Modelling Tools to Characterize Acetaminophen Pharmacokinetics in the Pregnant Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pharmacokinetic Estimates Obtained with Non-Compartmental Analyses
3.1.1. Characteristics of the PK Studies
3.1.2. Influence of Pregnancy on Acetaminophen Absorption
3.1.3. Influence of Pregnancy on Acetaminophen Distribution
3.1.4. Influence of Pregnancy on Acetaminophen Metabolism and Elimination
3.2. Pharmacokinetic Estimates Obtained with Population Pharmacokinetic Modelling
3.3. Pharmacokinetic Estimates Obtained with Physiologically Based Pharmacokinetic Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pariente, G.; Leibson, T.; Carls, A.; Adams-Webber, T.; Ito, S.; Koren, G. Pregnancy-Associated Changes in Pharmacokinetics: A Systematic Review. PLOS Med. 2016, 13, e1002160. [Google Scholar] [CrossRef] [PubMed]
- Costantine, M.M. Physiologic and pharmacokinetic changes in pregnancy. Front. Pharmacol. 2014, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; an den Anker, J.N. Perinatal and neonatal use of paracetamol for pain relief. Semin. Fetal. Neonatal Med. 2017, 22, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Vlenterie, R.; Wood, M.E.; Brandlistuen, R.E.; Roeleveld, N.; van Gelder, M.M.H.J.; HNordeng, H. Neurodevelopmental problems at 18 months among children exposed to paracetamol in utero: A propensity score matched cohort study. Int. J. Epidemiol. 2016, 45, 1998–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulo, A.; Calsteren, K.V.; Verbesselt, R.; Hoon, J.N.D.; Verhaeghe, J.; Allegaert, K. Weight, pregnancy and oral contraceptives affect intravenous paracetamol clearance in young women. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 599–604. [Google Scholar]
- Mian, P.; van den Anker, J.N.; van Calsteren, K.; Annaert, P.; Tibboel, D.; Pfister, M.; Allegaert, K.; Dallmann, A. Physiologically Based Pharmacokinetic Modeling to Characterize Acetaminophen Pharmacokinetics and N-Acetyl-p-Benzoquinone Imine (NAPQI) Formation in Non-Pregnant and Pregnant Women. Clin. Pharmacokinet. 2020, 59, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Prescott, L.F. Kinetics and metabolism of paracetamol and phenacetin. Br. J. Clin. Pharmacol. 1980, 10, 291S–298S. [Google Scholar] [CrossRef] [Green Version]
- Forrest, J.A.H.; Clements, J.A.; Prescott, L.F. Clinical Pharmacokinetics of Paracetamol. Clin. Pharmacokinet. 1982, 7, 93–107. [Google Scholar] [CrossRef]
- Flint, R.B.; Mian, P.; van der Nagel, B.; Slijkhuis, N.; Koch, B.C.P. Quantification of Acetaminophen and Its Metabolites in Plasma Using UPLC-MS: Doors Open to Therapeutic Drug Monitoring in Special Patient Populations. Ther. Drug Monit. 2017, 39, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Rumack, B.H. Acetaminophen Hepatotoxicity: The First 35 Years. J. Toxicol. Clin. Toxicol. 2002, 40, 3–20. [Google Scholar] [CrossRef]
- van Rongen, A.; Välitalo, P.A.J.; Peeters, M.Y.M.; Boerma, D.; Huisman, F.W.; van Ramshorst, B.; van Dongen, E.P.A.; van den Anker, J.N.; Knibbe, C.A.J. Morbidly Obese Patients Exhibit Increased CYP2E1-Mediated Oxidation of Acetaminophen. Clin. Pharmacokinet. 2016, 55, 833–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulac-Baillargeon, L.; Rocheleau, S. Paracetamol Pharmacokinetics in Pregnancy. Drug Investig. 1993, 6, 176–179. [Google Scholar] [CrossRef]
- Macfie, A.G.; Magides, A.D.; Richmond, M.N.; Reilly, C.S. Gastric emptying in pregnancy. Br. J. Anaesth. 1991, 67, 54–57. [Google Scholar] [CrossRef]
- Whitehead, E.M.; Smith, M.; Dean, Y.; O’Sullivan, G. An evaluation of gastric emptying times in pregnancy and the puerperium. Anaesthesia 2007, 48, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Kulo, A.; Peeters, M.Y.; Allegaert, K.; Smits, A.; de Hoon, J.; Verbesselt, R.; Lewi, L.; van de Velde, M.; Knibbe, C.A.J. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum: I.v. paracetamol pharmacokinetics in women at delivery and post-partum. Br. J. Clin. Pharmacol. 2013, 75, 850–860. [Google Scholar] [CrossRef] [Green Version]
- Allegaert, K.; Peeters, M.Y.; Beleyn, B.; Smits, A.; Kulo, A.; van Calsteren, K.; Deprest, J.; de Hoon, J.; Knibbe, C.A.J. Paracetamol pharmacokinetics and metabolism in young women. BMC Anesthesiol. 2015, 15, 163. [Google Scholar] [CrossRef] [Green Version]
- Krekels, E.H.J.; Tibboel, D.; Danhof, M.; Knibbe, C.A.J. Prediction of Morphine Clearance in the Paediatric Population: How Accurate are the Available Pharmacokinetic Models? Clin. Pharmacokinet. 2012, 51, 695–709. [Google Scholar] [CrossRef]
- van Hasselt, J.G.C.; Andrew, M.A.; Hebert, M.F.; Tarning, J.; Vicini, P.; Mattison, D.R. The status of pharmacometrics in pregnancy: Highlights from the 3rd American conference on pharmacometrics. Br. J. Clin. Pharmacol. 2012, 74, 932–939. [Google Scholar] [CrossRef]
- Zeilmaker, G.A.; Pokorna, P.; Mian, P.; Wildschut, E.D.; Knibbe, C.A.J.; Krekels, K.; Allegaert, K.; Tibboel, D. Pharmacokinetic considerations for pediatric patients receiving analgesia in the intensive care unit; targeting postoperative, ECMO and hypothermia patients. Expert Opin. Drug Metab. Toxicol. 2018, 14, 417–428. [Google Scholar] [CrossRef]
- Thakur, A.K. Model: Mechanistic vs Empirical. In New Trends in Pharmacokinetics, NATO ASI Series (Series A: Life Sciences); Rescigno, A., Thakur, A.K., Eds.; Springer: Boston, MA, USA, 1991; Volume 221, pp. 41–51. [Google Scholar] [CrossRef]
- Tsamandouras, N.; Rostami-Hodjegan, A.; Aarons, L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: Fitting PBPK models to observed clinical data: Parameter estimation in PBPK models. Br. J. Clin. Pharmacol. 2015, 79, 48–55. [Google Scholar] [CrossRef]
- Beaulac-Baillargeon, L.; Rocheleau, S. Paracetamol pharmacokinetics during the first trimester of human pregnancy. Eur. J. Clin. Pharmacol. 1994, 46, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Seager, S.J. Gastric Emptying following premedication with glycopyrrolate or atropine. Br. J. Anaesth. 1983, 55, 1195–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galinsky, R.E.; Levy, G. Absorption and Metabolism of Acetaminophen Shortly before Parturition. Drug Intell. Clin. Pharm. 1984, 18, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Gin, T. Gastric Emptying in the Postpartum Period. Anaesth. Intensive Care 1991, 19, 4. [Google Scholar] [CrossRef]
- Nimmo, W.S.; Wilson, J.; Prescott, L.F. Narcotic analgesics and delayed gastric emptying during labour. Lancet 1975, 305, 890–893. [Google Scholar] [CrossRef]
- Nitsche, J.F.; Patil, A.S.; Langman, L.J.; Penn, H.J.; Derleth, D.; Watson, W.J.; Brost, B.C. Transplacental Passage of Acetaminophen in Term Pregnancy. Am. J. Perinatol. 2016, 34, 541–543. [Google Scholar] [CrossRef] [Green Version]
- Miners, J.; Robson, R.; Birkett, D. Paracetamol metabolism in pregnancy. Br. J. Clin. Pharmacol. 1986, 22, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.M.; Williams, O.A.; Magides, A.D.; Reilly, C.S. Gastric emptying is delayed at 8–12 weeks’ gestation. Br. J. Anaesth. 1994, 73, 237–238. [Google Scholar] [CrossRef] [Green Version]
- Kulo, A.; van de Velde, M.; de Hoon, J.; Verbesselt, R.; Devlieger, R.; Deprest, J.; Allegaert, K. Pharmacokinetics of a loading dose of intravenous paracetamol post caesarean delivery. Int. J. Obstet. Anesth. 2012, 21, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Kulo, A.; van Calsteren, K.; Verbesselt, R.; Smits, A.; Devlieger, R.; de Hoon, J.; Allegaert, K. The Impact of Caesarean Delivery on Paracetamol and Ketorolac Pharmacokinetics: A Paired Analysis. J. Biomed. Biotechnol. 2012, 2012, 437639. [Google Scholar] [CrossRef] [Green Version]
- Rayburn, W.; Shukla, U.; Stetson, P.; Piehl, E. Acetaminophen pharmacokinetics: Comparison between pregnant and nonpregnant women. Am. J. Obstet. Gynecol. 1986, 155, 1353–1356. [Google Scholar] [CrossRef]
- Stanley, K.; Magides, A.; Arnot, M.; Bruce, C.; Reilly, C.; McFee, A.; Fraser, R. Delayed gastric emptying as a factor in delayed postprandial glycaemic response in pregnancy. BJOG Int. J. Obstet. Gynaecol. 1995, 102, 288–291. [Google Scholar] [CrossRef]
- Simpson, K.H.; Stakes, A.F.; Miller, M. Pregnancy delays paracetamol absorption and gastic emptying in patients undergoing surgery. Br J Anaesth. 1988, 60, 24–227. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.A.; Loffredi, M.; Ganchiff, J.N.; Zhao, J.; Wang, Z.; Avram, M.J. Gastric Emptying of Water in Term Pregnancy. Anesthesiology 2002, 96, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.A.; McCarthy, R.J.; Fitzgerald, P.C.; Raikoff, K.; Avram, M.J. Gastric Emptying of Water in Obese Pregnant Women at Term. Anesth. Analg. 2007, 105, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Kazma, J.M.; van den Anker, J.; Allegaert, K.; Dallmann, A.; Ahmadzia, H.K. Anatomical and physiological alterations of pregnancy. J. Pharmacokinet. Pharmacodyn. 2020, 47, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Beleyn, B.; Vermeersch, S.; Kulo, A.; Smits, A.; Verbesselt, R.; de Hoon, J.N.; van Calsteren, K.; Allegaert, K. Estradiol and Weight Are Covariates of Paracetamol Clearance in Young Women. Gynecol. Obstet. Invest. 2014, 77, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Lowenthal, D.T.; Oie, S.; Van Stone, J.C.; Briggs, W.A.; Levy, G. Pharmacokinetics of acetaminophen elimination by anephric patients. J. Pharmacol. Exp. Ther. 1976, 196, 570–578. [Google Scholar]
- Bosma, P.J.; Seppen, J.; Goldhoorn, B.; Bakker, C.; Oude Elferink, R.P.; Chowdhury, J.R.; Chowdhury, N.R.; Jansen, P.L. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J. Biol. Chem. 1994, 269, 17960–17964. [Google Scholar] [CrossRef]
- Bacq, Y.; Zarka, O.; Bréchot, J.F.; Mariotte, N.; Vol, S.; Tichet, J.; Weill, J. Liver function tests in normal pregnancy: A prospective study of 103 pregnant women and 103 matched controls. Hepatology 1996, 23, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.L.; Harrold, A.J.; Mills, J.A.; Falany, C.N.; Coughtrie, M.W. Regulation of sulphotransferase expression in the endometrium during the menstrual cycle, by oral contraceptives and during early pregnancy. Mol. Hum. Reprod. 1999, 5, 995–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaassen, C.D.; Liu, L.; Dunn, R.T., 2nd. Regulation of sulfotransferase mRNA expression in male and female rats of various ages. Chem. Biol. Interact. 1998, 109, 299–313. [Google Scholar] [CrossRef]
- Mitchell, M.C.; Hanew, T.; Meredith, C.G.; Schenker, S. Effects of oral contraceptive steroids on acetaminophen metabolism and elimination. Clin. Pharmacol. Ther. 1983, 34, 48–53. [Google Scholar] [CrossRef]
- De Cock, R.F.W.; Piana, C.; Krekels, E.H.J.; Danhof, M.; Allegaert, K.; Knibbe, C.A.J. The role of population PK–PD modelling in paediatric clinical research. Eur. J. Clin. Pharmacol. 2011, 67, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butte, N.F.; Ellis, K.J.; Wong, W.W.; Hopkinson, J.M.; Smith, E.O. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am. J. Obstet. Gynecol. 2003, 189, 1423–1432. [Google Scholar] [CrossRef]
- Cornesse, D.; Senard, M.; Hans, A.G.; Ledoux, D.; Kirsch, M.; Hick, G.; Hallet, C.; Joris, J. Comparison Between Two Intraoperative Intravenous Loading Doses of Paracetamol on Pain After Minor Hand Surgery: Two Grams Versus One Gram. Acta Chir. Belg. 2010, 110, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.C.; Bjerring, P.; Arendt-Nielsen, L.; Petterson, K.J. Analgesic efficacy of immediate and sustained release paracetamol and plasma concentration of paracetamol. Double blind, placebo-controlled evaluation using painful laser stimulation. Eur. J. Clin. Pharmacol. 1992, 42, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Product Information: TYLENOL® Oral, Acetaminophen Oral; McNeil Consumer Healthcare: Skillman, NJ, USA, 2010.
- Product Information: OFIRMEV® Intravenous Injection, Acetaminophen Intravenous Injection; Cadence Pharmaceuticals, Inc. (per FDA): San Diego, CA, USA, 2013.
- Allegaert, K.; Mian, P.; Lapillonne, A.; van den Anker, J.N. Maternal paracetamol intake and fetal ductus arteriosus constriction or closure: A case series analyses. Br. J. Clin. Pharmacol. 2019, 85, 245–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conings, S.; Tseke, F.; Van den Broeck, A.; Qi, B.; Paulus, J.; Amant, F.; Annaert, P.; van Calsteren, K. Transplacental transport of paracetamol and its phase II metabolites using the ex vivo placenta perfusion model. Toxicol. Appl. Pharmacol. 2019, 370, 14–23. [Google Scholar] [CrossRef]
- Allegaert, K.; Ceulemans, M.; van den Anker, J. Maternal paracetamol intake and fetal ductus arteriosus closure: Adding pieces to the scenery. Eur. J. Clin. Pharmacol. 2021, 77, 1019–1028. [Google Scholar] [CrossRef]
- Mian, P.; Allegaert, K.; Conings, S.; Annaert, P.; Tibboel, D.; Pfister, M.; van Calsteren, K.; van den Anker, J.N.; Dallmann, A. Integration of Placental Transfer in a Fetal–Maternal Physiologically Based Pharmacokinetic Model to Characterize Acetaminophen Exposure and Metabolic Clearance in the Fetus. Clin. Pharmacokinet. 2020, 59, 911–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawade, N.; Onishi, S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem. J. 1981, 196, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Johnsrud, E.K.; Koukouritaki, S.B.; Divakaran, K.; Brunengraber, L.L.; Hines, R.N.; McCarver, D.G. Human Hepatic CYP2E1 Expression during Development. J. Pharmacol. Exp. Ther. 2003, 307, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.F.; Hamilton, E.G.; Lam, J.; Chen, H.; Woodruff, T.J. Differences in cytochrome p450 enzyme expression and activity in fetal and adult tissues. Placenta 2020, 100, 35–44. [Google Scholar] [CrossRef] [PubMed]
Reference | Patient Population Number | Weight (kg) | Age (Years) | Condition | Trimester | Form | Dose | Sampling (Sampling Period) | Sampling Duration | Analytical Method |
---|---|---|---|---|---|---|---|---|---|---|
Beaulac- Baillargeon et al. (1993) [12] | NP = P1 = P2 = P3: 1 | NP: 72 P1: 74.5 P2: 78.5 P3: 88.5 | NP: 23 P1 = P2 = P3: 24 | Non-smoker, no other medication, sometimes headaches, fasted for 3 h before APAP intake | NP: - P1: 12 weeks GA P2: 20 weeks GA P3: 30 weeks GA | Oral tablet | 0.65 g (with 200 mL water) | Blood: Sampling on fixed times TOT: 52 Per patient:13 (0–4 h) | 4 h | HPLC |
Beaulac-Baillargeon et al. (1994) [22] | NP: 10 P1: 8 | NP: 60 P1: 62.5 | TOT: 28.3 (2.1) a | All: healthy, no interfering medication NP: fasted for 3 h P1: undergoing abortion or had headache. Fasted before abortion. | NP: - P1: 11.1 (0.5) a weeks GA | Oral tablet | 0.65 g (with 200 mL water) | Blood: Sampling on fixed times TOT: 216 Per patient: 12 (0–4 h) | 4 h | HPLC |
Clark and Seager (1983) [23] | NP: 10 P1: 10 | NP: 64.4 (17.3) a P1: 55.4 (8.2) | NP: 30.8 (5.7) a P1: 26.6 (5.8) | All: no GI, hepatic, cardiac, renal disease, within 24 h; no APAP, anticholinergic drugs, drugs affecting GI function, no glaucoma, hypersensitive APAP, fasted before study NP: various gynecological procedures P1: termination of pregnancy | NP: - P1: - | Oral SP (tablet in 12.5 mL water) | 20 mg/kg | Blood: Sampling on fixed times TOT: 140 Per patient: 7 (0–2 h) | 2 h | GLC |
Galinski and Levy (1984) [24] | P3 = PP2: 1 | P3 = PP2: ~64 | P3 = PP2: 27 | - | P3: last day of pregnancy (9 months) PP2: 38 days | Oral tablet (glass of water) | 0.975 g | Urine: Sampling on fixed times TOT: 19 Per patient: P3: 7 PP2: 12 P3: (0–14 h) PP2: (0–24 h) | P3: 14 h PP2: 24 h | HPLC |
Gin et al. (1991) [25] | PP1: 8 PP2: 6/8 | PP1: 65 (56-87) b PP2: - | PP1: 30 (27–37) b PP2: - | All: ASA score I, uncomplicated term pregnancies with normal vaginal delivery, no smoking, DM, pre-eclampsia, GI disease, opioids or other motility-influence drugs, no APAP 8 h before study. Fasted overnight for at least 6 h | PP1: day 1 (14–35 h) b, day 3 (62–81 h) bPP2: 6 weeks | Oral SP (soluble tablet in 100 mL water) | 1.5 g | Blood: Sampling on fixed times TOT: 147 Per patient: 7 (0–2 h) | 2 h | HPLC |
Kulo et al. (2012) [31] | D: 8 PP2: 8/8 | D: 78.5 (61–92.2) b PP2: 69 (52.2–88) | - | D: (semi)elective surgery | PP3 = 10–15 weeks | IV | 2 g LD, 1 g q6 h MD for 24 h | Blood: Sampling on fixed times TOT: 64 Per patient: 4 (0–6 h) | 6 h | HPLC |
Kulo et al. (2012) [30] | D: 28 | D: 79 (57–110) b | D: 31.5 (20–42) b | (semi)elective surgery | Weeks of GA not reported | IV | 2 g LD, 1 g q6 h MD for 24 h | Blood: Sampling on fixed times TOT: 115 Per patient: 4 (0–6 h) | 6 h | HPLC |
Levy et al. (1994) [29] | NP: 20 P1: 20 | NP: 61.1 (45–86) b P1: 62.8 (47–85) | NP: 30.0 (17–40) b P1: 24.4 (17–40) | All: fasted 4 h, no history of GI disease, no medication known to affect gastric emptying NP: minor gynecological procedures P1: suction termination | NP: - P1: 8–12 weeks GA | Oral tablet | 1.5 g (with 50 mL water) | Blood: Sampling on fixed times TOT: 360 Per patient: 9 (0–2 h) | 2 h | HPLC |
Macfie et al. (1991) [13] | NP: 15 P1: 15 P2: 15 P3: 15 | NP: 63.13 (11.67) P1: 62.00 (9.97) P2: 60.20 (8.33) P3: 72.70 (7.20) | NP: 30 (22–42) b P1: 23 (16–35) P2: 21 (16–25) P3: 27 (22–35) | P1: suction termination pregnancy P2: prostaglandin extra amniotic termination D: before elective C-section | P2: 15–18 weeks GA P3: 37–40 weeks GA | Oral tablet | 1.5 g (with 50 mL water) | Blood: sampling on fixed times TOT: 540 Per patient: 9 (0–2 h) | 2 h | HPLC |
Miners et al. (1986) [28] | NP: 12 P3: 8 | NP: 63 (7) P3: 68 (5) | NP: 19–31 c P3: 26–32 | All: after overnight fast, permitted to eat 3 h after APAP dosing, no other medications 1 week before and after study, non-smokers, healthy | NP: - P3: 31–38 weeks GA | Oral tablet | 1 g (with 150 mL water) | Saliva: Sampling on fixed times TOT: 200 Per patient: 10 (0–8 h) Urine: Sampling in fixed times TOT: 60 Per patient: 3 (0–24 h) | 24 h | HPLC |
Nimmo et al. (1975) [26] | D: 12 PP2: 10 | - | D = PP2: 23 (17–34) b | All: no evidence of GI, hepatic, cardiovascular or renal disease. Fasted 4 h before and 2 h after APAP intake. PP2: no analgesic intake 16 h before APAP intake | D: 36 weeks GAP P1: 2–5 days | Oral tablet | 1.5 g (with 200 mL water) | Blood: Sampling on fixed times TOT: 198 Per patient: 9 (0–8 h) | 8 h | - |
Nitsche et al. (2016) [27] | D: 34 | D: 82 (62–100) b | D: 32 (25–39) b | No medical or obstetrical complications | D: 38–40 weeks GA | Oral | 1 g | Blood: - | - | HPLC |
Rayburn et al. (1986) [32] | P3 = PP2: 6 | P3: 73.5 (66.7–72.6) b PP2: 62.1 (53.1–67.1) | P3 = PP2: 29 (27–33) b | Healthy (no hepatic or renal disease), non-smokers, no other drugs, fasted overnight | P3: 36 weeks of GA PP2: 6 weeks | Oral capsule | 1 g (with 240 mL water) | Blood: Sampling on fixed times TOT:132 Per patient: 11 (0–12 h) Urine: Sampling on fixed times TOT: 60 Per patient: 5 (0–24 h) | 24 h | HPLC |
Simpson et al. (1988) [34] | NP: 14 P1: 16 P2: 12 | NP: 59.6 (9.6) P1: 60.3 (11.5) P2: 57.8 (7.3) | NP: 31.8 (7.5) P1: 25.6 (8.0) P2: 24.8 (8.6) | All: healthy, no drugs. Fasted for 4 h before intake APAP. NP: minor gynecological surgery. P1 = P2: termination of pregnancy | NP: - P1: 8–11 weeks GA P2: 12–14 weeks GA | Oral tablet | 1.5 g (with 150 mL water) | Blood Sampling on fixed times TOT: 196 Per patient: 7 (0–2 h) | 2 h | Enzyme assay |
Stanley et al. (1995) [33] | P2 = P2/3 = P3 = PP2: 10 | - | P: 25 (18–31) b | All: fasted overnight for 8 h. no smoking. Primigravida, PS. No chronic drug use, GI or renal disorders or risk factors for gestational diabetes | P2: 14–16 weeks GA P2/3: 26–28 weeks GA P3:36–38 weeks GA PP3: 8 weeks | Oral tablet | 1.5 g (with 50 mL water) | Blood Sampling on fixed times TOT: 320 Per patient: 8 (0–2.5 h) | 2.5 h | HPLC |
Whitehead et al. (1993) [14] | NP: 32 P1: 18 P2: 10 P3: 36 PP1 (day 1, 18–24 h) = PP1 (day 2, 24–48 h) = PP1 (day 5): 17/36 PP1 (2 h): 12 PP1 (day 2): 12/12 | NP: 58.3 (4.8) P1: 59.4 (6.0) P2: 62.0 (6.6) P3: 75.8 (14.4) PP1: 72.9 (9.3) | NP: 28.4 (4) P1: 24.2 (5.1) P2: 29.5 (2.6) P3: 26.2 (5.5) PP1: 27.6 (5.0 | All: healthy, no GI disease, no drugs influencing gastric motility. No obesity or multiple pregnancy. Fasting 4 h before APAP intake. NP: NOC P1: vaginal termination P3: vaginal delivery anticipated | NP: - P1: 8–10 weeks GA P2: 16–24 weeks GA P3: >34 weeks GA PP1: 2 h PP1: day 1 (18–24 h) PP1: day 2 | Oral tablet | 1.5 g (with 50 mL water) | Blood Sampling on fixed times TOT: 1503 Per patient:9 (0–2 h) | 2 h | Enzyme assay |
Wong et al. (2002) [35] | P3: 15 (11 for analysis) | P3: 74 (10) | P3: 31 (4) | No systemic disease (including gestation diabetes), multiple gestation, BMI > 30, use of medication known to affect gastric motility or secretion, no APAP in previous 48 h | P3: 37.2 (0.2) weeks GA | Oral SP | 1.5 g (with 50 and 300 mL water, separated by 48 h) | Blood: sampling on fixed times TOT: 110 Per patient: 10 (0–2.5 h) | 2.5 h | HPLC |
Wong et al. (2007) [36] | P3: 10 | P3: 123 (26) | P3: 27 (3) | No systemic disease (other than type II DM or gestational diabetes), no multiple gestation, no BMI < 35 kg/m2, use of medication known to affect gastric motility or secretion, no APAP in previous 48 h. Fasted overnight. | P3: 37.2 (0.6) weeks GA | Oral SP | 1.5 g (with 50 and 300 mL water, separated by 48 h) | Blood: sampling on fixed times TOT: 90 Per patient: 9 (0–2 h) | 2 h | HPLC |
Absorption Related Parameters | Beaulac-Baillargeon et al. (1993) [12] | Beaulac-Baillargeon et al. (1994) [22] | Clark and Seagel (1983) [23] | Galinski and Levy (1984) [24] | Gin et al. (1991) [25] | Levy et al. (1994) [29] |
---|---|---|---|---|---|---|
Cmax (µg/mL) | NP: 12.91 P1: 7.07 P2: 4.83 P3: 5.28 p = - | NP: 11.6 (1.57) a P1: 11.16 (1.02) p > 0.05 | NP: 19.6 (5.1) a P1: 15.5 (4.5) p = - | PP1 (day 1): 39.49 (8.44) a PP1 (day 3): 34.16 (3.64) PP2 (week 6): 37.34 (8.60) p > 0.05 | NP: 29.9 (11.5) P1: 23.3 (7.5) p < 0.05 | |
tmax (min) | NP: 30 P1: 30 P2: 35 P3: 30 p = - | NP: 46.0 (6.5) a P1: 48.0 (8.1) p > 0.05 | NP: 60 P: 60 p = - | PP1 (day 1): 20.63 b PP1 (day 3): 20.63 PP2 (week 6): 27.50 p > 0.05 | NP: 48.0 (28.2) P1: 69 (29.0) p < 0.05 | |
Gastric emptying t ½ (h) | - | |||||
Distribution related parameters | ||||||
Vd (L) | NP: 60.77 P1: 100.81 P2: 90.73 P3: 105.28 p = - | NP: 51 (3) a P1: 55 (5) p = - | ||||
Vd (L/kg) | NP: 0.84 P1: 1.35 P2: 1.16 P3: 1.19 p = - | NP: 0.85 (0.05) a P1: 0.88 (0.08) p > 0.05 | ||||
Elimination-related parameters | ||||||
t½ (h) | NP: 1.84 P1: 1.58 P2: 1.59 P3: 1.42 p = - | NP: 2.02 (0.08) a P1: 1.62 (0.06) p < 0.005 | ||||
CL/F (L/h) | NP: 22.79 P1: 44.05 P2: 39.54 P3: 51.38 p = - | |||||
CL/F (L/h/kg) | NP: 0.32 P1: 0.59 P2: 0.50 P3: 0.58 p = - | NP: 5.22 (0.46) a P1: 7.14 (0.72) p = 0.03 | ||||
Urine excretion (mg (% of total APAP recovered)) | - | P3: APAP: 596 (100) PG: 387(65) PS: 196 (33) PU: 13 (2) PP2: APAP: 872 (100) PG: 449 (51) PS: 382 (44) PU: 41 (5) |
Absorption-related Parameters | Macfie et al. (1991) [13] | Miners et al. (1986) [28] | Nimmo et al. (1975) [26] | Nitsche 2016 et al. [27] | Rayburn et al. [32] | Simpson et al. (1988) [34] |
---|---|---|---|---|---|---|
Cmax (µg/mL) | NP: 28.19 (1.62) a P1: 23.01 (2.18) P2: 26.70 (2.54) P3: 28.10(2.12) p > 0.05 | D: 21.0 (4.7) a PP1: 19.0 (1.9) p = - | D: 12.3 | P3: 20.8 (6.9) PP2: 23.7 (6) p > 0.05 | NP: 34.4 (4.3) a P1: 26.8 (2.7) P2: 21.4 (2.2) p < 0.05 P2/NP | |
tmax (min) | NP: 61 (6.85) a P1: 74 (8.54) P2: 59 (9.32) P3: 45 (4.89) p > 0.05 | D: 30PP1: 60 p = - | P3: 48 (24) PP2: 48 (24) p > 0.05 | NP: 45.0 (5.9) a P1: 46.4 (8.1) P2: 71.9 (9.2) p < 0.05 P2/NP and P2/P1 | ||
Distribution-related parameters | ||||||
Vd (L) | NP: 52.13 b P3: 59.44 p = - | D: 57.5 | P3: 116. 93 b PP2: 68.89 | |||
Vd (L/kg) | NP = 0.83 b P3 = 0.87 p = - | D: 0.70 b | P3: 1.59 b PP2: 1.11 p = - | |||
Elimination-related parameters | ||||||
t½ (h) | NP: 2.11 (0.27) P3: 1.52 (0.40) p < 0.002 | D: 1.4 | P3: 3.7 (0.4) PP2: 3.1 (0.4) p > 0.05 | |||
CL/F (L/h) | APAP: NP: 17.12 (2.53) P3: 27.10 (5.73) p< 0.002 PG: NP:9.95 (1.74) P3:17.37 (4.06) p< 0.002 PS: NP: 4.67 (0.68) P3: 5.57 (1.00) p > 0.05 PU: NP: 0.89 (0.27) P3: 1.18 (0.46) p > 0.05 PO: NP: 1.60 (0.46) a P3: 3.00 (0.53) p < 0.002 | D: 28.8 | P3: 21.9 (5.37) PP2: 15.4 (2.5) p < 0.05 | |||
CL/F (L/h/kg) | NP: 0.27 (0.04) b P3: 0.40 (0.08) | D: 0.35 b | P3: 0.30 b PP2: 0.25 | |||
Urine excretion (%) | PG: P3: 40.2 (21.5) PP2: 40.6 (20.7) p > 0.05 PS: P3: 17.8 (14.8) PP2: 24.7 (18.1) p > 0.05 PU: P3: 2.5 (2.1) PP2: 2.5 (2.3) p > 0.05 PO: P3: 9.0 c PP2: 5.9 p > 0.05 |
Absorption-Related Parameters | Stanley et al. (1995) [33] | Whitehead et al. (1993) [14] | Wong et al. (2007) [36] | Wong et al. (2002) [35] | Kulo et al. (2012) [31] | Kulo et al. (2012) [30] |
---|---|---|---|---|---|---|
Cmax (µg/mL) | P2: 22 (5.1) P2/3: 20 (6.3) P3: 21 (5.0) PP3: 25 (5.2) p > 0.05 | NP: 20.8 (8.8–64.5) a P1: 21.3 (3.4–39.6) P2: 25.7 (16.5–33.1) P3: 21.0 (4.1–37.2) PP1 (2 h): 10.1 (0.3–36.8) p < 0.01 PP1 (2 h)/NP PP1 (day 1): 23.5(11.3–41.8) PP1 (day 2): 23.6(12.1–49.0) PP1 (day 5): 24.4(11.7–31.4) PP1 (2 h) → (PP1, day 2): 36.6 (3.6–57.8) p < 0.01 PP1 (day 2)/PP1 (2 h) | P3 (50 mL): 9.9 (7.2) P3 (300 mL): 9.2 (3.6) p > 0.05 | P3 (50 mL): 32.9 (11.2) P3 (300 mL): 30.7 (13.0) p > 0.05 | D: 34.6 (12.7–46.6) a | |
tmax (min) | P2: 114 (30) P2/3: 113 (22) P3: 118 (22) PP3: 102 (32) p > 0.05 | NP: 40 (10–120) a P1: 45 (10–120) P2: 30 (10–60) P3: 40 (10–120) PP1 (2 h): 120 p < 0.01 PP1 (2 h)/NP PP1 (day 1): 30 (20–120) PP1 (day 2): 30 (10–90) PP1 (day 5): 35 (10–90) PP1 (2 h) → (PP1, day 2): 40 (10–120) p < 0.01 PP1 (day 2)/PP1 (2 h) | P3 (50 mL): 53.4 (37.2) P3 (300 mL): 57.5 (38.8) p > 0.05 | P3 (50 mL): 40.9 (19.2) P3 (300 mL): 24.6 (12.1) p < 0.05 | ||
Gastric emptying t ½ (h) | P3: 50 mL: 0.53 (0.13) P3: 300 mL: 0.36 (0.1) p > 0.05 | P3 (50 mL): 0.55 (0.13) P3 (300 mL): 0.4 (0.1) p < 0.01 | ||||
Distribution-related parameters | ||||||
Vd (L) | D: 61.7 (43.5–75) a PP3: 35.7 (29.5–59.3) p = 0.0234 | D: 58.3 (42.9–156) a | ||||
Vd (L/kg) | D: 0.77 (0.7–0.87) a PP3: 0.59 (0.35–0.85) p > 0.05 | D: 0.72 (0.52–15.6) a | ||||
Elimination-related parameters | ||||||
t½ (h) | D: 1.9 (1.8–2.5) a PP3: 2.3 (1.4–3.6) p > 0.05 | D: 1.93 (1.2–2.9) a | ||||
CL (L/h) | D: 22.19 (13.08-27.32) a PP3: 11.31 (8.06–15.72) p = 0.0078 | D: 20.3 (11.8–62.8) a | ||||
CL (L/h/kg) | D: 0.29 (0.2-0.32) a PP3: 0.17 (0.15–0.2) p = 0.0078 | D: 0.26 (0.15–0.79) b | ||||
Urine excretion (mg, % of total APAP recovered) |
Model | Kulo et al. (2013) [15] | Allegaert et al. (2015) [16] |
---|---|---|
Population and number of patients | D: 39 PP: 8 | D: 47 EP: 8/47 LP: 7/8 22 healthy female volunteers (with or without oral contraceptives) |
Patient Characteristics | ||
Age (years) | D: 31.1 (5.28) PP: 32.13 (3.87) | D: 30.9 (5.3) EP: 32.1 (3.9) LP: 32.9 (4.1) Healthy women NOC: 31.1 (4.3) Healthy women OC: 23.5 (4.0) |
Body weight (kg) | D: 79.37 (13.0) PP: 68.83 (11.7) | D: 79.7 (12.9) EP: 68.8 (11.2) LP: 32.9 (13.5) Healthy women NOC: 63.9 (6.6) Healthy women OC: 58.8 (8.9) |
Gestational age (weeks) | D: 35.9 (4.09) | D: 45% < 37 weeks |
Metabolites | APAP-U (blood, urine) APAP-G (urine) APAP-S (urine) APAP-O (estimated) | APAP-U (blood, urine) APAP-G (urine) APAP-S (urine) APAP-O (not estimated, not measured; ignored) |
Model | Non-linear mixed-effect modelling APAP-G and APAP-S Vd = 18% of Vc APAP | Non-linear mixed-effect modelling APAP-G and APAP-S Vd = 18% of Vc APAP |
Covariate modelling | Comprehensive covariate analysis Covariates vs. individual post hoc parameter estimates Covariates vs. weighted residuals | Comprehensive covariate analysis Covariates vs. individual post hoc parameter estimates Covariates vs. weighted residuals |
Internal model evaluation and validation | Observed vs. individual predictions Observed vs. population predictions Conditional weighted residuals vs. time Conditional weighted residuals vs. population predictions CI of parameter estimates Correlation matrix Visual improvement of the individual plots Bootstrap (n = 250) | Observed vs. individual predictions Observed vs. population predictions Conditional weighted residuals vs. time Conditional weighted residuals vs. population predictions CL of parameter estimates Correlation matrixVisual improvement of the individual plots Bootstrap (n = 250) |
External model evaluation and validation | None | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brookhuis, S.A.M.; Allegaert, K.; Hanff, L.M.; Lub-de Hooge, M.N.; Dallmann, A.; Mian, P. Modelling Tools to Characterize Acetaminophen Pharmacokinetics in the Pregnant Population. Pharmaceutics 2021, 13, 1302. https://doi.org/10.3390/pharmaceutics13081302
Brookhuis SAM, Allegaert K, Hanff LM, Lub-de Hooge MN, Dallmann A, Mian P. Modelling Tools to Characterize Acetaminophen Pharmacokinetics in the Pregnant Population. Pharmaceutics. 2021; 13(8):1302. https://doi.org/10.3390/pharmaceutics13081302
Chicago/Turabian StyleBrookhuis, Sofie A. M., Karel Allegaert, Lidwien M. Hanff, Marjolijn N. Lub-de Hooge, André Dallmann, and Paola Mian. 2021. "Modelling Tools to Characterize Acetaminophen Pharmacokinetics in the Pregnant Population" Pharmaceutics 13, no. 8: 1302. https://doi.org/10.3390/pharmaceutics13081302
APA StyleBrookhuis, S. A. M., Allegaert, K., Hanff, L. M., Lub-de Hooge, M. N., Dallmann, A., & Mian, P. (2021). Modelling Tools to Characterize Acetaminophen Pharmacokinetics in the Pregnant Population. Pharmaceutics, 13(8), 1302. https://doi.org/10.3390/pharmaceutics13081302