Evaluation of Pharmacokinetics and Pharmacodynamics of Deferasirox in Pediatric Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Withdrawal and Measurement of Deferasirox Plasma Concentrations
2.3. Pharmacokinetic Analysis
2.4. Toxicity Criterion
2.5. Statistical Analyses
3. Results
3.1. Patients
3.2. FAMD Results
3.3. POP/PK Modeling
3.4. Correlations between Plasma Concentrations of DFX and Toxicities
3.5. Identification of the Ctrough Threshold
3.6. Ctrough and Toxicities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ware, H.M.; Kwiatkowski, J.L. Evaluation and Treatment of Transfusional Iron Overload in Children. Pediatr. Clin. N. Am. 2013, 60, 1393–1406. [Google Scholar] [CrossRef]
- Maximova, N.; Gregori, M.; Boz, G.; Simeone, R.; Zanon, D.; Schillani, G.; Zennaro, F. MRI-Based Evaluation of Multiorgan Iron Overload Is a Predictor of Adverse Outcomes in Pediatric Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Oncotarget 2017, 8, 79650–79661. [Google Scholar] [CrossRef] [Green Version]
- Maximova, N.; Gregori, M.; Simeone, R.; Sonzogni, A.; Zanon, D.; Boz, G.; D’Antiga, L. Total Body Irradiation and Iron Chelation Treatment Are Associated with Pancreatic Injury Following Pediatric Hematopoietic Stem Cell Transplantation. Oncotarget 2018, 9, 19543–19554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altès, A.; Remacha, A.F.; Sureda, A.; Martino, R.; Briones, J.; Canals, C.; Brunet, S.; Sierra, J.; Gimferrer, E. Iron Overload Might Increase Transplant-Related Mortality in Haematopoietic Stem Cell Transplantation. Bone Marrow Transplant. 2002, 29, 987–989. [Google Scholar] [CrossRef] [Green Version]
- Pullarkat, V.; Blanchard, S.; Tegtmeier, B.; Dagis, A.; Patane, K.; Ito, J.; Forman, S.J. Iron Overload Adversely Affects Outcome of Allogeneic Hematopoietic Cell Transplantation. Bone Marrow Transplant. 2008, 42, 799–805. [Google Scholar] [CrossRef]
- Kataoka, K.; Nannya, Y.; Hangaishi, A.; Imai, Y.; Chiba, S.; Takahashi, T.; Kurokawa, M. Influence of Pretransplantation Serum Ferritin on Nonrelapse Mortality after Myeloablative and Nonmyeloablative Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2009, 15, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Gordon, L.I.; Brown, S.G.; Tallman, M.S.; Rademaker, A.W.; Weitzman, S.A.; Lazarus, H.M.; Kelley, C.H.; Mangan, C.; Rubin, H.; Fox, R.M. Sequential Changes in Serum Iron and Ferritin in Patients Undergoing High-Dose Chemotherapy and Radiation with Autologous Bone Marrow Transplantation: Possible Implications for Treatment Related Toxicity. Free Radic. Biol. Med. 1995, 18, 383–389. [Google Scholar] [CrossRef]
- Evens, A.M.; Mehta, J.; Gordon, L.I. Rust and Corrosion in Hematopoietic Stem Cell Transplantation: The Problem of Iron and Oxidative Stress. Bone Marrow Transplant. 2004, 34, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Poggiali, E.; Cassinerio, E.; Zanaboni, L.; Cappellini, M.D. An Update on Iron Chelation Therapy. Blood Transfus. 2012, 10, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Bejaoui, M.; Agaoglu, L.; Canatan, D.; Capra, M.; Cohen, A.; Drelichman, G.; Economou, M.; Fattoum, S.; Kattamis, A.; et al. Iron Chelation with Deferasirox in Adult and Pediatric Patients with Thalassemia Major: Efficacy and Safety during 5 Years’ Follow-Up. Blood 2011, 118, 884–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-García, J.D.; Gallegos-Villalobos, A.; Gonzalez-Espinoza, L.; Sanchez-Niño, M.D.; Villarrubia, J.; Ortiz, A. Deferasirox Nephrotoxicity-the Knowns and Unknowns. Nat. Rev. Nephrol. 2014, 10, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Yang, X.; Greenhaw, J.J.; Salminen, A.T.; Russotti, G.M.; Salminen, W.F. Drug-Induced Liver Injury in Children: Clinical Observations, Animal Models, and Regulatory Status. Int. J. Toxicol. 2017, 36, 365–379. [Google Scholar] [CrossRef]
- Tanaka, C. Clinical Pharmacology of Deferasirox. Clin. Pharmacokinet. 2014, 53, 679–694. [Google Scholar] [CrossRef]
- Galanello, R.; Piga, A.; Forni, G.L.; Bertrand, Y.; Foschini, M.L.; Bordone, E.; Leoni, G.; Lavagetto, A.; Zappu, A.; Longo, F.; et al. Phase II Clinical Evaluation of Deferasirox, a Once-Daily Oral Chelating Agent, in Pediatric Patients with Beta-Thalassemia Major. Haematologica 2006, 91, 1343–1351. [Google Scholar]
- Fucile, C.; Mattioli, F.; Marini, V.; Gregori, M.; Sonzogni, A.; Martelli, A.; Maximova, N. What Is Known about Deferasirox Chelation Therapy in Pediatric HSCT Recipients: Two Case Reports of Metabolic Acidosis. Ther. Clin. Risk Manag. 2018, 14, 1649–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piga, A.; Galanello, R.; Forni, G.L.; Cappellini, M.D.; Origa, R.; Zappu, A.; Donato, G.; Bordone, E.; Lavagetto, A.; Zanaboni, L.; et al. Randomized Phase II Trial of Deferasirox (Exjade, ICL670), a Once-Daily, Orally-Administered Iron Chelator, in Comparison to Deferoxamine in Thalassemia Patients with Transfusional Iron Overload. Haematologica 2006, 91, 873–880. [Google Scholar]
- Maximova, N.; Gregori, M.; Simeone, R.; Sonzogni, A.; Boz, G.; Fucile, C.; Marini, V.; Martelli, A.; Mattioli, F. Safety and Tolerability of Deferasirox in Pediatric Hematopoietic Stem Cell Transplant Recipients: One Facility’s Five Years’ Experience of Chelation Treatment. Oncotarget 2017, 8, 63177–63186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maximova, N.; Schillani, G.; Simeone, R.; Maestro, A.; Zanon, D. Comparison of Efficacy and Safety of Caspofungin Versus Micafungin in Pediatric Allogeneic Stem Cell Transplant Recipients: A Retrospective Analysis. Adv. Ther. 2017, 34, 1184–1199. [Google Scholar] [CrossRef] [PubMed]
- Rouan, M.C.; Marfil, F.; Mangoni, P.; Séchaud, R.; Humbert, H.; Maurer, G. Determination of a New Oral Iron Chelator, ICL670, and Its Iron Complex in Plasma by High-Performance Liquid Chromatography and Ultraviolet Detection. J. Chromatogr. B Biomed. Sci. Appl. 2001, 755, 203–213. [Google Scholar] [CrossRef]
- Mattioli, F.; Puntoni, M.; Marini, V.; Fucile, C.; Milano, G.; Robbiano, L.; Perrotta, S.; Pinto, V.; Martelli, A.; Forni, G.L. Determination of Deferasirox Plasma Concentrations: Do Gender, Physical and Genetic Differences Affect Chelation Efficacy? Eur. J. Haematol. 2015, 94, 310–317. [Google Scholar] [CrossRef]
- Jonsson, E.N.; Karlsson, M.O. Xpose--an S-PLUS Based Population Pharmacokinetic/Pharmacodynamic Model Building Aid for NONMEM. Comput. Methods Programs Biomed. 1999, 58, 51–64. [Google Scholar] [CrossRef]
- Lindbom, L.; Ribbing, J.; Jonsson, E.N. Perl-Speaks-NONMEM (PsN)--A Perl Module for NONMEM Related Programming. Comput. Methods Programs Biomed. 2004, 75, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Bergstrand, M.; Hooker, A.C.; Wallin, J.E.; Karlsson, M.O. Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models. AAPS J. 2011, 13, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasavada, N. Online Web Statistical Calculators for Categorical Data Analysis. Available online: https://astatsa.com (accessed on 11 February 2021).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000; ISBN 9780471356325. [Google Scholar]
- Dubourg, L.; Laurain, C.; Ranchin, B.; Pondarré, C.; Hadj-Aïssa, A.; Sigaudo-Roussel, D.; Cochat, P. Deferasirox-Induced Renal Impairment in Children: An Increasing Concern for Pediatricians. Pediatr. Nephrol. 2012, 27, 2115–2122. [Google Scholar] [CrossRef]
- Allegra, S.; Cusato, J.; De Francia, S.; Arduino, A.; Longo, F.; Pirro, E.; Massano, D.; De Nicolò, A.; Piga, A.; D’Avolio, A. Role of CYP24A1, VDR and GC Gene Polymorphisms on Deferasirox Pharmacokinetics and Clinical Outcomes. Pharmacogenomics J. 2018, 18, 506–515. [Google Scholar] [CrossRef]
- Cao, K.; Ren, G.; Lu, C.; Wang, Y.; Tan, Y.; Zhou, J.; Zhang, Y.; Lu, Y.; Li, N.; Chen, X.; et al. ABCC2 c.-24 C>T Single-Nucleotide Polymorphism Was Associated with the Pharmacokinetic Variability of Deferasirox in Chinese Subjects. Eur. J. Clin. Pharmacol. 2020, 76, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Park, W.-S.; Han, S.; Lee, J.; Hong, T.; Won, J.; Lim, Y.; Lee, K.; Byun, H.Y.; Yim, D.-S. Use of a Target-Mediated Drug Disposition Model to Predict the Human Pharmacokinetics and Target Occupancy of GC1118, an Anti-Epidermal Growth Factor Receptor Antibody. Basic Clin. Pharmacol. Toxicol. 2017, 120, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Allegaert, K.; Peeters, M.Y.M.; Tibboel, D.; Danhof, M.; Knibbe, C.A.J. The Allometric Exponent for Scaling Clearance Varies with Age: A Study on Seven Propofol Datasets Ranging from Preterm Neonates to Adults. Br. J. Clin. Pharmacol. 2014, 77, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Calvier, E.A.M.; Krekels, E.H.J.; Välitalo, P.A.J.; Rostami-Hodjegan, A.; Tibboel, D.; Danhof, M.; Knibbe, C.A.J. Allometric Scaling of Clearance in Paediatric Patients: When Does the Magic of 0.75 Fade? Clin. Pharmacokinet. 2017, 56, 273–285. [Google Scholar] [CrossRef] [Green Version]
Covariate | Median | IQR 1 (%) |
---|---|---|
Age (years) | 9.5 | 5.3–14.0 |
Weight (Kg) | 30.0 | 18.6–45.8 |
BMI (Kg/m2) | 17.0 | 14.4–20.0 |
LBM (Kg) | 26.0 | 17.0–39.2 |
Glycemia (mg/dL) | 91.0 | 77.3–109.0 |
AST (U/L) | 31.5 | 22.0–42.0 |
ALT (U/L) | 31.0 | 24.0–52.8 |
ALP (U/L) | 167.0 | 114.3–203.0 |
GGT (U/L) | 25.0 | 17.0–40.0 |
Direct Bilirubin (mg/dL) | 0.2 | 0.1–0.3 |
Serum proteins (g/dL) | 6.3 | 5.9–6.7 |
Creatinine (mg/dL) | 0.5 | 0.3–0.9 |
Ferritin (ng/mL) | 2384.0 | 1985.8–3690.0 |
Male | Female | ||
---|---|---|---|
Age (years) | Creath (mg/dL) | Age (years) | Creath (mg/dL) |
≤2 | 0.4 | ≤3 | 0.4 |
3–4 | 0.5 | 4–5 | 0.5 |
5–9 | 0.6 | 6–8 | 0.6 |
10–11 | 0.7 | 9–15 | 0.7 |
12–13 | 0.8 | ≥16 | 1.1 |
14–15 | 0.9 | ||
≥16 | 1.3 |
Bootstrap (2000 Samples) | ||||
---|---|---|---|---|
Parameter | Median Value | RSE 1 % | Median | 5–95% CI |
θ1 (L/h) | 1.39 | 11.3 | 1.35 | 1.11–1.62 |
θ2 (L/Kg) | 1.40 | 17.1 | 1.33 | 0.86–1.81 |
θ3 (1/h) | 1.02 | 19.5 | 1.02 | 0.67–1.45 |
θ4 (L/h) | 9.16 × 10−2 | 11.1 | 0.09 | 0.07–0.11 |
ω1 | 0.55 | 11.9 | 0.54 | 0.42–0.65 |
ω2 | 0.48 | 23.7 | 0.43 | 0.19–0.63 |
ω3 | 0.48 | 68.5 | 0.57 | 0.18–0.92 |
σ1, proportional | 0.48 | 11.0 | 0.43 | 0.26–0.51 |
σ2, additive | 1.32 | 27.5 | 1.70 | 0.88–8.85 |
η-shrinkage | ε-shrinkage | |||
η1 | η2 | η3 | ε1 | ε2 |
9.2% | 39.8% | 60.9% | 10.5% | 10.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeotti, L.; Ceccherini, F.; Fucile, C.; Marini, V.; Di Paolo, A.; Maximova, N.; Mattioli, F. Evaluation of Pharmacokinetics and Pharmacodynamics of Deferasirox in Pediatric Patients. Pharmaceutics 2021, 13, 1238. https://doi.org/10.3390/pharmaceutics13081238
Galeotti L, Ceccherini F, Fucile C, Marini V, Di Paolo A, Maximova N, Mattioli F. Evaluation of Pharmacokinetics and Pharmacodynamics of Deferasirox in Pediatric Patients. Pharmaceutics. 2021; 13(8):1238. https://doi.org/10.3390/pharmaceutics13081238
Chicago/Turabian StyleGaleotti, Laura, Francesco Ceccherini, Carmen Fucile, Valeria Marini, Antonello Di Paolo, Natalia Maximova, and Francesca Mattioli. 2021. "Evaluation of Pharmacokinetics and Pharmacodynamics of Deferasirox in Pediatric Patients" Pharmaceutics 13, no. 8: 1238. https://doi.org/10.3390/pharmaceutics13081238
APA StyleGaleotti, L., Ceccherini, F., Fucile, C., Marini, V., Di Paolo, A., Maximova, N., & Mattioli, F. (2021). Evaluation of Pharmacokinetics and Pharmacodynamics of Deferasirox in Pediatric Patients. Pharmaceutics, 13(8), 1238. https://doi.org/10.3390/pharmaceutics13081238