

Several different ways (such as optimizing the equations, improving the parameters,
and rearranging the model structure involved in absorption, distribution, metabolism
and excretion) have been tried to close the gap between prediction and observation, but
the discrepancies between prediction and observation still exist (Figures 2 and 4). The
discrepancies may come from such as genotype, sex and age. A report showed that gender
and race (Caucasians, Blacks, and Hispanics) little affected AUC of metformin [120]. The
elderly subjects (68 ± 2 years) were reported to exhibit 1.7 and 2.0 times higher average
Cmax and AUC than the younger subjects (23 ± 3 years) [93]. Subjects used in the predic-
tion were young and healthy, excluding effects of both ages and disease on metformin
disposition. Genetic variants of OCTs/MATEs have been demonstrated to alter metformin
disposition [10,121–123], but results are often confused. For example, the renal clearance of
metformin was unaltered in patients carrying the MATE1 variant, OCT2 and OCT3 [121].
However, volunteers with SLC22A3 variants (rs8187722 or rs2292334) had higher Cmax
and AUC of metformin than the wild SLC22A3 [10]. Another report showed that com-
pared with OCT2 reference allele (808G/G), volunteers carrying heterozygous for 808G/T
had higher renal clearance and secretory clearance of metformin, accompanied by signifi-
cantly lower metformin concentrations at early times after metformin administration [122].
However, c.808 (G > T) alone affected neither renal clearance nor secretory clearance of
metformin, but both the renal clearance and secretory clearance were significantly increased
for the volunteers with c.808 (G > T) who were also homozygous for the reference variant
g.−66T > C in MATE1. On the contrast, the volunteers with c.808 (G > T) who were also
heterozygous for g.−66T > C showed the lower renal clearance and secretory clearance of
metformin compared with volunteers with c.808 (G > T) carrying the g.−66T > C reference
genotype. These results indicated that c.808 (G > T) could have a dominant genotype to
phenotype correlation [123]. Thus, the contributions of OCT and MATE polymorphisms to
pharmacokinetics of metformin and DDI needed further investigation.
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4. Conclusions

In conclusion, the PBPK model characterizing the interplay of OCTs and MATEs
is successfully applied to predict the pharmacokinetics of metformin and its DDIs with
perpetrators. Perpetrator-induced DDIs of metformin should be attributed to integrated
effects of intestinal OCT3, renal OCT2/MATE1/2-K, and hepatic OCT1 inhibitions.
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pyrimethamine (Pyr), trimethoprim (Tri), ondansetron (Ond), rabeprazole (Rab) and verapamil (Ver),
Table S3. The observed pharmacokinetic parameters of metformin for different dosage, Table S4. The
predicted pharmacokinetic parameters of metformin for different dosage, Table S5. The observed
pharmacokinetic parameters of perpetrators in different references, Table S6. The administration
schedule for metformin and perpetrators.
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