The Antimicrobial Properties of Modified Pharmaceutical Bentonite with Zinc and Copper
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Samples Preparation
2.3. Characterization
2.3.1. X-ray Diffraction Analysis
2.3.2. Scanning Electron Microscope-Energy Dispersive Spectroscopy
2.3.3. Fourier-Transform Infrared Spectroscopy
2.3.4. X-ray Fluorescence
2.3.5. Profile of Metals Concentration
2.4. Statistical Analysis
2.5. Evaluation of Antimicrobial Protection
3. Results and Discussion
3.1. X-ray Diffraction Analysis (XRD)
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Surface Characterizations
Scanning Electron Microscope-SEM-Energy Dispersive Spectroscopy (SEM-EDS)
3.4. Chemical Characterization
X-ray Fluorescence Spectroscopy Analysis (XRF)
3.5. Profile of Metal Concentration
3.6. Challenge Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Harben, P.W. The Industrial Mineral. Handy Book. A Guide to Markets, Specifications and Prices, 4th ed.; Industrial Mineral Information: Worcester Park, UK, 2002; p. 412. [Google Scholar]
- López-Galindo, A.; Viseras, C.; Cerezo, P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sci. 2007, 36, 51–63. [Google Scholar] [CrossRef]
- Viseras, C.; Lopez-Galindo, A. Pharmaceutical applications of some spanish clays (sepiolite, palygorskite, bentonite): Some preformulation studies. Appl. Clay Sci. 1999, 14, 69–82. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Darbre, P.D. Environmental oestrogens, cosmetics and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 121–143. [Google Scholar] [CrossRef]
- Taxvig, C.; Vinggaard, A.M.; Hass, U.; Axelstad, M.; Boberg, J.; Hansen, P.R.; Nellemann, C. Do parabens have the ability to interfere with steroidogenesis? Toxicol. Sci. 2008, 106, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Caliman, F.A.; Gavrilescu, M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—A review. Clean Soil Air Water 2009, 37, 277–303. [Google Scholar] [CrossRef]
- Dhanirama, D.; Gronow, J.; Voulvoulis, N. Cosmetics as a potential source of environmental contamination in the UK. Environ. Technol. 2012, 33, 1597–1608. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II active ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Favero, J.S.; Parisotto-Peterle, J.; Weiss-Angeli, V.; Brandalise, R.N.; Gomes, L.B.; Bergmann, C.P.; dos Santos, V. Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Appl. Clay Sci. 2016, 124–125, 252–259. [Google Scholar] [CrossRef]
- Dardir, F.M.; Mohamed, A.S.; Abukhadra, M.R.; Ahmed, E.A.; Soliman, M.F. Cosmetic and pharmaceutical qualifications of egyptian bentonite and its suitability as drug carrier for praziquantel drug. Eur. J. Pharm. Sci. 2018, 115, 320–329. [Google Scholar] [CrossRef]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- Awad, M.E.; López-Galindo, A.; Setti, M.; El-Rahmany, M.M.; Iborra, C.V. Kaolinite in pharmaceutics and biomedicine. Int. J. Pharm. 2017, 533, 34–48. [Google Scholar] [CrossRef]
- Intekom. Pharmaceutical Information about Caloplast Kaolin Poultice (Medicinal Informative Website, South African Electronic Package). Available online: http://home.intekom.com/pharm/allied/caloplst.html/ (accessed on 19 September 2017).
- Schliemann, S.; Petri, M.; Elsner, P. Preventing irritant contact dermatitis with protective creams: Influence of the application dose. Contact Dermat. 2013, 70, 19–26. [Google Scholar] [CrossRef]
- Gamoudi, S.; Srasra, E. Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl. Clay Sci. 2017, 146, 162–166. [Google Scholar] [CrossRef]
- Ohashi, F.; Oya, A.; Duclaux, L.; Beguin, F. Structural model calculation of antimicrobial and antifungal agents derived from clay minerals. Appl. Clay Sci. 1998, 12, 435–445. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, J.; Liu, N. Preparation and Characterization of Mingguang Palygorskite Supported with Silver and Copper for Antibacterial Behavior. Appl. Clay Sci. 2006, 33, 161–170. [Google Scholar] [CrossRef]
- Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Ángeles-Chávez, C.; Cortés, M.A.; Sánchez, R.M.T. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. [Google Scholar] [CrossRef]
- Pajarito, B.B.; Castañeda, K.C.; Jeresano, S.D.M.; Repoquit, D.A.N. Reduction of offensive odor from natural rubber using zinc-modified bentonite. Adv. Mater. Sci. Eng. 2018, 2018, 9102825. [Google Scholar] [CrossRef] [Green Version]
- Murray, H.H. Current industrial applications of clays. Clay Sci. 2006, 12, 106–112. [Google Scholar] [CrossRef]
- Özdemir, G.; Yapar, S. Preparation and characterization of copper and zinc adsorbed cetylpyridinium and N-lauroylsarcosinate intercalated montmorillonites and their antibacterial activity. Colloids Surf. B Biointerfaces 2020, 188, 110791. [Google Scholar] [CrossRef]
- Park, J.; Shin, H.; Kim, M.H.; Kim, J.; Kang, N.; Lee, J.; Kim, D. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J. Pharm. Investig. 2016, 46, 363–375. [Google Scholar] [CrossRef]
- Veniale, F.; Setti, M. L’argilla di Pontestura (AL): Potenzialità d´impiego nella formulazione di fanghi peloid. In Atti Conveqno “Argille Curative”; Veniale, F., Ed.; Gruppo Italiano AIPEA; Salice Terme, Italy; Tipografia Trabella: Milano, Italy, 1996; pp. 139–145. [Google Scholar]
- Veniale, F. Applicazioni e utilizzazioni medico-sanitarie di materialiargillosi (naturali emodificati). In Argille e MineralidelleArgille. Guidaalla Definizione di Caratteristiche e Proprieta per gliUsiIndustriali; Corso di Formazione; Morandi, N., Dondi, M., Eds.; Gruppo Ital. AIPEA: Rimini, Italy, 1997; pp. 205–239. [Google Scholar]
- Summa, V.; Tateo, F. The use of pelitic raw materials in thermal centres: Mineralogy, geochemistry, grain size and leaching tests. Examples from the lucania area (southern italy). Appl. Clay Sci. 1998, 12, 403–417. [Google Scholar] [CrossRef]
- Bettero, A.; Marcazzan, M.; Semenzato, A. Aspetti reologici e tensiometrici di matrici fangose di impiego termali e cosmético, Proposta di un protocollo per la loro qualificazione, Atti Simposio “Argille per fanghi peloidi termali e per trattamenti dermatologici e cosmetici”, Montecatini Terme. Mineral. Petrogr. Acta 1999, 42, 277–286. [Google Scholar]
- Gorgoni, C.; Bertolani, M.; Ghittoni, A.G.; Pallante, P. Comoposizione, radiottivitá, mineralogia e reologia dei fanghi delle Salse Emiliane. In Abstracts Book of Simposio “Argille per Fanghi Peloidi Termali e per Trattamenti Dermatologici e Cosmetici”; Montecatini Terme, Gruppo Italiano AIPEA: Pisa, Italy, 1999. [Google Scholar]
- Minguzzi, V.; Morandi, N.; Tagnin, S.; Tateo, F. Le argille curative in uso negli stabilimenti termali emiliano-romagnoli: Verifica della composizione e delle proprietà. Mineral. Petrogr. Acta 1999, 42, 287–298. [Google Scholar]
- Cara, S.; Carcangiu, G.; Padalino, G.; Palomba, M.; Tamanini, M. The bentonites in pelotherapy: Chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy). Appl. Clay Sci. 2000, 16, 117–124. [Google Scholar] [CrossRef]
- Sánchez, C.; Parras, J.; Carretero, M.I.; Barba, P. Aplicaciones terapéuticas de las arcillas de Santa Cruz de Mudela (Ciudad Real). In Integración Ciencia-Tecnologia de las Arcillas en el Contexto Tecnológico-Social del Nuevo Milenio; Pascual, J., Ed.; Sociedad Española de Arcillas: Granada, Spain, 2000; pp. 31–40. [Google Scholar]
- Cara, S.; Carcangiu, G.; Padalino, G.; Palomba, M.; Tamanini, M. The bentonites in pelotherapy: Thermal properties of clay pastes from Sardinia (Italy). Appl. Clay Sci. 2000, 16, 125–132. [Google Scholar] [CrossRef]
- Veniale, F.; Barberis, E.; Carcagiu, G.; Morandi, N.; Setti, M.; Tamanini, M.; Tessier, D. Formulation of muds for pelotherapy: Effects of “maduration” by different mineral waters. Appl. Clay Sci. 2004, 25, 135–148. [Google Scholar] [CrossRef]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo, A. Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Legido, J.L.; Medina, C.; Lourdes Mourelle, M.; Carretero, M.I.; Pozo, M. Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Appl. Clay Sci. 2007, 36, 148–160. [Google Scholar] [CrossRef]
- Chang, P.; Jiang, W.; Li, Z. Mechanism of tyramine adsorption on ca-montmorillonite. Sci. Total Environ. 2018, 642, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Mosaleheh, N.; Sarvi, M.N. Minimizing the residual antimicrobial activity of tetracycline after adsorption into the montmorillonite: Effect of organic modification. Environ. Res. 2020, 182, 109056. [Google Scholar] [CrossRef]
- Gelmetti. Local antibiotics in dermatology. Dermatol. Ther. 2008, 21, 187–195. [Google Scholar] [CrossRef]
- Rist, T.; Parish, L.C.; Capin, L.R.; Sulica, V.; Bushnell, W.D.; Cupo, M.A. A comparison of the efficacy and safety of mupirocin cream and cephalexin in the treatment of secondarily infected eczema. Clin. Exp. Dermatol. 2002, 27, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B.G.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Ågren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007, 15, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Han, G.; Zhang, Y.; Pan, Y.; Li, X.; Xia, Y.; Wu, Y. Antifungal activity and cytotoxicity of zinc, calcium, or copper alginate fibers. Biol. Trace Elem. Res. 2012, 148, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linlin, L.; Hualin, W.; Chongyang, J.; Minmin, C.; Suwei, J.; Junfeng, C.; Shaotong, J. Antibacterial activity and cytotoxicity of l-phenylalanine-oxidized starch-coordinated zinc (II). Int. J. Biol. Macromol. 2018, 123, 133–139. [Google Scholar] [CrossRef]
- Do Rosário, J.A.; De Moura, G.B.G.; Gusatti, M.; Riella, H.G. Synthesis of silver-treated bentonite: Evaluation of its antibacterial properties. Chem. Eng. Trans. 2009, 17, 1795–1800. [Google Scholar] [CrossRef]
- Taaca, K.L.M.; Dahonog, L.A.; Argayosa, V.B.; Rubio, R.O.; Olegario, E.M. Cell viability and bacterial reduction activity of Ag-modified bentonite. Mater. Today Proc. 2019, 16, 1782–1788. [Google Scholar] [CrossRef]
- Clegg, F.; Breen, C.; Muranyi, P.; Schönweitz, C. Antimicrobial, starch based barrier coatings prepared using mixed silver/sodium exchanged bentonite. Appl. Clay Sci. 2019, 179. [Google Scholar] [CrossRef]
- Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. Br. Med. J. 2006, 332, 777–780. [Google Scholar] [CrossRef]
- Enoch, S.; Grey, J.E.; Harding, K.G. Non-surgical and drug treatments. Br. Med. J. 2006, 332, 900–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansdown, A.B.G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010, 2010, 910686. [Google Scholar] [CrossRef] [Green Version]
- White, J.M.; Powell, A.M.; Brady, K.; Russell-Jones, R. Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin. Exp. Dermatol. 2003, 28, 254–256. [Google Scholar] [CrossRef]
- Fan, W.; Sun, Q.; Li, Y.; Tay, F.R.; Fan, B. Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against enterococcus faecalis and its application against dentin infection. J. Nanobiotechnol. 2018, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma Acute Care Surg. 2006, 60, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Martsouka, F.; Papagiannopoulos, K.; Hatziantoniou, S.; Barlog, M.; Lagiopoulos, G.; Tekerlekopoulou, A.G.; Papoulis, D. Evaluation of the antimicrobial protection of pharmaceutical kaolin and talc modified with copper and zinc. Materials 2021, 14, 1173. [Google Scholar] [CrossRef]
- Bekiari, V.; Panagopoulos, G.; Papoulis, D.; Panagiotaras, D. Use of halloysite nanotubes to reduce ammonium concentration in water and wastewaters. Mater. Res. Innov. 2017, 21, 313–319. [Google Scholar] [CrossRef]
- Rowe, L.W. The USP strophanthus standard. J. Am. Pharm. Assoc. 1912, 19, 563–566. [Google Scholar]
- Pharmaceutical Formulas. Proposed for A. Ph. A. Recipe book. J. Am. Pharm. Assoc. 1917, 6, 393–396. [Google Scholar] [CrossRef]
- Haldin-Davis, H. Treatment of simple inflammation of the skin (dermatitis). Br. Med. J. 1935, 1, 289–291. [Google Scholar] [CrossRef] [Green Version]
- USPPharmacopeia. Available online: http://ftp.uspbpep.com/v29240/usp29nf24s0_m89710.html (accessed on 21 May 2021).
- DIFFRAC Plus EVA12® Software (Bruker-AXS). Available online: https://www.bruker.com/content/bruker/int/en/productsand-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html (accessed on 28 February 2021).
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. Infrared Raman Spectrosc. Clay Miner. 2017, 107–149. [Google Scholar] [CrossRef]
- Murray, H.H. Overview—Clay mineral applications. Appl. Clay Sci. 1991, 5, 379–395. [Google Scholar] [CrossRef]
- Sipos, P.; Balázs, R.; Németh, T. Sorption properties of cd, cu, pb and zn in soils with smectitic clay mineralogy. Carpathian J. Earth Environ. Sci. 2018, 13, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Baghenejad, M.; Javaheri, F.; Moosavi, A.A. Adsorption isotherms of some heavy metals under conditions of their competitive adsorption onto highly calcareous soils of southern Iran. Arch. Agron. Soil Sci. 2016, 62, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Jou, S.K.; Malek, N.A.N.N. Characterization and antibacterial activity of chlorhexidine loaded silver-kaolinite. Appl. Clay Sci. 2016, 127, 1–9. [Google Scholar] [CrossRef]
- Holešová, S.; Samlíková, M.; Pazdziora, E.; Valášková, M. Antibacterial activity of organomontmorillonites and organovermiculites prepared using chlorhexidine diacetate. Appl. Clay Sci. 2013, 83–84, 17–23. [Google Scholar] [CrossRef]
- Tan, S.-Z.; Zhang, K.-H.; Zhang, L.-L.; Xie, Y.-S.; Liu, Y.L. Preparation and Characterization of the Antibacterial Zn2+ or/and Ce3+ Loaded Montmorillonites. Chin. J. Chem. 2008, 26, 865–869. [Google Scholar] [CrossRef]
- Özdemir, G.; Limoncu, M.H.; Yapar, S. The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites. Appl. Clay Sci. 2010, 48, 319–323. [Google Scholar] [CrossRef]
- Malachová, K.; Praus, P.; Rybková, Z.; Kozák, O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 2011, 53, 642–645. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.L.; Hu, C.H. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl. Clay Sci. 2013, 77–78, 52–55. [Google Scholar] [CrossRef]
- Martsouka, F.; Papagiannopoulos, K.; Gianni, E.; Papoulis, D.; Hatziantoniou, S. Antibacterial activity of pharmaceutical kaolin modified with copper. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM), Albena, Bulgaria, 28 June–7 July 2019; Volume 19, pp. 27–33. [Google Scholar]
- ANNEX ISO 11930. Cosmetics—Microbiology—Evaluation of the Antimicrobial Protection of a Cosmetic Product; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Das, G.; Kalita, R.D.; Gogoi, P.; Buragohain, A.K.; Karak, N. Antibacterial activities of copper nanoparticle-decorated organically modified montmorillonite/ epoxy nanocomposites. Appl. Clay Sci. 2014, 90, 18–26. [Google Scholar] [CrossRef]
- Khurana, I.S.; Kaur, S.; Kaur, H.; Khurana, R.K. Multifaceted role of clay minerals in pharmaceuticals. Future Sci. 2015, 1. [Google Scholar] [CrossRef] [PubMed]
Oxide | Bent | ZnBent | CuBent |
---|---|---|---|
SiO2 | 77.44 | 74.53 | 75.35 |
Al2O3 | 9.87 | 9.07 | 9.13 |
Fe2O3 | 0.8 | 0.69 | 0.83 |
MnO | 0.01 | 0.01 | 0.00 |
MgO | 4.53 | 3.75 | 3.78 |
CaO | 0.78 | 0.3 | 0.21 |
Na2O | 0.87 | 0.77 | 0.33 |
K2O | 0.8 | 0.73 | 0.57 |
TiO2 | 0.07 | 0.06 | BDL |
P2O5 | 0.19 | 0.11 | 0.02 |
LOI | 4.4 | 6.97 | 7.37 |
Sum | 99.76 | 96.99 | 97.59 |
Element | Bent | ZnBent | CuBent |
---|---|---|---|
Cr | 7 | 10 | BDL |
Co | BDL | BDL | BDL |
Cu | BDL | 3 | 45,637 |
Zn | 97 | 38,266 | 37 |
Sr | 91 | 43 | 42 |
Y | 46 | 31 | 136 |
Hf | 6 | 7 | 48 |
Pb | BDL | BDL | 26 |
Test Organisms | |||||
---|---|---|---|---|---|
Gram-positive bacteria | Staphylococcus aureus ATCC 6538 | Staphylococcus epidermis ATCC 12228 | Kokuria rhizophilia ATCC 9341 | ||
Gram-negative bacteria | Enterobacteria | Pseudomonas | |||
Escherichia coli ATCC 8739 | Enterobacter gergoviae ATCC 33028 | Pseudomonas aeruginosa ATCC 9027 | Burkholderia cepacia In house | Pseudomonas luteola ATCC 43330 | |
Yeasts | Candida albicans ATCC 10231 | Molds | Aspergillus brasiliensis ATCC 16404 | Penicillium aurantiogriseum ATCC 16025 |
Criteria A | ||||
---|---|---|---|---|
Time | 2nd Day | 7th Day | 14th Day | 28th Day |
Bacteria | 2 log | 3 log | - | NI |
Yeasts | - | - | 2 log | NI |
Molds | - | - | 2 log | NI |
Criteria Β | ||||
Time | 2nd Day | 7th Day | 14th Day | 28th Day |
Bacteria | - | - | 3 log | NI |
Yeasts | - | - | 1 log | NI |
Molds | - | - | 1 log | NI |
Paste | Parameter | Result (cfu/g) | Limits (cfu/g) |
---|---|---|---|
Bentp | Total Aerobic Microbial Count Molds & Yeasts | >3.0 × 103 <10 | <1.0 × 102 <10 |
Paste | Parameter | Sterility Control | Inoculation | 0 Time | 2nd Day | 7th Day | 14th Day | 28th Day |
---|---|---|---|---|---|---|---|---|
CuBentp | Bacteria | <10 | 6.2 × 106 | 6.1 × 106 | <100 | <10 | <10 | <10 |
Molds | <10 | 3.4 × 105 | 3.1 × 105 | 1.3 × 104 | 7.6 × 105 | 1.3 × 104 | <10 | |
Yeasts | <10 | 4.6 × 105 | 4.2 × 105 | <100 | <10 | <10 | <10 | |
ZnBentp | Bacteria | <10 | 6.2 × 106 | 5.4 × 106 | 8.5 × 102 | 8.0 × 103 | 3.0 × 105 | 2.2 × 105 |
Molds | <10 | 3.4 × 105 | 3.4 × 105 | 4.7 × 105 | 3.1 × 105 | 3.0 × 105 | 3.9 × 105 | |
Yeasts | <10 | 4.6 × 105 | 4.3 × 105 | <100 | <10 | <10 | <10 | |
PHBentp | Bacteria | <10 | 6.2 × 106 | 5.4 × 106 | <100 | <10 | <10 | <10 |
Molds | <10 | 3.4 × 105 | 3.4 × 105 | 4.8 × 103 | 3.1 × 102 | <10 | <10 | |
Yeasts | <10 | 4.6 × 105 | 4.1 × 105 | <100 | <10 | <10 | <10 |
Paste | Log Reduction | 2nd Day | 7th Day | 14th Day | 28th Day | Criterion A | Criterion B | Test Result |
---|---|---|---|---|---|---|---|---|
CuBentp | Bacteria | 5.79 | 5.79 | 5.79 | 5.79 | ✓ | Satisfactory | |
Molds | 1.43 | −0.55 | 1.41 | 4.53 | ✓ | meet the relevant | ||
Yeasts | 4.66 | 4.66 | 4.66 | 4.66 | ✓ | B-criteria | ||
ZnBentp | Bacteria | 3.87 | 2.89 | 1.23 | 1.46 | Failed does not | ||
Molds | −0.14 | 0.04 | 0.06 | -0.06 | meet the relevant | |||
Yeasts | 4.66 | 4.66 | 4.66 | 4.66 | ✓ | A/B-criteria | ||
PHBentp | Bacteria | 6.79 | 6.79 | 6.79 | 6.79 | ✓ | Satisfactory | |
Molds | 1.06 | 3.04 | 4.65 | 4.65 | ✓ | meet the relevant | ||
Yeasts | 4.06 | 4.06 | 4.06 | 4.06 | ✓ | A-criteria |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martsouka, F.; Papagiannopoulos, K.; Hatziantoniou, S.; Barlog, M.; Lagiopoulos, G.; Tatoulis, T.; Tekerlekopoulou, A.G.; Lampropoulou, P.; Papoulis, D. The Antimicrobial Properties of Modified Pharmaceutical Bentonite with Zinc and Copper. Pharmaceutics 2021, 13, 1190. https://doi.org/10.3390/pharmaceutics13081190
Martsouka F, Papagiannopoulos K, Hatziantoniou S, Barlog M, Lagiopoulos G, Tatoulis T, Tekerlekopoulou AG, Lampropoulou P, Papoulis D. The Antimicrobial Properties of Modified Pharmaceutical Bentonite with Zinc and Copper. Pharmaceutics. 2021; 13(8):1190. https://doi.org/10.3390/pharmaceutics13081190
Chicago/Turabian StyleMartsouka, Fotini, Konstantinos Papagiannopoulos, Sophia Hatziantoniou, Martin Barlog, Giorgos Lagiopoulos, Triantafyllos Tatoulis, Athanasia G. Tekerlekopoulou, Paraskevi Lampropoulou, and Dimitrios Papoulis. 2021. "The Antimicrobial Properties of Modified Pharmaceutical Bentonite with Zinc and Copper" Pharmaceutics 13, no. 8: 1190. https://doi.org/10.3390/pharmaceutics13081190
APA StyleMartsouka, F., Papagiannopoulos, K., Hatziantoniou, S., Barlog, M., Lagiopoulos, G., Tatoulis, T., Tekerlekopoulou, A. G., Lampropoulou, P., & Papoulis, D. (2021). The Antimicrobial Properties of Modified Pharmaceutical Bentonite with Zinc and Copper. Pharmaceutics, 13(8), 1190. https://doi.org/10.3390/pharmaceutics13081190