Photodynamic Therapy in Orthodontics: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Clinical Trials
3.1. Comparison of Ultrasonic Scaling and Antimicrobial Photodynamic Therapy
3.2. Comparison of Ultrasonic Scaling and Ultrasonic Scaling with Adjunct Antimicrobial Photodynamic Therapy
3.3. Comparison of Antimicrobial Photodynamic Therapy and Chlorhexidine Products
3.4. Microbiological Analysis before and after the Application of Antimicrobial Photodynamic Therapy
3.5. The Influence of Antimicrobial Photodynamic Therapy on Tongue Hygiene
3.6. Effect of Photodynamic Therapy on Tooth Movement
4. Ex Vivo Studies
4.1. Modified Orthodontic Adhesives
4.2. Effect of Photodynamic Therapy on the Bond Strength
4.3. Antimicrobial Photodynamic Therapy in the Decontamination of Instruments and Orthodontic Appliances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joss-Vassalli, I.; Grebenstein, C.; Topouzelis, N.; Sculean, A.; Katsaros, C. Orthodontic therapy and gingival recession: A systematic review. Orthod. Craniofac. Res. 2010, 13, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.K.; Jungbauer, G.; Jungbauer, R.; Wolf, M.; Deschner, J. Biofilm and Orthodontic Therapy. Monogr. Oral Sci. 2021, 29, 201–213. [Google Scholar] [CrossRef]
- Huang, J.; Yao, Y.; Jiang, J.; Li, C. Effects of motivational methods on oral hygiene of orthodontic patients: A systematic review and meta-analysis. Medicine 2018, 97, e13182. [Google Scholar] [CrossRef] [PubMed]
- Lopatiene, K.; Borisovaite, M.; Lapenaite, E. Prevention and Treatment of White Spot Lesions During and After Treatment with Fixed Orthodontic Appliances: A Systematic Literature Review. J. Oral Maxillofac. Res. 2016, 7, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardana, D.; Manchanda, S.; Ekambaram, M.; Yang, Y.; McGrath, C.P.; Yiu, C.K.Y. Prevention of Demineralization Around Orthodontic Brackets Using Sealants: A Systematic Review and Meta-Analysis. Pediatr. Dent. 2019, 41, 430–531. [Google Scholar]
- Jiang, Q.; Li, J.; Mei, L.; Du, J.; Levrini, L.; Abbate, G.M.; Li, H. Periodontal health during orthodontic treatment with clear aligners and fixed appliances: A meta-analysis. J. Am. Dent. Assoc. 2018, 149, 712–720.e712. [Google Scholar] [CrossRef]
- Lapenaite, E.; Lopatiene, K.; Ragauskaite, A. Prevention and treatment of white spot lesions during and after fixed orthodontic treatment: A systematic literature review. Stomatologija 2016, 18, 3–8. [Google Scholar]
- Kacprzak, A.; Strzecki, A. Methods of accelerating orthodontic tooth movement: A review of contemporary literature. Dent. Med. Probl. 2018, 55, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Lee, W. Corticotomy for orthodontic tooth movement. J. Korean Assoc. Oral Maxillofac. Surg. 2018, 44, 251–258. [Google Scholar] [CrossRef] [Green Version]
- AlShahrani, I.; Togoo, R.A.; Hosmani, J.; Alhaizaey, A. Photobiomodulation in acceleration of orthodontic tooth movement: A systematic review and meta analysis. Complement. Ther. Med. 2019, 47, 102220. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S.; Anagnostaki, E.; Lynch, E. Systematic Review of Orthodontic Treatment Management with Photobiomodulation Therapy. Photobiomodulation Photomed. Laser Surg. 2019, 37, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaleta-Richter, M.; Kawczyk-Krupka, A.; Aebisher, D.; Bartusik-Aebisher, D.; Czuba, Z.; Cieślar, G. The capability and potential of new forms of personalized colon cancer treatment: Immunotherapy and Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 2019, 25, 253–258. [Google Scholar] [CrossRef]
- Kawczyk-Krupka, A.; Bugaj, A.M.; Latos, W.; Zaremba, K.; Wawrzyniec, K.; Kucharzewski, M.; Sieroń, A. Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagnosis Photodyn. Ther. 2016, 13, 158–174. [Google Scholar] [CrossRef]
- Krupka, M.; Bartusik-Aebisher, D.; Strzelczyk, N.; Latos, M.; Sieroń, A.; Cieślar, G.; Aebisher, D.; Czarnecka, M.; Kawczyk-Krupka, A.; Latos, W. The role of autofluorescence, photodynamic diagnosis and Photodynamic therapy in malignant tumors of the duodenum. Photodiagnosis Photodyn. Ther. 2020, 32, 101981. [Google Scholar] [CrossRef]
- Braathen, L.R. Photodynamic therapy in dermatology. G Ital. Dermatol. Venereol. 2018, 153, 763. [Google Scholar] [CrossRef]
- Inoue, K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int. J. Urol. 2017, 24, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoseinpour Jajarm, H.; Asadi, R.; Bardideh, E.; Shafaee, H.; Khazaei, Y.; Emadzadeh, M. The effects of photodynamic and low-level laser therapy for treatment of oral lichen planus-A systematic review and meta-analysis. Photodiagnosis Photodyn. Ther. 2018, 23, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Olek, M.; Kasperski, J.; Skaba, D.; Wiench, R.; Cieślar, G.; Kawczyk-Krupka, A. Photodynamic therapy for the treatment of oral squamous carcinoma-Clinical implications resulting from in vitro research. Photodiagnosis Photodyn. Ther. 2019, 27, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Olek, M.; Machorowska-Pieniążek, A.; Olek, K.; Cieślar, G.; Kawczyk-Krupka, A. Photodynamic therapy in the treatment of oral squamous cell carcinoma—The state of the art in preclinical research on the animal model. Photodiagnosis Photodyn. Ther. 2021, 102236. [Google Scholar] [CrossRef] [PubMed]
- Cerrati, E.W.; Nguyen, S.A.; Farrar, J.D.; Lentsch, E.J. The efficacy of photodynamic therapy in the treatment of oral squamous cell carcinoma: A meta-analysis. Ear Nose Throat J. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Sperandio, F.F.; Huang, Y.Y.; Hamblin, M.R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Antiinfect Drug. Discov. 2013, 8, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Allison, R.R.; Moghissi, K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013, 46, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Abellán, R.; Gómez, C.; Iglesias-Linares, A.; Palma, J.C. Impact of photodynamic therapy versus ultrasonic scaler on gingival health during treatment with orthodontic fixed appliances. Lasers Surg. Med. 2019, 51, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Abellán, R.; Palma, J.C. Efficacy of photodynamic therapy vs ultrasonic scaler for preventing gingival inflammation and white spot lesions during orthodontic treatment. Photodiagnosis Photodyn. Ther. 2018, 24, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Al Nazeh, A.; Alshahrani, A.; Almoammar, S.; Kamran, M.A.; Togoo, R.A.; Alshahrani, I. Application of photodynamic therapy against periodontal bacteria in established gingivitis lesions in adolescent patients undergoing fixed orthodontic treatment. Photodiagnosis Photodyn. Ther. 2020, 31, 101904. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A. Efficacy of antimicrobial photodynamic and photobiomodulation therapy against Treponema denticola, fusobacterium nucleatum and human beta defensin-2 levels in patients with gingivitis undergoing fixed orthodontic treatment: A clinic-laboratory study. Photodiagnosis Photodyn. Ther. 2020, 29, 101659. [Google Scholar] [CrossRef]
- Alshahrani, A.; Togoo, R.A.; Kamran, M.A.; Alshahrani, I. Clinical periodontal, bacterial, and immunological outcomes of antimicrobial photodynamic therapy in orthodontic treatment-induced gingival enlargement. Photodiagnosis Photodyn. Ther. 2020, 31, 101934. [Google Scholar] [CrossRef] [PubMed]
- Baeshen, H.A.; Alshahrani, A.; Kamran, M.A.; Alnazeh, A.A.; Alhaizaey, A.; Alshahrani, I. Effectiveness of antimicrobial photodynamic therapy in restoring clinical, microbial, proinflammatory cytokines and pain scores in adolescent patients having generalized gingivitis and undergoing fixed orthodontic treatment. Photodiagnosis Photodyn. Ther. 2020, 32, 101998. [Google Scholar] [CrossRef]
- Kamran, M.A. Clinical, microbiological and immunological outcomes with photodynamic therapy as an adjunct to full-mouth scaling in patients undergoing fixed orthodontic treatment. Photodiagnosis Photodyn. Ther. 2020, 29, 101585. [Google Scholar] [CrossRef]
- Malik, N.K.A.; Alkadhi, O.H. Effectiveness of mechanical debridement with and without antimicrobial photodynamic therapy against oral yeasts in children with gingivitis undergoing fixed orthodontic therapy. Photodiagnosis Photodyn. Ther. 2020, 31, 101768. [Google Scholar] [CrossRef] [PubMed]
- Panhóca, V.H.; Esteban Florez, F.L.; Corrêa, T.Q.; Paolillo, F.R.; de Souza, C.W.; Bagnato, V.S. Oral Decontamination of Orthodontic Patients Using Photodynamic Therapy Mediated by Blue-Light Irradiation and Curcumin Associated with Sodium Dodecyl Sulfate. Photomed. Laser Surg. 2016, 34, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, M.A.; Moura, C.M.; Jeremias, F.; Souza, J.F.; Bagnato, V.S.; Giusti, J.S.; Santos-Pinto, L. Longitudinal effect of curcumin-photodynamic antimicrobial chemotherapy in adolescents during fixed orthodontic treatment: A single-blind randomized clinical trial study. Lasers Med. Sci. 2015, 30, 2059–2065. [Google Scholar] [CrossRef]
- Soares, L.G.P.; Crugeira, P.J.L.; Nunes, I.P.F.; Santos, A.S.; Cangussú, M.C.T.; de Almeida, P.F.; Pinheiro, A.L.B.; Habib, F.A.L. Oral microbiological control by photodynamic action in orthodontic patients. Photodiagnosis Photodyn. Ther. 2019, 28, 221–225. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Alhaizaey, A.; Kamran, M.A.; Alshahrani, I. Efficacy of antimicrobial photodynamic therapy against halitosis in adolescent patients undergoing orthodontic treatment. Photodiagnosis Photodyn. Ther. 2020, 32, 102019. [Google Scholar] [CrossRef] [PubMed]
- El Shehawy, T.O.; Hussein, F.A.; Ei Awady, A.A. Outcome of photodynamic therapy on orthodontic leveling and alignment of mandibular anterior segment: A controlled clinical trial. Photodiagnosis Photodyn. Ther. 2020, 31, 101903. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Haddadi-Asl, V.; Ghafari, H.A.; Ghorbanzadeh, R.; Mazlum, Y.; Bahador, A. Shear bond strength, adhesive remnant index, and anti-biofilm effects of a photoexcited modified orthodontic adhesive containing curcumin doped poly lactic-co-glycolic acid nanoparticles: An ex-vivo biofilm model of S. mutans on the enamel slab bonded brackets. Photodiagnosis Photodyn. Ther. 2020, 30, 101674. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A. Effectiveness of Riboflavin and Rose Bengal Photosensitizer Modified Adhesive Resin for Orthodontic Bonding. Pharmaceuticals 2021, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Pourhajibagher, M.; Salehi Vaziri, A.; Takzaree, N.; Ghorbanzadeh, R. Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy. Photodiagnosis Photodyn. Ther. 2019, 25, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Baeshen, H.A. Influence of Photodynamic therapy and different conventional methods on conditioning of Lithium Di Silicate ceramics bonded to metallic brackets: An assessment of bond strength. Photodiagnosis Photodyn. Ther. 2021, 102210. [Google Scholar] [CrossRef] [PubMed]
- Hossein, M.A.; Sepideh, H.; Mohammad, N.; Nasim, C. The effect of antimicrobial photodynamic therapy on shear bond strength of orthodontic bracket: An in vitro study. Photodiagnosis Photodyn. Ther. 2021. [Google Scholar] [CrossRef]
- Kamran, M.A.; Qasim, M.; Udeabor, S.E.; Hameed, M.S.; Mannakandath, M.L.; Alshahrani, I. Impact of riboflavin mediated photodynamic disinfection around fixed orthodontic system infected with oral bacteria. Photodiagnosis Photodyn. Ther. 2021, 102232. [Google Scholar] [CrossRef]
- Xie, Y.; Zheng, W.; Jiang, X. Near-Infrared Light-Activated Phototherapy by Gold Nanoclusters for Dispersing Biofilms. ACS Appl. Mater. Interfaces 2020, 12, 9041–9049. [Google Scholar] [CrossRef] [PubMed]
- Foggiato, A.A.; Silva, D.F.; Castro, R. Effect of photodynamic therapy on surface decontamination in clinical orthodontic instruments. Photodiagnosis Photodyn. Ther. 2018, 24, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Lacerda Rangel Esper, M.; Junqueira, J.C.; Uchoa, A.F.; Bresciani, E.; Nara de Souza Rastelli, A.; Navarro, R.S.; de Paiva Gonçalves, S.E. Photodynamic inactivation of planktonic cultures and Streptococcus mutans biofilms for prevention of white spot lesions during orthodontic treatment: An in vitro investigation. Am. J. Orthod. Dentofacial. Orthop. 2019, 155, 243–253. [Google Scholar] [CrossRef]
- Al-Shammery, D.; Michelogiannakis, D.; Ahmed, Z.U.; Ahmed, H.B.; Rossouw, P.E.; Romanos, G.E.; Javed, F. Scope of antimicrobial photodynamic therapy in Orthodontics and related research: A review. Photodiagnosis Photodyn. Ther. 2019, 25, 456–459. [Google Scholar] [CrossRef] [PubMed]
Total Number of Patients | Study Design | Mean Age | Photosensitizer | light Parameters | Study Groups | Investigative Parameter | Authors |
---|---|---|---|---|---|---|---|
20 | RCT | 14.6 ± 1.6 | Methylene blue 0.005% | 670 nm, 67.06 J/cm2, 6.05 W/cm2 | Group 1: aPDT Group 2: US alone | PD, PI, GI, Microbiological analysis, GCF cytokines assessment | Abellan et al. [25] |
20 | RCT | Group 1: 15.0 ± 1.8 Group 2: 14.2 ± 1.3 | Methylene blue 0.005% | 670 nm, 200 mW | Group 1: aPDT Group 2: US alone | FMPS, FMBS, PD, ICDAS, Microbiological analysis | Gómez et al. [26] |
22 | RCT | Group 1: 17.8 ± 0.7 Group 2: 17.3 ± 0.9 | Methylene blue 0.0005% | 670 nm, 22 J/cm2, 150 mW | Group 1: US Group 2: US + aPDT | PD, PScore, BoP, Microbiological analysis | Al Nazeh et al. [27] |
45 | RCT | Group 1: 14.7 ± 0.8 Group 2: 16.2 ± 0.9 Group 3: 15.8 ± 0.7 | Methylene blue 0.0005% | 670 nm, 22 J/cm2, 1.1 W/cm2 | Group 1: US + aPDT, Group 2: US + PBM Group 3: US alone | PScore, BoP PD, Microbiological analysisGCF cytokines assessment | Alqerban [28] |
26 | CT | Group 1: 16.3 ± 0.9 Group 2: 16.9 ± 1.0 | Methylene blue 0.0005% | 670 nm, 22 J/cm2, 150 mW | Gruoup 1: FMPD Group 2: FMPD + aPDT | PScore, BoP, PD, HI, Microbiological analysis, GCF cytokines assessment | Alshahrani et al. [29] |
30 | RCT | Group 1: 16.1 ± 1.4 Group 2: 15.9 ± 1.3 | Methylene blue 0.005% | 670 nm, 22 J/cm2, 150 mW | Group 1: US + aPDT Group 2: US alone | PScore, BOP, PD, VAS, Microbiological analysis, GCF cytokines assessment | Baeshen et al. [30] |
50 | CT | Group 1: 15.4 ± 0.9 Group 2: 14.2 ± 0.7 | Methylene blue 0.0005% | 670 nm, 22 J/cm2, 150 mW | Group 1: US + aPDT Group 2: US alone | PD, BoP, PScore, Microbiological analysis, GCF cytokines assessment | Kamran [31] |
36 | RCT | Group 1: 16.6 ± 0.5 years Group 2: 16.8 ± 0.4 years | Methylene blue 400 μg/mL | 660 nm, 0.0125 J/cm², 150 mW | Group 1: US + aPDT Group 2: US alone | GI, Oral yeasts analysis | Malik et al. [32] |
24 | RCT | N/A 18–50 years | Curcumin 1 g/L with 0.1% of SDS | 450 ± 10 nm extra-oral irradiation: 14 J/cm2, 200 mW, intra-oral irradiation 85 J/cm2, 1200 mW, | Group 1: Light only Group 2: PDT group Group 3: PDT + surfactant Group 4: CHX group | Microbiological analysis | Panhoca et al. [33] |
55 | RCT | N/A 13–18 years | Curcumin 1.5 mg/mL | 450 ± 20 nm, 96 J/cm2, 165 mW/cm2 | Group 1: 2% CHX varnish Group 2: placebo varnish Group 3: aPDT | PI, GI | Paschoal et al. [34] |
21 | Cross-over clinical study | N/A | Methylene Blue + Toluidine Blue, 1:1, 12.5μg/mL | 640 ± 5 nm, 30 J/cm2 | Group 1: control Group 2: PS only Group 3: aPDT | Microbiological analysis | Soares et al. [35] |
45 | RCT | Group 1: 15.4 (±1.48) Group 2: 13.8 (±0.91) Group 3: 14.2 (±1.17) | Methylene blue of 0.005% | 660 nm, 317.43 J/cm2, 100 mW, | Group 1: aPDT Group 2: tongue scrappers Group 3: tongue scrappers + aPDT | Breath analysis, Microbiological analysis | Alshahrani et al. [36] |
30 | RCT | 19.23 ± 3.08 | Methylene blue | 635 nm, 6.5 J/cm2, 20 mW | Group 1: PDT Group 2: control | LII | El Shehawy [37] |
Photosensitizer | Light Parameters | Study Groups | Investigative Parameter | Author |
---|---|---|---|---|
Cur-PLGA-NPs | 405 ± 5 nm, 150 mW/cm2 | Transbond XT supplemented with 0, 3, 5, 7, and 10% wt. Cur-PLGA-NPs | ARI, SBS, Microbiological analysis | Ahmadi et al. [38] |
0.1, 0.5 wt.% Rose Bengal or Riboflavin | 375 nm, 3 mW/cm2 | Group 1: Transbond XT, Group 2: 0.1% RB–PDT adhesive, Group 3: 0.1% RF–PDT adhesive, Group 4: 0.5% RB–PDT adhesive, Group 5: 0.5% RF–PDT adhesive | DC, MTT assay, ARI, SEM | Alqerban [39] |
cCur/ZnONPs | 435 ± 20 nm, 300–420 J/cm2 1000–1400 mW/cm2 | Transbond XT supplemented with 0, 1.2, 2.5, 5, 7.5, and 10% wt. cCur/ZnONPs | SBS, ARI, Crystal violet assay, XTT assay, DAD, biofilm formation inhibition, | Pourhajibagher et al. [40] |
Methylene Blue 100 mg/L | 810 nm | Group 1: Er-YAG laser + silane Group 2: PDT + silane, Group 3: H F + S Group 4: H F + Ultrasonic Bath + S, Group 5: sand blasting, Group 6: self-etch glass ceramic primer Group 7: Er,Cr:YSGG laser + silane | SBS, ARI | Baeshen [41] |
|
| Group 1: control Group2: aPDT MB, Group 3: aPDT ICG | SBS, ARI, SEM | Mirhashemi et al. [42] |
Riboflavin 0.5%, | 450 ± 65 nm, 95 J/cm2, | Group 1: riboflavin + LED irradiation; Group 2: riboflavin alone; Group 3: 0.2% chlorhexidine gluconate Group 4: not submitted to any treatment. | MTT assay, confocal laser microscopy, microbiological analysis | Kamran et al. [43] |
DNase-AuNCs 200 μg/mL | 808 nm, 2 W/cm2 | Group 1: DNase-only, Group 2: BSA-AuNCs-only Group 3: DNase-AuNCs-only, Group 4: DNase-AuNCs plus NIR Group 5: control | Crystal violet staining, SEM | Xie et al. [44] |
Methylene blue 100 μmol/L | 660 nm 26 J/cm2 | Group 1: S. aureus Group 2: S. mutans Group 3: E. coli | Microbiological analysis | Foggiato et al. [45] |
Hematoporphyrin IX and modified hematoporphyrin IX 10 μmol/L | 420–480 nm, 75 J/cm2, 1250 mW/cm2 | Group 1: PDT hematoporphyrin IX Group 2: Hematoporphyrin IX only Group 3: PDT with modified hematoporphyrin IX Group 4: Modified hematoporphyrin IX only Group 5: LED irradiation only Group 6: No LED irradiation or photosensitizer | Microbiological analysis | Lacerda Rangel Esper et al. [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olek, M.; Machorowska-Pieniążek, A.; Stós, W.; Kalukin, J.; Bartusik-Aebisher, D.; Aebisher, D.; Cieślar, G.; Kawczyk-Krupka, A. Photodynamic Therapy in Orthodontics: A Literature Review. Pharmaceutics 2021, 13, 720. https://doi.org/10.3390/pharmaceutics13050720
Olek M, Machorowska-Pieniążek A, Stós W, Kalukin J, Bartusik-Aebisher D, Aebisher D, Cieślar G, Kawczyk-Krupka A. Photodynamic Therapy in Orthodontics: A Literature Review. Pharmaceutics. 2021; 13(5):720. https://doi.org/10.3390/pharmaceutics13050720
Chicago/Turabian StyleOlek, Marcin, Agnieszka Machorowska-Pieniążek, Wojciech Stós, Janusz Kalukin, Dorota Bartusik-Aebisher, David Aebisher, Grzegorz Cieślar, and Aleksandra Kawczyk-Krupka. 2021. "Photodynamic Therapy in Orthodontics: A Literature Review" Pharmaceutics 13, no. 5: 720. https://doi.org/10.3390/pharmaceutics13050720
APA StyleOlek, M., Machorowska-Pieniążek, A., Stós, W., Kalukin, J., Bartusik-Aebisher, D., Aebisher, D., Cieślar, G., & Kawczyk-Krupka, A. (2021). Photodynamic Therapy in Orthodontics: A Literature Review. Pharmaceutics, 13(5), 720. https://doi.org/10.3390/pharmaceutics13050720