Intravitreal Anti-Vascular Endothelial Growth Factor Agents for the Treatment of Diabetic Retinopathy: A Review of the Literature
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Ranibizumab in the Treatment of Diabetic Retinopathy
3.2. Aflibercept in the Treatment of Diabetic Retinopathy
3.3. Combination of Intravitreal Anti-VEGF Agents and Panretinal Photocoagulation in the Treatment of Proliferative Diabetic Retinopathy
3.4. Intravitreal Anti-VEGF Agents in the Management of Vitreous Hemorrhage Due to Proliferative Diabetic Retinopathy
3.5. Safety and Tolerability of Intravitreal Anti-VEGF Agents in Patients with Diabetic Retinopathy
3.6. Challenges in the Use of Intravitreal Anti-VEGF Agents in Diabetic Retinopathy
3.7. Future Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IDF Diabetes Atlas 9th Edition 2019. Available online: https://diabetesatlas.org/en/ (accessed on 15 July 2021).
- Haider, S.; Thayakaran, R.; Subramanian, A.; Toulis, K.A.; Moore, D.; Price, M.J.; Nirantharakumar, K. Disease burden of diabetes, diabetic retinopathy and their future projections in the UK: Cross-sectional analyses of a primary care database. BMJ Open 2021, 11, e050058. [Google Scholar] [CrossRef] [PubMed]
- Das, A. Diabetic Retinopathy: Battling the Global Epidemic. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6669–6682. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Antonetti, D.A.; Klein, R.; Gardner, T.W. Diabetic retinopathy. N. Engl. J. Med. 2012, 366, 1227–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, B.E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007, 14, 179–183. [Google Scholar] [CrossRef]
- Zhang, X.; Saaddine, J.B.; Chou, C.F.; Cotch, M.F.; Cheng, Y.J.; Geiss, L.S.; Gregg, E.W.; Albright, A.L.; Klein, B.E.; Klein, R. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 2010, 304, 649–656. [Google Scholar] [CrossRef]
- Teo, Z.L.; Tham, Y.C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021. [Google Scholar] [CrossRef]
- Spencer, B.G.; Estevez, J.J.; Liu, E.; Craig, J.E.; Finnie, J.W. Pericytes, inflammation, and diabetic retinopathy. Inflammopharmacology 2020, 28, 697–709. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Pareja-Rios, A.; Lopez-Galvez, M.; Navarro-Gil, R.; Verges, R. Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. J. Diabetes Res. 2016, 2016, 2156273. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Kim, D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog. Retin. Eye Res. 2020, 82, 100903. [Google Scholar] [CrossRef]
- Amoaku, W.M.; Ghanchi, F.; Bailey, C.; Banerjee, S.; Banerjee, S.; Downey, L.; Gale, R.; Hamilton, R.; Khunti, K.; Posner, E.; et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye 2020, 34, 1–51. [Google Scholar] [CrossRef]
- Semeraro, F.; Morescalchi, F.; Cancarini, A.; Russo, A.; Rezzola, S.; Costagliola, C. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications. Diabetes Metab. 2019, 45, 517–527. [Google Scholar] [CrossRef]
- Behl, T.; Kotwani, A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol. Res. 2015, 99, 137–148. [Google Scholar] [CrossRef]
- Rodrigues, E.B.; Farah, M.E.; Maia, M.; Penha, F.M.; Regatieri, C.; Melo, G.B.; Pinheiro, M.M.; Zanetti, C.R. Therapeutic monoclonal antibodies in ophthalmology. Prog. Retin. Eye Res. 2009, 28, 117–144. [Google Scholar] [CrossRef]
- Mitchell, P.; Bandello, F.; Schmidt-Erfurth, U.; Lang, G.E.; Massin, P.; Schlingemann, R.O.; Sutter, F.; Simader, C.; Burian, G.; Gerstner, O.; et al. The RESTORE study: Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011, 118, 615–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heier, J.S.; Korobelnik, J.F.; Brown, D.M.; Schmidt-Erfurth, U.; Midena, E.; Boyer, D.S.; Terasaki, H.; Kaiser, P.K.; Marcus, D.M.; Nguyen, Q.D.; et al. Intravitreal Aflibercept for Diabetic Macular Edema: 148-Week Results from the VISTA and VIVID Studies. Ophthalmology 2016, 123, 2376–2385. [Google Scholar] [CrossRef]
- Stewart, S.; Yeong, J.L.; Virgili, G.; Azuara-Blanco, A.; Lois, N. Pragmatism of randomized clinical trials on ranibizumab for the treatment of diabetic macular edema: Impact on Clinical Outcomes. Retina 2020, 40, 919–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wykoff, C.C.; Eichenbaum, D.A.; Roth, D.B.; Hill, L.; Fung, A.E.; Haskova, Z. Ranibizumab Induces Regression of Diabetic Retinopathy in Most Patients at High Risk of Progression to Proliferative Diabetic Retinopathy. Ophthalmol. Retin. 2018, 2, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; McAllister, I.; Larsen, M.; Staurenghi, G.; Korobelnik, J.F.; Boyer, D.S.; Do, D.V.; Brown, D.M.; Katz, T.A.; Berliner, A.; et al. Evaluating the Impact of Intravitreal Aflibercept on Diabetic Retinopathy Progression in the VIVID-DME and VISTA-DME Studies. Ophthalmol. Retin. 2018, 2, 988–996. [Google Scholar] [CrossRef]
- The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 1981, 88, 583–600. [Google Scholar]
- Gross, J.G.; Glassman, A.R.; Liu, D.; Sun, J.K.; Antoszyk, A.N.; Baker, C.W.; Bressler, N.M.; Elman, M.J.; Ferris, F.L., 3rd; Gardner, T.W.; et al. Five-Year Outcomes of Panretinal Photocoagulation vs. Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 1138–1148. [Google Scholar] [CrossRef] [Green Version]
- Sivaprasad, S.; Prevost, A.T.; Vasconcelos, J.C.; Riddell, A.; Murphy, C.; Kelly, J.; Bainbridge, J.; Tudor-Edwards, R.; Hopkins, D.; Hykin, P.; et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): A multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet 2017, 389, 2193–2203. [Google Scholar] [PubMed] [Green Version]
- Figueira, J.; Fletcher, E.; Massin, P.; Silva, R.; Bandello, F.; Midena, E.; Varano, M.; Sivaprasad, S.; Eleftheriadis, H.; Menon, G.; et al. Ranibizumab Plus Panretinal Photocoagulation versus Panretinal Photocoagulation Alone for High-Risk Proliferative Diabetic Retinopathy (PROTEUS Study). Ophthalmology 2018, 125, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Fallico, M.; Maugeri, A.; Lotery, A.; Longo, A.; Bonfiglio, V.; Russo, A.; Avitabile, T.; Pulvirenti, A.; Furino, C.; Cennamo, G.; et al. Intravitreal anti-vascular endothelial growth factors, panretinal photocoagulation and combined treatment for proliferative diabetic retinopathy: A systematic review and network meta-analysis. Acta Ophthalmol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Zapata, M.J.; Martí-Carvajal, A.J.; Solà, I.; Pijoán, J.I.; Buil-Calvo, J.A.; Cordero, J.A.; Evans, J.R. Anti-vascular endothelial growth factor for proliferative diabetic retinopathy. Cochrane Database Syst. Rev. 2014, 11, CD008721. [Google Scholar] [CrossRef] [PubMed]
- Chatziralli, I. Ranibizumab for the treatment of diabetic retinopathy. Expert Opin. Biol. Ther. 2021. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Parravano, M.; Querques, L.; Sacconi, R.; Giorno, P.; De Geronimo, D.; Bandello, F.; Querques, G. One-year follow-up of ischemic index changes after intravitreal dexamethasone implant for diabetic macular edema: An ultra-widefield fluorescein angiography study. Acta Diabetol. 2020, 57, 543–548. [Google Scholar] [CrossRef]
- Iglicki, M.; Zur, D.; Busch, C.; Okada, M.; Loewenstein, A. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: A 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018, 55, 541–547. [Google Scholar] [CrossRef]
- Gross, J.G.; Glassman, A.R.; Jampol, L.M.; Inusah, S.; Aiello, L.P.; Antoszyk, A.N.; Baker, C.W.; Berger, B.B.; Bressler, N.M.; Browning, D.; et al. Panretinal Photocoagulation vs. Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2015, 314, 2137–2146. [Google Scholar]
- Bressler, S.B.; Liu, D.; Glassman, A.R.; Blodi, B.A.; Castellarin, A.A.; Jampol, L.M.; Kaufman, P.L.; Melia, M.; Singh, H.; Wells, J.A.; et al. Change in Diabetic Retinopathy Through 2 Years: Secondary Analysis of a Randomized Clinical Trial Comparing Aflibercept, Bevacizumab, and Ranibizumab. JAMA Ophthalmol. 2017, 135, 558–568. [Google Scholar] [CrossRef]
- Bressler, S.B.; Odia, I.; Glassman, A.R.; Danis, R.P.; Grover, S.; Hampton, G.R.; Jampol, L.M.; Maguire, M.G.; Melia, M. Changes in diabetic retinopathy severity when treating diabetic macular edema with ranibizumab: DRCR.net Protocol I 5-Year Report. Retina 2018, 38, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.E.; Stahl, A.; Voegeler, J.; Quiering, C.; Lorenz, K.; Spital, G.; Liakopoulos, S. Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy-the PRIDE study. Acta Ophthalmol. 2019. [Google Scholar] [CrossRef]
- Lim, J. Intravitreal Aflibercept Injection for Nonproliferative Diabetic Retinopathy: Year 2 Results from the PANORAMA Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 1381. [Google Scholar]
- Alagorie, A.R.; Velaga, S.; Nittala, M.G.; Yu, H.J.; Wykoff, C.C.; Sadda, S.R. Effect of Aflibercept on Diabetic Retinopathy Severity and Visual Function in the RECOVERY Study for Proliferative Diabetic Retinopathy. Ophthalmol. Retin. 2021, 5, 409–419. [Google Scholar] [CrossRef]
- Maturi, R.K.; Glassman, A.R.; Josic, K.; Antoszyk, A.N.; Blodi, B.A.; Jampol, L.M.; Marcus, D.M.; Martin, D.F.; Melia, M.; Salehi-Had, H.; et al. Effect of Intravitreous Anti-Vascular Endothelial Growth Factor vs. Sham Treatment for Prevention of Vision-Threatening Complications of Diabetic Retinopathy: The Protocol W Randomized Clinical Trial. JAMA Ophthalmol. 2021, in press. [Google Scholar] [CrossRef]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Oxygen sensing and metabolic homeostasis. Mol. Cell. Endocrinol. 2014, 397, 51–58. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125156s111lbl.pdf (accessed on 3 January 2021).
- Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/lucentis (accessed on 3 January 2021).
- Nguyen, Q.D.; Brown, D.M.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Gibson, A.; Sy, J.; Rundle, A.C.; Hopkins, J.J.; et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012, 119, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Nguyen, Q.D.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Schlottmann, P.G.; Rundle, A.C.; Zhang, J.; Rubio, R.G.; et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: The 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013, 120, 2013–2022. [Google Scholar] [CrossRef] [Green Version]
- Hutton, D.W.; Stein, J.D.; Bressler, N.M.; Jampol, L.M.; Browning, D.; Glassman, A.R. Diabetic Retinopathy Clinical Research Network. Cost-effectiveness of Intravitreous Ranibizumab Compared With Panretinal Photocoagulation for Proliferative Diabetic Retinopathy: Secondary Analysis From a Diabetic Retinopathy Clinical Research Network Randomized Clinical Trial. JAMA Ophthalmol. 2017, 135, 576–584. [Google Scholar]
- Hutton, D.W.; Stein, J.D.; Glassman, A.R.; Bressler, N.M.; Jampol, L.M.; Sun, J.K.; DRCR Retina Network. Five-Year Cost-effectiveness of Intravitreous Ranibizumab Therapy vs. Panretinal Photocoagulation for Treating Proliferative Diabetic Retinopathy: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2019, 137, 1424–1432. [Google Scholar] [CrossRef]
- Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 2002, 99, 11393–11398. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, F.; Fidilio, A.; Platania, C.B.M.; Giurdanella, G.; Salomone, S.; Leggio, G.M.; Tarallo, V.; Cicatiello, V.; De Falco, S.; Eandi, C.M.; et al. Aflibercept regulates retinal inflammation elicited by high glucose via the PlGF/ERK pathway. Biochem. Pharmacol. 2019, 168, 341–351. [Google Scholar] [CrossRef]
- Stewart, M.W.; Grippon, S.; Kirkpatrick, P. Aflibercept. Nat. Rev. Drug Discov. 2012, 11, 269–270. [Google Scholar] [CrossRef]
- Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M.P.; Shi, E.; Pyles, E.A.; Yancopoulos, G.D.; Stahl, N.; Wiegand, S.J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15, 171–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, M.W.; Rosenfeld, P.J. Predicted biological activity of intravitreal VEGF Trap. Br. J. Ophthalmol. 2008, 92, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Platania, C.B.; Di Paola, L.; Leggio, G.M.; Romano, G.L.; Drago, F.; Salomone, S.; Bucolo, C. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: A computational approach. Front. Pharmacol. 2015, 6, 248. [Google Scholar] [CrossRef] [Green Version]
- Moradi, A.; Sepah, Y.J.; Sadiq, M.A.; Nasir, H.; Kherani, S.; Sophie, R.; Do, D.V.; Nguyen, Q.D. Vascular endothelial growth factor trap-eye (Aflibercept) for the management of diabetic macular edema. World J. Diabetes 2013, 4, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125387s061lbl.pdf (accessed on 15 July 2021).
- Korobelnik, J.F.; Do, D.V.; Schmidt-Erfurth, U.; Boyer, D.S.; Holz, F.G.; Heier, J.S.; Midena, E.; Kaiser, P.K.; Terasaki, H.; Marcus, D.M.; et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 2014, 121, 2247–2254. [Google Scholar] [CrossRef]
- Brown, D.M.; Schmidt-Erfurth, U.; Do, D.V.; Holz, F.G.; Boyer, D.S.; Midena, E.; Heier, J.S.; Terasaki, H.; Kaiser, P.K.; Marcus, D.M.; et al. Intravitreal Aflibercept for Diabetic Macular Edema: 100-Week Results From the VISTA and VIVID Studies. Ophthalmology 2015, 122, 2044–2052. [Google Scholar] [CrossRef]
- Nicholson, L.; Crosby-Nwaobi, R.; Vasconcelos, J.C.; Prevost, A.T.; Ramu, J.; Riddell, A.; Bainbridge, J.W.; Hykin, P.G.; Sivaprasad, S. Mechanistic Evaluation of Panretinal Photocoagulation Versus Aflibercept in Proliferative Diabetic Retinopathy: CLARITY Substudy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
- Filho, J.A.; Messias, A.; Almeida, F.P.; Ribeiro, J.A.; Costa, R.A.; Scott, I.U.; Jorge, R. Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy. Acta Ophthalmol. 2011, 89, e567–e572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatziralli, I.; Dimitriou, E.; Theodossiadis, G.; Kazantzis, D.; Theodossiadis, P. Intravitreal ranibizumab alone or in combination with panretinal photocoagulation for the treatment of proliferative diabetic retinopathy with coexistent macular edema: Long-term outcomes of a prospective study. Acta Diabetol. 2020, 57, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, D.A.; Vasquez, L.M.; Preti, R.C.; Motta, A.; Sophie, R.; Bittencourt, M.G.; Sepah, Y.J.; Monteiro, M.L.; Nguyen, Q.D.; Takahashi, W.Y. A randomized controlled trial of panretinal photocoagulation with and without intravitreal ranibizumab in treatment-naive eyes with non-high-risk proliferative diabetic retinopathy. Retina 2015, 35, 280–287. [Google Scholar] [CrossRef]
- Cao, G.; Xu, X.; Wang, C.; Zhang, S. Sequence effect in the treatment of proliferative diabetic retinopathy with intravitreal ranibizumab and panretinal photocoagulation. Eur. J. Ophthalmol. 2020, 30, 34–39. [Google Scholar] [CrossRef]
- Comyn, O.; Wickham, L.; Charteris, D.G.; Sullivan, P.M.; Ezra, E.; Gregor, Z.; Aylward, G.W.; da Cruz, L.; Fabinyi, D.; Peto, T.; et al. Ranibizumab pretreatment in diabetic vitrectomy: A pilot randomised controlled trial (the RaDiVit study). Eye 2017, 31, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.E.; Stahl, A.; Voegeler, J.; Quiering, C.; Zaremba, L.; Lorenz, K.; Spital, G.; Liakopoulos, S. Observational outcomes in proliferative diabetic retinopathy patients following treatment with ranibizumab, panretinal laser photocoagulation or combination therapy—The non-interventional second year follow-up to the PRIDE study. Acta Ophthalmol. 2021, in press. [Google Scholar] [CrossRef]
- El Annan, J.; Carvounis, P.E. Current management of vitreous hemorrhage due to proliferative diabetic retinopathy. Int. Ophthalmol. Clin. 2014, 54, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. Four-year results of a randomized trial: Diabetic Retinopathy Vitrectomy Study Report 5. Arch. Ophthalmol. 1990, 108, 958–964. [CrossRef]
- Simunovic, M.P.; Maberley, D.A. Anti-vascular endothelial growth factor therapy for proliferative diabetic retinopathy: A systematic review and meta-analysis. Retina 2015, 35, 1931–1942. [Google Scholar] [CrossRef]
- Chatziralli, I.; Dimitriou, E.; Theodossiadis, G.; Bourouki, E.; Bagli, E.; Kitsos, G.; Theodossiadis, P. Intravitreal ranibizumab versus vitrectomy for recurrent vitreous haemorrhage after pars plana vitrectomy for proliferative diabetic retinopathy: A prospective study. Int. Ophthalmol. 2020, 40, 841–847. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Xia, S.; Chen, Y.X. Antivascular endothelial growth factor agents pretreatment before vitrectomy for complicated proliferative diabetic retinopathy: A meta-analysis of randomised controlled trials. Br. J. Ophthalmol. 2018, 102, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Chen, Q.; Du, Z.; Wang, W.; Zhao, G. Evaluation of vitrectomy combined preoperative intravitreal ranibizumab and postoperative intravitreal triamcinolone acetonide for proliferative diabetic retinopathy. Int. Ophthalmol. 2021, 41, 1635–1642. [Google Scholar] [CrossRef]
- Russo, A.; Longo, A.; Avitabile, T.; Bonfiglio, V.; Fallico, M.; Boscia, F.; Furino, C.; Cillino, S.; Toro, M.; Rejdak, R.; et al. Incidence and Risk Factors for Tractional Macular Detachment after Anti-Vascular Endothelial Growth Factor Agent Pretreatment before Vitrectomy for Complicated Proliferative Diabetic Retinopathy. J. Clin. Med. 2019, 8, 1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diabetic Retinopathy Clinical Research Network. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous hemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol. 2013, 131, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelala, E.; Nehme, J.; El Rami, H.; Aoun, R.; Dirani, A.; Fadlallah, A.; Jalkh, A. Efficacy of intravitreal ranibizumab injection in the treatment of vitreous hemorrhage related to proliferative diabetic retinopathy. Retina 2018, 38, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Antoszyk, A.N.; Glassman, A.R.; Beaulieu, W.T.; Jampol, L.M.; Jhaveri, C.D.; Punjabi, O.S.; Salehi-Had, H.; Wells, J.A., 3rd; Maguire, M.G.; Stockdale, C.R.; et al. Effect of Intravitreous Aflibercept vs. Vitrectomy With Panretinal Photocoagulation on Visual Acuity in Patients With Vitreous Hemorrhage From Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA 2020, 324, 2383–2395. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Wong, T.Y. Proliferative diabetic retinopathy: Laser or eye injection? Lancet 2017, 389, 2165–2166. [Google Scholar] [CrossRef]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Obeid, A.; Gao, X.; Ali, F.S.; Talcott, K.E.; Aderman, C.M.; Hyman, L.; Ho, A.C.; Hsu, J. Loss to Follow-Up in Patients with Proliferative Diabetic Retinopathy after Panretinal Photocoagulation or Intravitreal Anti-VEGF Injections. Ophthalmology 2018, 125, 1386–1392. [Google Scholar] [CrossRef]
- Obeid, A.; Su, D.; Patel, S.N.; Uhr, J.H.; Borkar, D.; Gao, X.; Fineman, M.S.; Regillo, C.D.; Maguire, J.I.; Garg, S.J.; et al. Outcomes of Eyes Lost to Follow-up with Proliferative Diabetic Retinopathy That Received Panretinal Photocoagulation versus Intravitreal Anti-Vascular Endothelial Growth Factor. Ophthalmology 2019, 126, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.K.; Glassman, A.R.; Beaulieu, W.T.; Stockdale, C.R.; Bressler, N.M.; Flaxel, C.; Gross, J.G.; Shami, M.; Jampol, L.M. Diabetic Retinopathy Clinical Research Network. Rationale and Application of the Protocol S Anti-Vascular Endothelial Growth Factor Algorithm for Proliferative Diabetic Retinopathy. Ophthalmology 2019, 126, 87–95. [Google Scholar] [CrossRef]
- Wu, L.; Acón, D.; Wu, A.; Wu, M. Vascular endothelial growth factor inhibition and proliferative diabetic retinopathy, a changing treatment paradigm? Taiwan J. Ophthalmol. 2019, 9, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, S.; Dupas, B.; Lavia, C.; Erginay, A.; Dhundass, M.; Couturier, A.; Gaudric, A.; Tadayoni, R. Anti-vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina 2019, 39, 426–434. [Google Scholar] [CrossRef]
- Karst, S.G.; Deak, G.G.; Gerendas, B.S.; Waldstein, S.M.; Lammer, J.; Simader, C.; Guerin, T.; Schmidt-Erfurth, U.M. Association of Changes in Macular Perfusion With Ranibizumab Treatment for Diabetic Macular Edema: A Subanalysis of the RESTORE (Extension) Study. JAMA Ophthalmol. 2018, 136, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campochiaro, P.A.; Wykoff, C.C.; Shapiro, H.; Rubio, R.G.; Ehrlich, J.S. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology 2014, 121, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Shin, I.C.; Jeong, I.W.; Choi, C.W.; Yang, Y.S. Prospective, Single-Center, Six-Month Study of Intravitreal Ranibizumab for Macular Edema with Nonproliferative Diabetic Retinopathy: Effects on Microaneurysm Turnover and Non-Perfused Retinal Area. Clin. Ophthalmol. 2020, 14, 1609–1618. [Google Scholar] [CrossRef]
- Busch, C.; Wakabayashi, T.; Sato, T.; Fukushima, Y.; Hara, C.; Shiraki, N.; Winegarner, A.; Nishida, K.; Sakaguchi, H.; Nishida, K. Retinal Microvasculature and Visual Acuity after Intravitreal Aflibercept in Diabetic Macular Edema: An Optical Coherence Tomography Angiography Study. Sci. Rep. 2019, 9, 1561. [Google Scholar] [CrossRef] [PubMed]
- Sorour, O.A.; Sabrosa, A.S.; Yasin Alibhai, A.; Arya, M.; Ishibazawa, A.; Witkin, A.J.; Baumal, C.R.; Duker, J.S.; Waheed, N.K. Optical coherence tomography angiography analysis of macular vessel density before and after anti-VEGF therapy in eyes with diabetic retinopathy. Int. Ophthalmol. 2019, 39, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, N.; Srivastava, S.K.; Singh, R.P.; Babiuch, A.; Sharma, S.; Rachitskaya, A.; Talcott, K.; Reese, J.; Hu, M.; Ehlers, J.P. Longitudinal Panretinal Leakage and Ischemic Indices in Retinal Vascular Disease after Aflibercept Therapy: The PERMEATE Study. Ophthalmol. Retin. 2020, 4, 154–163. [Google Scholar] [CrossRef]
- Dorrell, M.I.; Aguilar, E.; Scheppke, L.; Barnett, F.H.; Friedlander, M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Baffert, F.; Le, T.; Sennino, B.; Thurston, G.; Kuo, C.J.; Hu-Lowe, D.; McDonald, D.M. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, 547–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manousaridis, K.; Talks, J. Macular ischaemia: A contraindication for anti-VEGF treatment in retinal vascular disease? Br. J. Ophthalmol. 2012, 96, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Statler, B.; Conti, T.F.; Conti, F.F.; Silva, F.Q.; Rachitskaya, A.; Yuan, A.; Schachat, A.; Kaiser, P.K.; Singh, R.P.; Babiuch, A. Twenty-Four-Month OCTA Assessment in Diabetic Patients Undergoing Fixed-Interval Intravitreal Aflibercept Therapy. Ophthalmic Surg. Lasers Imaging Retin. 2020, 51, 448–455. [Google Scholar] [CrossRef]
- Barash, A.; Chui, T.Y.P.; Garcia, P.; Rosen, R.B. Acute macular and peripapillary angiographic changes with intravitreal injections. Retina 2020, 40, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Sheth, J.; Anantharaman, G.; Gopalakrishnan, M. Ranibizumab-induced retinal reperfusion and regression of neovascularization in diabetic retinopathy: An angiographic illustration. Am. J. Ophthalmol. Case Rep. 2018, 9, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Nittala, M.G.; Zhou, B.; Fan, W.; Velaga, S.B.; Lampen, S.I.R.; Rusakevich, A.M.; Ehlers, J.P.; Babiuch, A.; Brown, D.M.; et al. Intravitreal Aflibercept for Retinal Nonperfusion in Proliferative Diabetic Retinopathy: Outcomes from the Randomized RECOVERY Trial. Ophthalmol. Retin. 2019, 3, 1076–1086. [Google Scholar] [CrossRef]
- Couturier, A.; Rey, P.A.; Erginay, A.; Lavia, C.; Bonnin, S.; Dupas, B.; Gaudric, A.; Tadayoni, R. Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor. Ophthalmology 2019, 126, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.M.; Rusu, I.; Orlin, A.; Gupta, M.P.; Coombs, P.; D’Amico, D.J.; Kiss, S. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections. Clin. Ophthalmol. 2017, 11, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Saharinen, P.; Eklund, L.; Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat. Rev. Drug Discov. 2017, 16, 635–661. [Google Scholar] [CrossRef]
- Gerald, D.; Chintharlapalli, S.; Augustin, H.G.; Benjamin, L.E. Angiopoietin-2: An attractive target for improved antiangiogenic tumor therapy. Cancer Res. 2013, 73, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
- Regula, J.T.; von Leithner, P.L.; Foxton, R.; Barathi, V.A.; Cheung, C.M.; Bo Tun, S.B.; Wey, Y.S.; Iwata, D.; Dostalek, M.; Moelleken, J.; et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol. Med. 2016, 8, 1265–1288. [Google Scholar] [CrossRef]
- Sahni, J.; Patel, S.S.; Dugel, P.U.; Khanani, A.M.; Jhaveri, C.D.; Wykoff, C.C.; Hershberger, V.S.; Pauly-Evers, M.; Sadikhov, S.; Szczesny, P.; et al. Simultaneous Inhibition of Angiopoietin-2 and Vascular Endothelial Growth Factor-A with Faricimab in Diabetic Macular Edema: BOULEVARD Phase 2 Randomized Trial. Ophthalmology 2019, 126, 1155–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolò, M.; Ferro Desideri, L.; Vagge, A.; Traverso, C.E. Faricimab: An investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin. Investig. Drugs 2021, 30, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Pouliot, M.; Couture, R.; Vaucher, E. The kallikrein-kinin system in diabetic retinopathy. Prog. Drug Res. 2014, 69, 111–143. [Google Scholar] [PubMed]
- Liu, J.; Feener, E.P. Plasma kallikrein-kinin system and diabetic retinopathy. Biol. Chem. 2013, 394, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatwadekar, A.D.; Kansara, V.S.; Ciulla, T.A. Investigational plasma kallikrein inhibitors for the treatment of diabetic macular edema: An expert assessment. Expert Opin. Investig. Drugs 2020, 29, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.K.; Maturi, R.K.; Boyer, D.S.; Wells, J.A.; Gonzalez, V.H.; Tansley, R.; Hernandez, H.; Maetzel, A.; Feener, E.P.; Aiello, L.P. One-Time Intravitreal Injection of KVD001, a Plasma Kallikrein Inhibitor, in Patients with Central-Involved Diabetic Macular Edema and Reduced Vision: An Open-Label Phase 1B Study. Ophthalmol. Retin. 2019, 3, 1107–1109. [Google Scholar] [CrossRef]
- Platania, C.B.M.; Giurdanella, G.; Di Paola, L.; Leggio, G.M.; Drago, F.; Salomone, S.; Bucolo, C. P2X7 receptor antagonism: Implications in diabetic retinopathy. Biochem. Pharmacol. 2017, 138, 130–139. [Google Scholar] [CrossRef]
- Min, J.; Zeng, T.; Roux, M.; Lazar, D.; Chen, L.; Tudzarova, S. The Role of HIF1α-PFKFB3 pathway in Diabetic Retinopathy. J. Clin. Endocrinol. Metab. 2021. [Google Scholar] [CrossRef] [PubMed]
Design | Number of Eyes | Treatment | Follow-Up | Main Outcomes | |
---|---|---|---|---|---|
Gross et al. (2015) [30] | Randomized clinical trial (PROTOCOL S) | 394 eyes with PDR with/without DME | Panretinal photocoagulation or Ranibizumab 0.5 mg eyes with DME have received ranibizumab | 2 years | Among eyes with PDR, treatment with ranibizumab resulted in visual acuity that was noninferior to PRP treatment at 2 years (visual acuity change was +2.8 in the ranibizumab group vs. +0.2 in the PRP group, p < 0.001). Mean peripheral visual field sensitivity loss was worse (p < 0.001), vitrectomy was more frequent (p < 0.001), and DME development was more frequent (28% vs. 9%; p < 0.001) in the PRP group vs. the ranibizumab group, respectively. |
Bressler et al. (2017) [31] | Secondary analysis of PROTOCOL T | 650 eyes with DME | Aflibercept 2.0 mg or ranibizumab 0.3 mg or bevacizumab 1.25 mg (every 4 weeks through 2 years following a re-treatment protocol) | 2 years | At 1 and 2 years, eyes with NPDR receiving anti-VEGF treatment for DME may experience improvement in DR severity. Aflibercept was associated with more improvement at 1 and 2 years in the smaller subgroup of participants with PDR at baseline. All three anti-VEGF treatments were associated with low rates of DR worsening. Specifically, at 1 year, among 423 NPDR eyes, 44 of 141 (31.2%) treated with aflibercept, 29 of 131 (22.1%) with bevacizumab, and 57 of 151 (37.7%) with ranibizumab had improvement of DR severity (p = 0.004 for aflibercept vs. bevacizumab; p = 0.01 for ranibizumab vs. bevacizumab; and p = 0.51 for aflibercept vs. ranibizumab). At 2 years, 33 eyes (24.8%) in the aflibercept group, 25 eyes (22.1%) in the bevacizumab group, and 40 eyes (31.0%) in the ranibizumab group had DR improvement; no treatment group differences were identified. For 93 eyes with PDR at baseline, 1-year improvement rates were 75.9% for aflibercept, 31.4% for bevacizumab, and 55.2% for ranibizumab (p < 0.001 for aflibercept vs. bevacizumab; p = 0.09 for ranibizumab vs. bevacizumab; and p = 0.02 for aflibercept vs. ranibizumab). These rates and treatment group differences appeared to be maintained at 2 years. |
Sivaprasad et al. (2017) [23] | Phase 2b, non-inferiority trial CLARITY study | 232 eyes with PDR | Aflibercept 2.0 mg or PRP | 1 year | Aflibercept was non-inferior and superior to PRP in both the modified intention-to-treat population mean best corrected visual acuity difference 3.9 letters (p < 0·0001) and the per-protocol population (4·0 letters, p < 0·0001). New-onset center involved DME (29% vs. 11%), vitreous hemorrhage (18% vs. 9%), need for vitrectomy (6% vs. 1%), and visual loss (10% vs. 5%) were more likely to occur in eyes treated with PRP than with aflibercept. |
Wykoff et al. (2018) [19] | Post hoc analysis of RISE and RIDE | 746 eyes with DME | Ranibizumab 0.3 mg or ranibizumab 0.5 mg or sham | 36 months | Ranibizumab treatment resulted in DR improvements in all 3 baseline DR severity subsets examined. The greatest benefits in DR improvement occurred in patients with baseline moderately severe to severe NPDR (DR levels 47/53). Specifically, in patients with baseline DR levels 47/53, ranibizumab treatment reduced the probability of patients experiencing a new proliferative event at month 36 by 3 times compared with sham treatment (12.4% and 11.9% vs. 35.2% for ranibizumab 0.3 mg, ranibizumab 0.5 mg, and sham, respectively). |
Bressler et al. (2018) [32] | Sub-analysis of PROTOCOL I | 346 eyes with DME | Ranibizumab 0.5 mg | 5 years | Individuals receiving ranibizumab therapy for DME may have favorable changes in DR severity throughout a 5-year period concomitant with sequential reduction in anti-VEGF therapy. Among 235 participants with NPDR at baseline, there were 29%, 28%, and 32% eyes with retinopathy improvement at 1, 3, and 5 years, respectively. Among 111 participants with PDR, corresponding improvement percentages were 38%, 35%, and 23%. |
Mitchell et al. (2018) [20] | Secondary and exploratory analysis of VIVID and VISTA | 403 eyes (VIVID) and 459 eyes (VISTA) with DME | Aflibercept 2.0 mg every 4 weeks (2q4) or every 8 weeks (2q8) after a loading phase of 5 monthly injections or laser and sham injections | 2 years | The proportions of patients treated with 2q4, 2q8, and laser with a 2-step or more improvement in DRSS score at week 100 were 29.3%, 32.6%, and 8.2%, respectively, in VIVID-DME and 37.0%, 37.1%, and 15.6%, respectively, in VISTA-DME. The proportions with a 3-step or more improvement in DRSS score were 7.3%, 2.3%, and 0%, respectively, and 22.7%, 19.9%, and 5.2%, respectively. Fewer patients in aflibercept groups versus the laser group progressed to PDR at week 100. |
Figueira et al. (2018) [24] | Prospective, randomized, open-label PROTEUS study | 87 eyes with high-risk PDR | Ranibizumab 0.5 mg plus PRP or PRP alone | 12 months | The number of participants with neovascularization of the disc or elsewhere reductions was higher in combination group (93.3% and 91.4%, respectively) versus PRP (68.8% and 73.7%, respectively). Complete neovascularization total regression was observed in 43.9% in the combination group versus 25.0% in the PRP monotherapy group (p = 0.066). |
Lang et al. (2019) [33] | PRIDE study | 106 eyes with PDR without DME | Ranibizumab 0.5 mg or PRP or Ranibizumab 0.5 mg plus PRP | 12 months | At Month 12, there was a statistically significant difference of −2.83 mm² in the least square mean change in neovascularization area between the ranibizumab monotherapy and PRP group, favoring ranibizumab (p = 0.0344). Visual acuity change was greater in the ranibizumab group compared with the PRP monotherapy group at Month 12 (p = 0.0495). |
Lim (2021) [34] | PANORAMA study | Moderately severe to severe NPDR without DME | Aflibercept 2.0 mg or sham | 2 years | At week 52, 65%, and 80% of eyes treated with 16-week and 8-week aflibercept, respectively, versus 15% of sham eyes had a ≥2-step improvement in DRSS score. At week 100, the same level was achieved by 62% and 50% of 16-week and 8-week aflibercept eyes respectively, versus 13% of sham eyes. At week 100, patients treated with intravitreal aflibercept had a 75% to 79% reduction in likelihood of developing a vision-threatening complication or DME as compared with patients in the sham arm. |
Alagorie et al. (2021) [35] | Prospective, multicenter trial RECOVERY study | 40 eyes with PDR and no DME | Aflibercept 2.0 mg monthly or quarterly | 12 months | Both monthly and quarterly groups demonstrated a statistically significant regression in DRSS from baseline to month 12 (p < 0.001). The monthly group demonstrated a statistically significant greater regression of DRSS score at the month 6 visit compared with the quarterly group (p = 0.019). However, the difference between the two groups became statistically insignificant at month 12 (p = 0.309). |
Maturi et al. (2021) [36] | Randomized clinical trial (PROTOCOL W) | 399 eyes with moderate-to-severe NPDR without DME | Aflibercept 2.0 mg or sham (baseline;1,2,4 months; every 4 months through year 2) | 24 months | The 2-year cumulative probability of developing PDR was 13.5% in the aflibercept group versus 33.2% in the sham group (p < 0.001), and the 2-year cumulative probability of developing DME with vision loss was 4.1% in the aflibercept group versus 14.8% in the sham group (p < 0.001). The mean change in visual acuity from baseline to 2 years was −0.9 letters with aflibercept and −2.0 letters with sham, not reaching statistical significance. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatziralli, I.; Loewenstein, A. Intravitreal Anti-Vascular Endothelial Growth Factor Agents for the Treatment of Diabetic Retinopathy: A Review of the Literature. Pharmaceutics 2021, 13, 1137. https://doi.org/10.3390/pharmaceutics13081137
Chatziralli I, Loewenstein A. Intravitreal Anti-Vascular Endothelial Growth Factor Agents for the Treatment of Diabetic Retinopathy: A Review of the Literature. Pharmaceutics. 2021; 13(8):1137. https://doi.org/10.3390/pharmaceutics13081137
Chicago/Turabian StyleChatziralli, Irini, and Anat Loewenstein. 2021. "Intravitreal Anti-Vascular Endothelial Growth Factor Agents for the Treatment of Diabetic Retinopathy: A Review of the Literature" Pharmaceutics 13, no. 8: 1137. https://doi.org/10.3390/pharmaceutics13081137
APA StyleChatziralli, I., & Loewenstein, A. (2021). Intravitreal Anti-Vascular Endothelial Growth Factor Agents for the Treatment of Diabetic Retinopathy: A Review of the Literature. Pharmaceutics, 13(8), 1137. https://doi.org/10.3390/pharmaceutics13081137