Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. 2-Methoxycarbonyl-3-(3,4-Dibenzyloxyphenyl)-Oxirane (MDBPO) (4)
2.1.2. Poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] PMDBPO (7)
2.1.3. Poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] PMDHPO (2)
2.2. Methods
Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3. Results and Discussion
3.1. Enzymatic Polymerization
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Sharopov, F.; Tumer, T.B.; Ozleyen, A.; Rodríguez-Pérez, C.; Ezzat, S.M.; Azzini, E.; Hosseinabadi, T.; Butnariu, M.; Sarac, I.; et al. Symphytum species: A comprehensive review on chemical composition, food applications and phytopharmacology. Molecules 2019, 24, 2272. [Google Scholar] [CrossRef] [Green Version]
- Araujo, L.U.; Reis, P.G.; Barbos, L.C.O.; Saude-Guimarгes, D.A.; Grabe-Guimarгes, A.; Mosqueira, V.C.F.; Carneiro, C.M.; Silva-Barcellos, N.M. In vivo wound healing effects of Symphytum officinale L. leaves extract in different topical formulations. Pharmazie 2012, 67, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Staiger, C. Comfrey: A clinical overview. Phytother. Res. 2012, 26, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Snafi, A.E. The pharmacology of Anchusa italica and Anchusa strigosa. Int. J. Pharm. Pharm. Sci. 2014, 6, 7–10. [Google Scholar]
- Baghiani, A.; Boussoualim, N.; Trabsa, H.; Aouachria, S.; Arrar, L. In vivo free radical scavenging, antihemolytic activity and antibacterial effects of Anchusa azurea extracts. Int. J. Med. Med. Sci. 2013, 46, 1113–1118. [Google Scholar]
- Aiwok. Symphytum officinale. Available online: https://commons.wikimedia.org/wiki/File:Symphytum_officinale_1a.JPG. (accessed on 25 September 2021).
- Savić, V.L.; Savić, S.R.; Nikolić, V.D.; Nikolić, L.B.; Najman, S.J.; Lazarević, J.S.; Dorđević, A.S. The identification and quantification of bioactive compounds from the aqueous extract of comfrey root by UHPLC–DAD–HESI–MS method and its microbial activity. Hem. Ind. 2015, 69, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barbakadze, V.V.; Kemertelidze, E.P.; Targamadze, I.L.; Shashkov, A.S.; Usov, A.I. Poly[3-(3,4-dihydroxyphenyl)glyceric acid]: A new biologically active polymer from two comfrey species Symphytum asperum and S. caucasicum (Boraginaceae). Russ. J. Bioorg. Chem. 2002, 28, 326–330. [Google Scholar] [CrossRef]
- Barbakadze, V.; Kemertelidze, E.; Targamadze, I.; Mulkijanyan, K.; Shashkov, A.S.; Usov, A.I. Poly[3-(3,4-dihydroxyphenyl)glyceric acid], a new biologically active polymer from Symphytum asperum Lepech. and S. caucasicum Bieb. (Boraginaceae). Molecules 2005, 10, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Barbakadze, V.; van den Berg, A.J.J.; Beukelman, C.J.; Kemmink, J.; Quarles van Ufford, H.C. Poly[3-(3,4-dihydroxyphenyl)glyceric acid] from Symphytum officinale roots and its biological activity. Chem. Nat. Comp. 2009, 45, 6–10. [Google Scholar] [CrossRef]
- Barbakadze, V.; Gogilashvili, L.; Amiranashvili, L.; Merlani, M.; Mulkijanyan, K.; Churadze, M.; Salgado, A.; Chankvetadze, B. Poly[3-(3,4-dihydroxyphenyl)glyceric acid] from Anchusa italica roots. Nat. Prod. Commun. 2010, 5, 1091–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokadze, S.; Gogilashvili, L.; Amiranashvili, L.; Barbakadze, V.; Merlani, M.; Bakuridze, A.; Salgado, A.; Chankvetadze, B. Investigation of water-soluble high molecular preparation of Symphytum grandiflorum DC (Boraginaceae). Bull. Georg. Natl. Acad. Sci. 2017, 11, 115–121. [Google Scholar]
- Gogilashvili, L.; Amiranashvili, L.; Merlani, M.; Salgado, A.; Chankvetadze, B.; Barbakadze, V. Poly[3-(3,4-dihydroxyphenyl) glyceric acid] from Cynoglossum officinale L. (Boraginaceae). Bull. Georg. Natl. Acad. Sci. 2020, 14, 108–113. [Google Scholar]
- Barbakadze, V.; Gogilashvili, L.; Amiranashvili, L.; Merlani, M.; Churadze, M.; Gogolashvili, A.; Salgado, A.; Chankvetadze, B. Carbohydrate-based biopolymers: Biologically active poly[3-(3,4-dihydroxyphenyl)glyceric acid] from Borago officinalis. Bull. Georg. Natl. Acad. Sci. 2021, 15, 140–145. [Google Scholar]
- Barbakadze, V.V.; Kemertelidze, E.P.; Mulkijanyan, K.G.; van den Berg, A.J.J.; Beukelman, C.J.; van den Worm, E.; Quarles van Ufford, H.C.; Usov, A.I. Antioxidant and anticomplementary activity of poly[3-(3,4-dihydroxyphenyl)glyceric acid] from Symphytum asperum and S. caucasicum. Pharm. Chem. J. 2007, 41, 14–16. [Google Scholar] [CrossRef]
- Barthomeuf, C.M.; Debiton, E.; Barbakadze, V.V.; Kemertelidze, E.P. Evaluation of the dietetic and therapeutic potential of a high molecular weight hydroxicinnamate-derived polymer from Symphytum asperum Lepech. Regarding its antioxidant, antilipoperoxidant, antiinflammatory, and cytotoxic properties. J. Agric. Food Chem. 2001, 49, 3942–3946. [Google Scholar] [CrossRef]
- Barbakadze, V.; Mulkijanyan, K.; Gogilashvili, L.; Amiranashvili, L.; Merlani, M.; Novikova, Z.; Sulakvelidze, M. Allantoin- and pyrrolizidine alkaloids-free wound healing compositions from Symphytum asperum. Bull. Georg. Natl. Acad. Sci. 2009, 3, 159–164. [Google Scholar]
- Mulkijanyan, K.; Barbakadze, V.; Novikova, Z.; Sulakvelidze, M.; Gogilashvili, L.; Amiranashvili, L.; Merlani, M. Burn healing compositions from Caucasian species of comfrey (Symphytum L.). Bull. Georg. Natl. Acad. Sci. 2009, 3, 114–117. [Google Scholar]
- Merlani, M.; Barbakadze, V.; Gogilashvili, L.; Amiranashvili, L. Antioxidant activity of caffeic acid-derived polymer from Anchusa italica. Bull. Georg. Natl. Acad. Sci. 2017, 11, 123–127. [Google Scholar]
- Shrotriya, S.; Deep, G.; Ramasamy, K.; Raina, K.; Barbakadze, V.; Merlani, M.; Gogilashvili, L.; Amiranashvili, L.; Mulkijanyan, K.; Papadopoulos, K.; et al. Poly[3-(3, 4-dihydroxyphenyl) glyceric] acid from comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis. Carcinogenesis 2012, 33, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Merlani, M.; Barbakadze, V.; Amiranashvili, L.; Gogilashvili, L.; Yannakopoulou, E.; Papadopoulos, K.; Chankvetadze, B. Enantioselective synthesis and antioxidant activity of 3-(3,4-dihydroxyphenyl)glyceric acid—Basic monomeric moiety of a biologically active polyether from Symphytum asperum and S. caucasicum. Chirality 2010, 22, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Merlani, M.; Barbakadze, V.; Amiranashvili, L.; Gogilashvili, L.; Poroikov, V.; Petrou, A.; Geronikaki, A.; Ciric, A.; Glamoclijad, J.; Sokovic, M. New caffeic acid derivatives as antimicrobial agents: Design, synthesis, evaluation and docking. Curr. Top. Med. Chem. 2019, 19, 292–304. [Google Scholar] [CrossRef]
- Cusimano, M.G.; Ardizzone, F.; Nasillo, G.; Gallo, M.; Sfriso, A.; Martino-Chillura, D.; Schillaci, D.; Baldi, F.; Gallo, G. Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay. Appl. Microbiol. Biotechnol. 2020, 104, 6325–6336. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, D.; Petruso, S.; Raimondi, M.V.; Cusimano, M.G.; Cascioferro, S.; Scalisi, M.; La Giglia, M.A.; Vitale, M. Pyrrolomycins as potential anti-staphylococcal biofilms agents. Biofouling 2010, 26, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miletic, N.; Loos, K.; Gross, R.A. Enzymatic polymerization of polyester. In Biocatalysis in Polymer Chemistry; Loos, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim, Germany, 2011; pp. 83–129, Chapter 4. [Google Scholar]
- Hollman, F.; Arends, I.W.C.E. Enzyme initiated radical polymerizations. Polymers 2012, 4, 759–793. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Makino, A. Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem. Rev. 2009, 109, 5288–5353. [Google Scholar] [CrossRef]
- Scheibel, D.M.; Gitsov, I. Unprecedented enzymatic synthesis of perfectly structured alternating copolymers via “green” reaction cocatalyzed by laccase and lipase compartmentalized within supramolecular complexes. Biomacromolecules 2019, 20, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Scheibel, D.M.; Guo, D.; Luo, J.; Gitsov, I. A single enzyme mediates the “quasi-living” formation of multiblock copolymers with a broad biomedical potential. Biomacromolecules 2020, 21, 2132–2146. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Gitsov, I. Novel amphiphilic dendronized copolymers formed by enzyme-mediated “green” polymerization. Biomacromolecules 2021, 22, 1706–1720. [Google Scholar] [CrossRef] [PubMed]
- Dominguez de Maria, P.; van Gemert, R.W.; Straathof, A.J.J.; Hanefeld, U. Biosynthesis of ethers: Unusual or common natural events? Nat. Prod. Rep. 2010, 27, 370–392. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, R.; Vermerris, W. Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 2001, 126, 1351–1357. [Google Scholar] [CrossRef] [Green Version]
- Soeda, Y.; Toshima, K.; Matsumura, S. Novel enzyme-catalyzed ring-opening polymerization of glycidol. Chem. Lett. 2001, 30, 76–77. [Google Scholar] [CrossRef]
- Soeda, Y.; Okamoto, T.; Toshima, K.; Matsumura, S. Enzymatic ring-opening polymerization of oxiranes and dicarboxylic anhydrides. Macromol. Biosci. 2002, 2, 429–436. [Google Scholar] [CrossRef]
- Schütz, C.; Dwars, T.; Kragl, U. Investigation on the biocatalytic oligomerization of glycidol. Lett. Org. Chem. 2006, 3, 679–684. [Google Scholar] [CrossRef]
- Rajkhowa, R.; Varma, I.K.; Albertsson, A.-C.; Edlund, U. Enzyme-catalyzed copolymerization of oxiranes with dicarboxylic acid anhydrides. J. Appl. Polym. Sci. 2005, 97, 697–704. [Google Scholar] [CrossRef]
- Merlani, M.; Koyama, Y.; Sato, H.; Geng, L.; Barbakadze, V.; Chankvetadze, B.; Nakano, T. Ring-opening polymerization of a 2,3-disubstituted oxirane leading to a polyether having a carbonyl–aromatic π-stacked structure. Polym. Chem. 2015, 6, 1932–1936. [Google Scholar] [CrossRef] [Green Version]
- Merlani, M.; Song, Z.; Wang, Y.; Yuan, Y.; Luo, J.; Barbakadze, V.; Chankvetadze, B.; Nakano, T. Polymerization of bulky of oxirane monomers leading to polyethers exhibiting intra-molecular charge transfer interactions. Macromol. Chem. Phys. 2019, 220, 1900331. [Google Scholar] [CrossRef]
Strains | PMDHPO MIC (µg/mL) |
---|---|
S. aureus ATCC 25923 | 100 |
E. coli ATCC 25922 | 100 |
P. aeruginosa ATCC 15442 | No activity up to 100 |
E. faecalis ATCC 29212 | No activity up to 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlani, M.; Scheibel, D.M.; Barbakadze, V.; Gogilashvili, L.; Amiranashvili, L.; Geronikaki, A.; Catania, V.; Schillaci, D.; Gallo, G.; Gitsov, I. Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family. Pharmaceutics 2022, 14, 115. https://doi.org/10.3390/pharmaceutics14010115
Merlani M, Scheibel DM, Barbakadze V, Gogilashvili L, Amiranashvili L, Geronikaki A, Catania V, Schillaci D, Gallo G, Gitsov I. Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family. Pharmaceutics. 2022; 14(1):115. https://doi.org/10.3390/pharmaceutics14010115
Chicago/Turabian StyleMerlani, Maia, Dieter M. Scheibel, Vakhtang Barbakadze, Lali Gogilashvili, Lela Amiranashvili, Athina Geronikaki, Valentina Catania, Domenico Schillaci, Giuseppe Gallo, and Ivan Gitsov. 2022. "Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family" Pharmaceutics 14, no. 1: 115. https://doi.org/10.3390/pharmaceutics14010115
APA StyleMerlani, M., Scheibel, D. M., Barbakadze, V., Gogilashvili, L., Amiranashvili, L., Geronikaki, A., Catania, V., Schillaci, D., Gallo, G., & Gitsov, I. (2022). Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family. Pharmaceutics, 14(1), 115. https://doi.org/10.3390/pharmaceutics14010115