Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside
Abstract
:1. Introduction
2. Mechanisms for Excitotoxicity
2.1. Glutamate-Mediated Activation
2.2. Mechanical Activation of NMDAr and Mechanoporation of Neuronal Membranes
2.3. Consequences of High Intracellular Calcium
2.4. Hippocampal Vulnerability to TBI
3. Blood–Brain Barrier Disruption and Neuroinflammation
4. Potential Therapies
4.1. NMDA Modulation
4.2. Dantrolene
4.3. Vitamin B12
4.4. Ceftriaxone
4.5. Minocycline
4.6. PSD-95 Inhibitors
4.7. MicroRNA (miRNA), Mesenchymal Stem Cells (MSC’s), and Exosome Therapy
4.8. Progesterone
4.9. Endocannabinoids
4.10. Intestinal Microbiota
4.11. RAGE Inhibitors
4.12. Zinc Supplementation
4.13. Antioxidants
4.14. Curcumin
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Capizzi, A.; Woo, J.; Verduzco-Gutierrez, M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef]
- Hackenberg, K.; Unterberg, A. [Traumatic Brain Injury]. Der Nervenarzt 2016, 87, 203–216. [Google Scholar] [CrossRef]
- Saban, K.; Griffin, J.; Urban, A.; Janusek, M.; Pape, T.; Collins, E. Perceived Health, Caregiver Burden, and Quality of Life in Women Partners Providing Care to Veterans with Traumatic Brain Injury. J. Rehabil. Res. Dev. 2016, 53, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, T.; Thimmappur, R.; Birudu, R.; Reddy N, K.; Raj, P. Burden and Psychological Distress of Intensive Care Unit Caregivers of Traumatic Brain Injury Patients. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2019, 23, 220–223. [Google Scholar] [CrossRef]
- Dewan, M.; Rattani, A.; Gupta, S.; Baticulon, R.; Hung, Y.; Punchak, M.; Agrawal, A.; Adeleye, A.; Shrime, M.; Rubiano, A.; et al. Estimating the Global Incidence of Traumatic Brain Injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [Green Version]
- Ma, V.; Chan, L.; Carruthers, K. Incidence, Prevalence, Costs, and Impact on Disability of Common Conditions Requiring Rehabilitation in the United States: Stroke, Spinal Cord Injury, Traumatic Brain Injury, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis, Limb Loss, and Back Pain. Arch. Phys. Med. Rehabil. 2014, 95, 986–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langlois, J.; Rutland-Brown, W.; Wald, M. The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.; Vos, T.; Alahdab, F.; Amit, A.; Bärnighausen, T.; Beghi, E.; Beheshti, M.; Chavan, P.; Criqui, M.; Desai, R.; et al. Burden of Neurological Disorders Across the US From 1990-2017: A Global Burden of Disease Study. JAMA Neurol. 2021, 78, 165–176. [Google Scholar] [CrossRef]
- Mckee, A.; Daneshvar, D. The Neuropathology of Traumatic Brain Injury. Handb. Clin. Neurol. 2015, 127, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davanzo, J.; Sieg, E.; Timmons, S. Management of Traumatic Brain Injury. Surg. Clin. N. Am. 2017, 97, 1237–1253. [Google Scholar] [CrossRef]
- Greve, M.W.; Zink, B.J. Pathophysiology of Traumatic Brain Injury. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2009, 76, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Pun, P.B.L.; Lu, J.; Moochhala, S. Involvement of ROS in BBB Dysfunction. Free Radic. Res. 2009, 43, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Alves, J. Blood-Brain Barrier and Traumatic Brain Injury. J. Neurosci. Res. 2014, 92, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Thelin, E.P.; Tajsic, T.; Khan, D.Z.; Khellaf, A.; Patani, R.; Helmy, A. Cellular Infiltration in Traumatic Brain Injury. J. Neuroinflamm. 2020, 17, 1–17. [Google Scholar] [CrossRef]
- Winkler, E.; Minter, D.; Yue, J.; Manley, G. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets. Neurosurg. Clin. N. Am. 2016, 27, 473–488. [Google Scholar] [CrossRef]
- Jarrahi, A.; Braun, M.; Ahluwalia, M.; Gupta, R.; Wilson, M.; Munie, S.; Ahluwalia, P.; Vender, J.; Vale, F.; Dhandapani, K.; et al. Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020, 8, 389. [Google Scholar] [CrossRef]
- Clark, D.P.Q.; Perreau, V.M.; Shultz, S.R.; Brady, R.D.; Lei, E.; Dixit, S.; Taylor, J.M.; Beart, P.M.; Boon, W.C. Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochem. Res. 2019, 44, 1410–1424. [Google Scholar] [CrossRef]
- Loane, D.; Kumar, A. Microglia in the TBI Brain: The Good, the Bad, and the Dysregulated. Exp. Neurol. 2016, 275 Pt 3, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant. 2017, 26, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Sveen, U.; Roe, C.; Sigurdardorrit, S.; Skandsen, T.; Andelic, N.; Manskow, U.; Berntsen, S.; Soberg, H.; Anke, A. Rehabilitation pathways and functional independence one year after severe traumatic brain injury. Eur. J. Phys. Rehabil. Med. 2016, 52, 650–661. [Google Scholar] [PubMed]
- Kreitzer, N.; Rath, K.; Kurowski, B.; Bakas, T.; Hart, K.; Lindsell, C.; Adeoye, O. Rehabilitation Practices in Patients With Moderate and Severe Traumatic Brain Injury. J. Head Trauma Rehabil. 2019, 34, E66–E72. [Google Scholar] [CrossRef] [PubMed]
- Selassie, A.; Zaloshnja, E.; Langlois, J.; Miller, T.; Jones, P.; Steiner, C. Incidence of Long-Term Disability Following Traumatic Brain Injury Hospitalization, United States, 2003. J. Head Trauma Rehabil. 2008, 23, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Zaloshnja, E.; Miller, T.; Langlois, J.; Selassie, A. Prevalence of Long-Term Disability from Traumatic Brain Injury in the Civilian Population of the United States, 2005. J. Head Trauma Rehabil. 2008, 23, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Rigotto, G.; Zentilin, L.; Pozzan, T.; Basso, E. Effects of Mild Excitotoxic Stimulus on Mitochondria Ca2+ Handling in Hippocampal Cultures of a Mouse Model of Alzheimer’s Disease. Cells 2021, 10, 2046. [Google Scholar] [CrossRef]
- Jankovic, M.; Novakovic, I.; Dawod, P.G.A.; Dawod, A.G.A.; Drinic, A.; Motaleb, F.I.A.; Ducic, S.; Nikolic, D. Current Concepts on Genetic Aspects of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 9832. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, J.R.; Esteban, J.M.; Villanueva, L.J.R. Retinal Cell Protection in Ocular Excitotoxicity Diseases. Possible Alternatives Offered by Microparticulate Drug Delivery Systems and Future Prospects. Pharmaceutics 2020, 12, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostic, M.; Zivkovic, N.; Stojanovic, I. Multiple Sclerosis and Glutamate Excitotoxicity. Rev. Neurosci. 2013, 24, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Hynd, M.; Scott, H.; Dodd, P. Glutamate-Mediated Excitotoxicity and Neurodegeneration in Alzheimer’s Disease. Neurochem. Int. 2004, 45, 583–595. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Kyyriäinen, J.; Kajevu, N.; Bañuelos, I.; Lara, L.; Lipponen, A.; Balosso, S.; Hämäläinen, E.; das Gupta, S.; Puhakka, N.; Natunen, T.; et al. Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 10555. [Google Scholar] [CrossRef]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, Function, and Allosteric Modulation of NMDA Receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef]
- Guo, H.; Camargo, L.M.; Yeboah, F.; Digan, M.E.; Niu, H.; Pan, Y.; Reiling, S.; Soler-Llavina, G.; Weihofen, W.A.; Wang, H.-R.; et al. A NMDA-Receptor Calcium Influx Assay Sensitive to Stimulation by Glutamate and Glycine/D-Serine. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Samson, A.; Robertson, G.; Zagnoni, M.; Connolly, C. Neuronal Networks Provide Rapid Neuroprotection against Spreading Toxicity. Sci. Rep. 2016, 6, 33746. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Paoletti, P. Allosteric Modulators of NMDA Receptors: Multiple Sites and Mechanisms. Curr. Opin. Pharmacol. 2015, 20, 14–23. [Google Scholar] [CrossRef]
- Chiang, V.S.-C.; Park, J.H. Glutamate in Male and Female Sexual Behavior: Receptors, Transporters, and Steroid Independence. Front. Behav. Neurosci. 2020, 14, 211. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Filardo, J.; Mellor, J. Neuromodulation of Hippocampal Long-Term Synaptic Plasticity. Curr. Opin. Neurobiol. 2019, 54, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ladak, A.; Enam, S.; Ibrahim, M. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg. 2019, 131, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Hardingham, G.E.; Fukunaga, Y.; Bading, H. Extrasynaptic NMDARs Oppose Synaptic NMDARs by Triggering CREB Shut-off and Cell Death Pathways. Nat. Neurosci. 2002, 5, 405–414. [Google Scholar] [CrossRef]
- Kunz, A.; Dirnagl, U.; Mergenthaler, P. Acute Pathophysiological Processes after Ischaemic and Traumatic Brain Injury. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, R.; Giza, C.; Rotenberg, A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr. Neurol. Neurosci. Rep. 2015, 15, 27. [Google Scholar] [CrossRef]
- Tasker, R. Spreading Depolarisations and Traumatic Brain Injury: Time Course and Mechanisms. Lancet. Neurol. 2012, 11, 389. [Google Scholar] [CrossRef]
- Lee, M.C.; Ting, K.K.; Adams, S.; Brew, B.J.; Chung, R.; Guillemin, G.J. Characterisation of the Expression of NMDA Receptors in Human Astrocytes. PLoS ONE 2010, 5, e14123. [Google Scholar] [CrossRef] [PubMed]
- Kloda, A.; Lua, L.; Hall, R.; Adams, D.J.; Martinac, B. Liposome Reconstitution and Modulation of Recombinant N-Methyl-d-Aspartate Receptor Channels by Membrane Stretch. Proc. Natl. Acad. Sci. USA 2007, 104, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Maneshi, M.M.; Maki, B.; Gnanasambandam, R.; Belin, S.; Popescu, G.K.; Sachs, F.; Hua, S.Z. Mechanical Stress Activates NMDA Receptors in the Absence of Agonists. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Doshi, S.; Spaethling, J.; Hockenberry, A.; Patel, T.; Geddes-Klein, D.; Lynch, D.; Meaney, D. N-Methyl-D-Aspartate Receptor Mechanosensitivity Is Governed by C Terminus of NR2B Subunit. J. Biol. Chem. 2012, 287, 4348–4359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hånell, A.; Rostami, E. How Can a Punch Knock You Out? Front. Neurol. 2020, 11, 1280. [Google Scholar] [CrossRef]
- Pettus, E.; Povlishock, J. Characterization of a Distinct Set of Intra-Axonal Ultrastructural Changes Associated with Traumatically Induced Alteration in Axolemmal Permeability. Brain Res. 1996, 722, 1–11. [Google Scholar] [CrossRef]
- Farkas, O.; Lifshitz, J.; Povlishock, J.T. Mechanoporation Induced by Diffuse Traumatic Brain Injury: An Irreversible or Reversible Response to Injury? J. Neurosci. 2006, 26, 3130–3140. [Google Scholar] [CrossRef] [Green Version]
- Boothe, D.L.; Yu, A.B.; Kudela, P.; Anderson, W.S.; Vettel, J.M.; Franaszczuk, P.J. Impact of Neuronal Membrane Damage on the Local Field Potential in a Large-Scale Simulation of Cerebral Cortex. Front. Neurol. 2017, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaPlaca, M.; Lessing, M.; Prado, G.; Zhou, R.; Tate, C.; Geddes-Klein, D.; Meaney, D.; Zhang, L. Mechanoporation Is a Potential Indicator of Tissue Strain and Subsequent Degeneration Following Experimental Traumatic Brain Injury. Clin. Biomech. (Bristol Avon) 2019, 64, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Cullen, D.K.; Vernekar, V.N.; LaPlaca, M.C. Trauma-Induced Plasmalemma Disruptions in Three-Dimensional Neural Cultures Are Dependent on Strain Modality and Rate. J. Neurotrauma 2011, 28, 2219–2233. [Google Scholar] [CrossRef] [Green Version]
- Kilinc, D.; Gallo, G.; Barbee, K. Mechanical Membrane Injury Induces Axonal Beading through Localized Activation of Calpain. Exp. Neurol. 2009, 219, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Jang, S.; Shin, Y.; Suh, D.; Park, H. Calcium-Dependent Proteasome Activation Is Required for Axonal Neurofilament Degradation. Neural Regen. Res. 2013, 8, 3401–3409. [Google Scholar] [CrossRef] [PubMed]
- Lucke-Wold, B.; Logsdon, A.; Nguyen, L.; Eltanahay, A.; Turner, R.; Bonasso, P.; Knotts, C.; Moeck, A.; Maroon, J.; Bailes, J.; et al. Supplements, Nutrition, and Alternative Therapies for the Treatment of Traumatic Brain Injury. Nutr. Neurosci. 2018, 21, 79–91. [Google Scholar] [CrossRef]
- Petronilho, F.; Feier, G.; de Souza, B.; Guglielmi, C.; Constantino, L.S.; Walz, R.; Quevedo, J.; Dal-Pizzol, F. Oxidative Stress in Brain According to Traumatic Brain Injury Intensity. J. Surg. Res. 2010, 164, 316–320. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Y.; Qin, Z. Molecular Mechanisms of Excitotoxicity and Their Relevance to Pathogenesis of Neurodegenerative Diseases. Acta Pharmacol. Sin. 2009, 30, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Lewén, A.; Fujimura, M.; Sugawara, T.; Matz, P.; Copin, J.-C.; Chan, P.H. Oxidative Stress–Dependent Release of Mitochondrial Cytochrome c after Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 2016, 21, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, S.; Acosta, S.; Lozano, D. Neuroinflammation in Traumatic Brain Injury: A Chronic Response to an Acute Injury. Brain Circ. 2017, 3, 135. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.C.; Ashkavand, Z.; Norman, K.R. The Role of Mitochondrial Calcium Homeostasis in Alzheimer’s and Related Diseases. Int. J. Mol. Sci. 2020, 21, 9153. [Google Scholar] [CrossRef] [PubMed]
- Denault, J.-B.; Salvesen, G.S. Caspases. Curr. Protoc. Protein Sci. 2001, 26, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Y.; Meng, J.; Wu, M.; Bi, F.; Chang, C.; Li, H.; Zhang, L. Ablation of Caspase-1 Protects against TBI-Induced Pyroptosis in Vitro and in Vivo. J. Neuroinflamm. 2018, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Muneer, P.M.; Long, M.; Conte, A.A.; Santhakumar, V.; Pfister, B.J. High Ca2+ Influx During Traumatic Brain Injury Leads to Caspase-1-Dependent Neuroinflammation and Cell Death. Mol. Neurobiol. 2016, 54, 3964–3975. [Google Scholar] [CrossRef]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase Functions in Cell Death and Disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar] [CrossRef]
- Clark, R.; Kochanek, P.; Watkins, S.; Chen, M.; Dixon, C.; Seidberg, N.; Melick, J.; Loeffert, J.; Nathaniel, P.; Jin, K.; et al. Caspase-3 Mediated Neuronal Death after Traumatic Brain Injury in Rats. J. Neurochem. 2000, 74, 740–753. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Bi, X.; Baudry, M. Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells 2020, 9, 2698. [Google Scholar] [CrossRef]
- Saatman, K.E.; Creed, J.; Raghupathi, R. Calpain as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2010, 7, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Briz, V.; Chishti, A.; Bi, X.; Baudry, M. Distinct Roles for μ-Calpain and m-Calpain in Synaptic NMDAR-Mediated Neuroprotection and Extrasynaptic NMDAR-Mediated Neurodegeneration. J. Neurosci. 2013, 33, 18880–18892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Kurup, P.; Zhang, Y.; Goebel-Goody, S.M.; Wu, P.H.; Hawasli, A.H.; Baum, M.L.; Bibb, J.A.; Lombroso, P.J. Extrasynaptic NMDA Receptors Couple Preferentially to Excitotoxicity via Calpain-Mediated Cleavage of STEP. J. Neurosci. 2009, 29, 9330–9343. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Gao, C.; Chen, W.; Gao, Y.; Wang, H.C.; Meng, Y.; Luo, C.L.; Zhang, M.Y.; Chen, G.; Chen, X.P.; et al. Salubrinal Offers Neuroprotection through Suppressing Endoplasmic Reticulum Stress, Autophagy and Apoptosis in a Mouse Traumatic Brain Injury Model. Neurobiol. Learn. Mem. 2019, 161, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jin, R.; Xiao, A.; Chen, R.; Li, J.; Zhong, W.; Feng, X.; Li, J. Induction of Neuronal PI3Kγ Contributes to Endoplasmic Reticulum Stress and Long-Term Functional Impairment in a Murine Model of Traumatic Brain Injury. Neurother. J. Am. Soc. Exp. NeuroTher. 2019, 16, 1320–1334. [Google Scholar] [CrossRef]
- Sun, D.; Wang, J.; Liu, X.; Fan, Y.; Yang, M.; Zhang, J. Dexmedetomidine Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis and Improves Neuronal Function after Traumatic Brain Injury in Mice. Brain Res. 2020, 1732, 146682. [Google Scholar] [CrossRef]
- Gage, F. Mammalian Neural Stem Cells. Science 2000, 287, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.D.; Sullivan, P.G.; Gibson, T.R.; Pavel, K.M.; Thompson, B.M.; Scheff, S.W. Spatial and Temporal Characteristics of Neurodegeneration after Controlled Cortical Impact in Mice: More than a Focal Brain Injury. J. Neurotrauma 2005, 22, 252–265. [Google Scholar] [CrossRef]
- Thompson, H.J.; Lifshitz, J.; Marklund, N.; Grady, M.S.; Graham, D.I.; Hovda, D.A.; McIntosh, T.K. Lateral Fluid Percussion Brain Injury: A 15-Year Review and Evaluation. J. Neurotrauma 2005, 22, 42–75. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Major, Y.; Meissner, D.; Sandi-Gahun, S.; Koch, R.; Pohl, M. The Influence of Contractures and Variation in Measurement Stretching Velocity on the Reliability of the Modified Ashworth Scale in Patients with Severe Brain Injury. Clin. Rehabil. 2005, 19, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Deng-Bryant, Y.; Cho, W.; Carrico, K.; Hall, E.; Chen, J. Selective Death of Newborn Neurons in Hippocampal Dentate Gyrus Following Moderate Experimental Traumatic Brain Injury. J. Neurosci. Res. 2008, 86, 2258–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Aimone, J.B.; Gage, F.H. New Neurons and New Memories: How Does Adult Hippocampal Neurogenesis Affect Learning and Memory? Nat. Rev. Neurosci. 2010, 11, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Dupret, D.; Revest, J.-M.; Koehl, M.; Ichas, F.; de Giorgi, F.; Costet, P.; Abrous, D.N.; Piazza, P.V. Spatial Relational Memory Requires Hippocampal Adult Neurogenesis. PLoS ONE 2008, 3, e1959. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Chen, L.; Gao, X.; Luo, B.; Chen, J. Moderate Traumatic Brain Injury Triggers Rapid Necrotic Death of Immature Neurons in the Hippocampus. J. Neuropathol. Exp. Neurol. 2012, 71, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Miller, K.; Fugaccia, I.; Scheff, S. Regional Distribution of Fluoro-Jade B Staining in the Hippocampus Following Traumatic Brain Injury. Exp. Neurol. 2005, 193, 125–130. [Google Scholar] [CrossRef]
- Sato, M.; Chang, E.; Igarashi, T.; Noble, L. Neuronal Injury and Loss after Traumatic Brain Injury: Time Course and Regional Variability. Brain Res. 2001, 917, 45–54. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, Q.; Shi, S.; Li, S.; Tan, L.; Wang, J.; Jin, X.; Luo, A. GABAergic Excitotoxicity Injury of the Immature Hippocampal Pyramidal Neurons’ Exposure to Isoflurane. Anesth. Analg. 2011, 113, 1152–1160. [Google Scholar] [CrossRef]
- Hood, K.N.; Zhao, J.; Redell, J.B.; Hylin, M.J.; Harris, B.; Perez, A.; Moore, A.N.; Dash, P.K. Endoplasmic Reticulum Stress Contributes to the Loss of Newborn Hippocampal Neurons after Traumatic Brain Injury. J. Neurosci. 2018, 38, 2372–2384. [Google Scholar] [CrossRef]
- Redell, J.B.; Maynard, M.E.; Underwood, E.L.; Vita, S.M.; Dash, P.K.; Kobori, N. Traumatic Brain Injury and Hippocampal Neurogenesis: Functional Implications. Exp. Neurol. 2020, 331, 113372. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-W.; Li, S.; Dai, S.-S. Neutrophils in Traumatic Brain Injury (TBI): Friend or Foe? J. Neuroinflamm. 2018, 15, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, K.; Zhang, J.; Dong, J.; Shi, F.-D. Dissemination of Brain Inflammation in Traumatic Brain Injury. Cell. Mol. Immunol. 2019, 16, 523–530. [Google Scholar] [CrossRef]
- Szmydynger-Chodobska, J.; Strazielle, N.; Gandy, J.R.; Keefe, T.H.; Zink, B.J.; Ghersi-Egea, J.-F.; Chodobski, A. Posttraumatic Invasion of Monocytes across the Blood—Cerebrospinal Fluid Barrier. J. Cereb. Blood Flow Metab. 2011, 32, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and Neuroprotection in Traumatic Brain Injury. JAMA Neurol. 2015, 72, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Mai, W.; Chen, L.; Cao, K.; Zhang, B.; Zhang, Z.; Liu, Y.; Lou, H.; Duan, S.; Gao, Z. MTOR-Mediated Metabolic Reprogramming Shapes Distinct Microglia Functions in Response to Lipopolysaccharide and ATP. Glia 2020, 68, 1031–1045. [Google Scholar] [CrossRef]
- Carpentier, P.A.; Begolka, W.S.; Olson, J.K.; Elhofy, A.; Karpus, W.J.; Miller, S.D. Differential Activation of Astrocytes by Innate and Adaptive Immune Stimuli. Glia 2005, 49, 360–374. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Chen, Q.; Quan, N. Interleukin-1 Exerts Distinct Actions on Different Cell Types of the Brain in Vitro. J. Inflamm. Res. 2011, 4, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Ghafourifar, P.; Bringold, U.; Klein, S.D.; Richter, C. Mitochondrial Nitric Oxide Synthase, Oxidative Stress and Apoptosis. Neurosignals 2001, 10, 57–65. [Google Scholar] [CrossRef]
- Izzy, S.; Liu, Q.; Fang, Z.; Lule, S.; Wu, L.; Chung, J.Y.; Sarro-Schwartz, A.; Brown-Whalen, A.; Perner, C.; Hickman, S.E.; et al. Time-Dependent Changes in Microglia Transcriptional Networks Following Traumatic Brain Injury. Front. Cell. Neurosci. 2019, 13, 307. [Google Scholar] [CrossRef] [Green Version]
- Witcher, K.G.; Bray, C.E.; Dziabis, J.E.; McKim, D.B.; Benner, B.N.; Rowe, R.K.; Kokiko-Cochran, O.N.; Popovich, P.G.; Lifshitz, J.; Eiferman, D.S.; et al. Traumatic Brain Injury-Induced Neuronal Damage in the Somatosensory Cortex Causes Formation of Rod-Shaped Microglia That Promote Astrogliosis and Persistent Neuroinflammation. Glia 2018, 66, 2719–2736. [Google Scholar] [CrossRef] [PubMed]
- Dinet, V.; Petry, K.G.; Badaut, J. Brain–Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front. Neurosci. 2019, 13, 1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Stoica, B.A.; Loane, D.J.; Yang, M.; Abulwerdi, G.; Khan, N.; Kumar, A.; Thom, S.R.; Faden, A.I. Microglial-Derived Microparticles Mediate Neuroinflammation after Traumatic Brain Injury. J. Neuroinflamm. 2017, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fei, M.; Wang, H.; Zhou, M.; Deng, C.; Zhang, L.; Han, Y. Podoplanin Influences the Inflammatory Phenotypes and Mobility of Microglia in Traumatic Brain Injury. Biochem. Biophys. Res. Commun. 2020, 523, 361–367. [Google Scholar] [CrossRef]
- Gentleman, S.M.; Leclercq, P.D.; Moyes, L.; Graham, D.I.; Smith, C.; Griffin, W.S.T.; Nicoll, J.A.R. Long-Term Intracerebral Inflammatory Response after Traumatic Brain Injury. Forensic Sci. Int. 2004, 146, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Ndode-Ekane, X.E.; Matthiesen, L.; Bañuelos-Cabrera, I.; Palminha, C.A.P.; Pitkänen, A. T-Cell Infiltration into the Perilesional Cortex Is Long-Lasting and Associates with Poor Somatomotor Recovery after Experimental Traumatic Brain Injury. Restor. Neurol. Neurosci. 2018, 36, 485–501. [Google Scholar] [CrossRef]
- Clausen, F.; Lorant, T.; Lewén, A.; Hillered, L. T Lymphocyte Trafficking: A Novel Target for Neuroprotection in Traumatic Brain Injury. J. Neurotrauma 2007, 24, 1295–1307. [Google Scholar] [CrossRef]
- Newell-Rogers, M.K.; Rogers, S.K.; Tobin, R.P.; Mukherjee, S.; Shapiro, L.A. Antagonism of Macrophage Migration Inhibitory Factory (MIF) after Traumatic Brain Injury Ameliorates Astrocytosis and Peripheral Lymphocyte Activation and Expansion. Int. J. Mol. Sci. 2020, 21, 7448. [Google Scholar] [CrossRef] [PubMed]
- Daglas, M.; Draxler, D.F.; Ho, H.; McCutcheon, F.; Galle, A.; Au, A.E.; Larsson, P.; Gregory, J.; Alderuccio, F.; Sashindranath, M.; et al. Activated CD8 + T Cells Cause Long-Term Neurological Impairment after Traumatic Brain Injury in Mice. Cell Rep. 2019, 29, 1178–1191.e6. [Google Scholar] [CrossRef] [Green Version]
- Raad, M.; Nohra, E.; Chams, N.; Itani, M.; Talih, F.; Mondello, S.; Kobeissy, F. Autoantibodies in Traumatic Brain Injury and Central Nervous System Trauma. Neuroscience 2014, 281, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Sajja, V.S.S.S.; Hlavac, N.; VandeVord, P.J. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. Front. Integr. Neurosci. 2016, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- González-Reyes, R.E.; Nava-Mesa, M.O.; Vargas-Sánchez, K.; Ariza-Salamanca, D.; Mora-Muñoz, L. Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front. Mol. Neurosci. 2017, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Jassam, Y.N.; Izzy, S.; Whalen, M.; McGavern, D.B.; el Khoury, J. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017, 95, 1246–1265. [Google Scholar] [CrossRef] [Green Version]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Dorsett, C.; McGuire, J.; Niedzielko, T.; DePasquale, E.; Meller, J.; Floyd, C.; McCullumsmith, R. Traumatic Brain Injury Induces Alterations in Cortical Glutamate Uptake without a Reduction in Glutamate Transporter-1 Protein Expression. J. Neurotrauma 2017, 34, 220–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The Role of Astrocytic Glutamate Transporters GLT-1 and GLAST in Neurological Disorders: Potential Targets for Neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [CrossRef]
- Gupta, R.; Prasad, S. Early down Regulation of the Glial Kir4.1 and GLT-1 Expression in Pericontusional Cortex of the Old Male Mice Subjected to Traumatic Brain Injury. Biogerontology 2013, 14, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Temple, M.; Hamm, R. Chronic, Post-Injury Administration of D-Cycloserine, an NMDA Partial Agonist, Enhances Cognitive Performance Following Experimental Brain Injury. Brain Res. 1996, 741, 246–251. [Google Scholar] [CrossRef]
- Adeleye, A.; Shohami, E.; Nachman, D.; Alexandrovich, A.; Trembovler, V.; Yaka, R.; Shoshan, Y.; Dhawan, J.; Biegon, A. D-Cycloserine Improves Functional Outcome after Traumatic Brain Injury with Wide Therapeutic Window. Eur. J. Pharmacol. 2010, 629, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, R.; Başkaya, M.; Doğan, A. Attenuation of Brain Edema, Blood-Brain Barrier Breakdown, and Injury Volume by Ifenprodil, a Polyamine-Site N-Methyl-D-Aspartate Receptor Antagonist, after Experimental Traumatic Brain Injury in Rats. Neurosurgery 2000, 47, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Yurkewicz, L.; Weaver, J.; Bullock, M.R.; Marshall, L.F. The Effect of the Selective NMDA Receptor Antagonist Traxoprodil in the Treatment of Traumatic Brain Injury. J. Neurotrauma 2005, 22, 1428–1443. [Google Scholar] [CrossRef]
- Frandsen, A.; Schousboe, A. Dantrolene Prevents Glutamate Cytotoxicity and Ca2+ Release from Intracellular Stores in Cultured Cerebral Cortical Neurons. J. Neurochem. 1991, 56, 1075–1078. [Google Scholar] [CrossRef]
- Wu, F.; Xu, K.; Lei, L.; Zhang, K.; Xia, L.; Zhang, M.; Teng, C.; Tong, H.; He, Y.; Xue, Y.; et al. Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Front. Pharmacol. 2019, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, H.; Yu, X.; Deng, Y. Minocycline Attenuates Neurological Impairment and Regulates Iron Metabolism in a Rat Model of Traumatic Brain Injury. Arch. Biochem. Biophys. 2020, 682, 108302. [Google Scholar] [CrossRef]
- Qu, W.; Liu, N.-K.; Wu, X.; Wang, Y.; Xia, Y.; Sun, Y.; Lai, Y.; Li, R.; Shekhar, A.; Xu, X.-M. Disrupting NNOS–PSD95 Interaction Improves Neurological and Cognitive Recoveries after Traumatic Brain Injury. Cereb. Cortex 2020, 30, 3859–3871. [Google Scholar] [CrossRef] [PubMed]
- Tchantchou, F.; Zhang, Y. Selective Inhibition of Alpha/Beta-Hydrolase Domain 6 Attenuates Neurodegeneration, Alleviates Blood Brain Barrier Breakdown, and Improves Functional Recovery in a Mouse Model of Traumatic Brain Injury. J. Neurotrauma 2013, 30, 565–579. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, H.; Zhong, W.; Li, N.; Cong, Z. Expression and Cell Distribution of Metabotropic Glutamate Receptor 5 in the Rat Cortex Following Traumatic Brain Injury. Brain Res. 2012, 1464, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, W.; Dong, Y.; Wu, L.; Huang, J.; Ma, Y.; Zhang, Z.; Wu, S.; Gao, G.; Qin, H. Ceftriaxone Alleviates Early Brain Injury after Subarachnoid Hemorrhage by Increasing Excitatory Amino Acid Transporter 2 Expression via the PI3K/Akt/NF-ΚB Signaling Pathway. Neuroscience 2014, 268, 21–32. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Coleman, D.M.; Pollard, E.L.; Maldonado, J.; McDonough-Means, S.; Caporaso, J.G.; Krajmalnik-Brown, R. Long-Term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Tang, H.-B.; Chen, Z.; Wang, H.-Q.; Zhang, L.; Jiang, Y.; Li, T.; Yang, C.-F.; Wang, X.-Y.; Li, X.; et al. Inhibiting HMGB1-RAGE Axis Prevents pro-Inflammatory Macrophages/Microglia Polarization and Affords Neuroprotection after Spinal Cord Injury. J. Neuroinflamm. 2020, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Khazdouz, M.; Mazidi, M.; Ehsaei, M.; Ferns, G.; Kengne, A.P.; Norouzy, A.-R. Impact of Zinc Supplementation on the Clinical Outcomes of Patients with Severe Head Trauma: A Double-Blind Randomized Clinical Trial. J. Diet Suppl. 2017, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chopp, M.; Zhang, Z.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; Mahmood, A.; Xiong, Y. Systemic Administration of Cell-Free Exosomes Generated by Human Bone Marrow Derived Mesenchymal Stem Cells Cultured under 2D and 3D Conditions Improves Functional Recovery in Rats after Traumatic Brain Injury. Neurochem. Int. 2017, 111, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Kellermann, A.; Hertzberg, V.; Clark, P.; Frankel, M.; Goldstein, F.; Salomone, J.; Dent, L.; Harris, O.; Ander, D.; et al. ProTECT: A Randomized Clinical Trial of Progesterone for Acute Traumatic Brain Injury. Ann. Emerg. Med. 2007, 49, 391–402. [Google Scholar] [CrossRef]
- Wright, D.W.; Yeatts, S.D.; Silbergleit, R.; Palesch, Y.Y.; Hertzberg, V.S.; Frankel, M.; Goldstein, F.C.; Caveney, A.F.; Howlett-Smith, H.; Bengelink, E.M.; et al. Very Early Administration of Progesterone for Acute Traumatic Brain Injury. N. Engl. J. Med. 2014, 371, 2457–2466. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-H.; Jiang, Z.-L.; Li, Y.-C.; Li, X.; Shi, H.; Gao, Y.-Q.; Vosler, P.S.; Chen, J. Free-Radical Scavenger Edaravone Treatment Confers Neuroprotection Against Traumatic Brain Injury in Rats. J. Neurotrauma 2011, 28, 2123–2134. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Miao, Z.; Ye, Y.; Zhao, P.; Fan, L.; Bao, Z.; Tu, Y.; Li, C.; Chao, H.; Xu, X.; et al. Curcumin Alleviates Neuroinflammation, Enhances Hippocampal Neurogenesis, and Improves Spatial Memory after Traumatic Brain Injury. Brain Res. Bull. 2020, 162, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Whyte, J.; Bagiella, E.; Kalmar, K.; Childs, N.; Khademi, A.; Eifert, B.; Long, D.; Katz, D.I.; Cho, S.; et al. Placebo-Controlled Trial of Amantadine for Severe Traumatic Brain Injury. N. Engl. J. Med. 2012, 366, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.P.; Abbas, M.; Alunday, R.L.; Qeadan, F.; Shuttleworth, C.W. Spreading Depolarization in Acute Brain Injury Inhibited by Ketamine: A Prospective, Randomized, Multiple Crossover Trial. J. Neurosurg. 2018, 130, 1513–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.E. Amantadine Treatment Following Traumatic Brain Injury in Children. Brain Inj. 2009, 21, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Spritzer, S.; Kinney, C.; Condie, J.; Wellik, K.; Hoffman-Snyder, C.; Wingerchuk, D.; Demaerschalk, B. Amantadine for Patients with Severe Traumatic Brain Injury: A Critically Appraised Topic. Neurology 2015, 19, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Papadia, S.; Hardingham, G. The Dichotomy of NMDA Receptor Signaling. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2007, 13, 572–579. [Google Scholar] [CrossRef]
- Hardingham, G.E. Coupling of the NMDA Receptor to Neuroprotective and Neurodestructive Events. Biochem. Soc. Trans. 2009, 37, 1147–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.; Bullock, R.; Marshall, S.; Marmarou, A.; Maas, A.; Marshall, L. Failure of the Competitive N-Methyl-D-Aspartate Antagonist Selfotel (CGS 19755) in the Treatment of Severe Head Injury: Results of Two Phase III Clinical Trials. The Selfotel Investigators. J. Neurosurg. 1999, 91, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, N.; Zhou, L.; Wang, X.; Song, J.; Han, H.; Zhang, T.; Wang, Y.; Shi, Q.; Xu, H.; Liang, Q.; et al. MK-801 Attenuates Lesion Expansion Following Acute Brain Injury in Rats: A Meta-Analysis. Neural Regen. Res. 2019, 14, 1919–1931. [Google Scholar] [CrossRef]
- Hammond, F.; Sauve, W.; Ledon, F.; Davis, C.; Formella, A. Safety, Tolerability, and Effectiveness of Dextromethorphan/Quinidine for Pseudobulbar Affect Among Study Participants With Traumatic Brain Injury: Results From the PRISM-II Open Label Study. PM R J. Inj. Funct. Rehabil. 2018, 10, 993–1003. [Google Scholar] [CrossRef]
- Biegon, A.; Fry, P.; Paden, C.; Alexandrovich, A.; Tsenter, J.; Shohami, E. Dynamic Changes in N-Methyl-D-Aspartate Receptors after Closed Head Injury in Mice: Implications for Treatment of Neurological and Cognitive Deficits. Proc. Natl. Acad. Sci. USA 2004, 101, 5117–5122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fan, J.; Gu, L.; Yang, H.; Zhan, S.; Zhang, H. Metabotropic Glutamate Receptor 5 Inhibits α-Synuclein-Induced Microglia Inflammation to Protect from Neurotoxicity in Parkinson’s Disease. J. Neuroinflamm. 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.; Sheffler, D.; Semenova, S.; Cosford, N.; Bespalov, A. Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biol. Psychiatry 2018, 83, 955–962. [Google Scholar] [CrossRef]
- Byrnes, K.R.; Loane, D.J.; Stoica, B.A.; Zhang, J.; Faden, A.I. Delayed MGluR5 Activation Limits Neuroinflammation and Neurodegeneration after Traumatic Brain Injury. J. Neuroinflamm. 2012, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, H.; Cong, Z.; Zhang, X.; Zhou, X.; Zhang, D. Activation of Metabotropic Glutamate Receptor 5 Reduces the Secondary Brain Injury after Traumatic Brain Injury in Rats. Biochem. Biophys. Res. Commun. 2013, 430, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.; Guerrero, A.; Lanum, D.; Burgett-Moreno, M.; Fenati, G.; Barr, S.; Neeki, M. Emergent Treatment of Neuroleptic Malignant Syndrome Induced by Antipsychotic Monotherapy Using Dantrolene. Clin. Pract. Cases Emerg. Med. 2019, 3, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Muehlschlegel, S.; Sims, J.R. Dantrolene: Mechanisms of Neuroprotection and Possible Clinical Applications in the Neurointensive Care Unit. Neurocrit. Care 2008, 10, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Yano, Y.; Nakayama, R.; Imaizumi, T.; Terasaki, H.; Ushijima, K. Dantrolene Ameliorates Delayed Cell Death and Concomitant DNA Fragmentation in the Rat Hippocampal CA1 Neurons Subjected to Mild Ischemia. Resuscitation 2001, 50, 117–125. [Google Scholar] [CrossRef]
- Wei, H.; Leeds, P.; Chen, R.; Wei, W.; Leng, Y. Neuronal Apoptosis Induced by Pharmacological Concentrations of 3-Hydroxykynurenine: Characterization and Protection by Dantrolene and Bcl-2 Overexpression. J. Neurochem. 2000, 75, 81–90. [Google Scholar] [CrossRef]
- Nakayama, R.; Yano, T.; Ushijima, K.; Abe, E.; Terasaki, H. Effects of Dantrolene on Extracellular Glutamate Concentration and Neuronal Death in the Rat Hippocampal CA1 Region Subjected to Transient Ischemia. Anesthesiology 2002, 96, 705–710. [Google Scholar] [CrossRef]
- Mody, I.; MacDonald, J. NMDA Receptor-Dependent Excitotoxicity: The Role of Intracellular Ca2+ Release. Trends Pharmacol. Sci. 1995, 16, 356–359. [Google Scholar] [CrossRef]
- Tamaddonfard, E.; Farshid, A.; Samadi, F.; Eghdami, K. Effect of Vitamin B12 on Functional Recovery and Histopathologic Changes of Tibial Nerve-Crushed Rats. Drug Res. 2014, 64, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Tanaka, H.; Temporin, K.; Okamoto, M.; Kuroda, Y. Methylcobalamin Increases Erk1/2 and Akt Activities through the Methylation Cycle and Promotes Nerve Regeneration in a Rat Sciatic Nerve Injury Model. Exp. Neurol. 2010, 222, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tanaka, H.; Ebara, M.; Uto, K.; Matsuoka, H.; Nishimoto, S.; Okada, K.; Murase, T.; Yoshikawa, H. Electrospun Nanofiber Sheets Incorporating Methylcobalamin Promote Nerve Regeneration and Functional Recovery in a Rat Sciatic Nerve Crush Injury Model. Acta Biomater. 2017, 53, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Huang, Y.K.; Jaw, F.S. Ultrasound-Guided Perineural Vitamin B12 Injection for Peripheral Neuropathy. J. Med. Ultrasound 2015, 23, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yang, T.; Li, Q.; Zhu, Z.; Wang, L.; Bai, G.; Li, D.; Li, Q.; Wang, W. Experimetal Research Dexamethasone and Vitamin B12 Synergistically Promote Peripheral Nerve Regeneration in Rats by Upregulating the Expression of Brain-Derived Neurotrophic Factor. Arch. Med. Sci. 2012, 8, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Shakkour, Z.; Habashy, K.J.; Berro, M.; Takkoush, S.; Abdelhady, S.; Koleilat, N.; Eid, A.H.; Zibara, K.; Obeid, M.; Shear, D.; et al. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientists 2021, 27, 620–649. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Su, Z.; Emdad, L.; Gupta, P.; Sarkar, D. Mechanism of Ceftriaxone Induction of Excitatory Amino Acid Transporter-2 Expression and Glutamate Uptake in Primary Human Astrocytes. J. Biol. Chem. 2008, 283, 13116–13123. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Su, H.; Nyam, T.; Chio, C.; Kuo, J.; Wang, C. Ceftriaxone Therapy Attenuates Brain Trauma in Rats by Affecting Glutamate Transporters and Neuroinflammation and Not by Its Antibacterial Effects. BMC Neurosci. 2021, 22, 54. [Google Scholar] [CrossRef]
- Tikka, T.; Fiebich, B.L.; Goldsteins, G.; Keinänen, R.; Koistinaho, J. Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. J. Neurosci. 2001, 21, 2580–2588. [Google Scholar] [CrossRef]
- Sanchez Mejia, R.; Ona, V.; Li, M.; Friedlander, R. Minocycline Reduces Traumatic Brain Injury-Mediated Caspase-1 Activation, Tissue Damage, and Neurological Dysfunction. Neurosurgery 2001, 48, 1393–1401. [Google Scholar] [CrossRef]
- Meythaler, J.; Fath, J.; Fuerst, D.; Zokary, H. Safety and Feasibility of Minocycline in Treatment of Acute Traumatic Brain Injury. Brain Inj. 2019, 33, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Rama, R.; Dávalos, A. Nitric Oxide–Related Brain Damage in Acute Ischemic Stroke. Stroke 2000, 31, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Li, F.; Xu, H.-B.; Luo, C.-X.; Wu, H.-Y.; Zhu, M.-M.; Lu, W.; Ji, X.; Zhou, Q.-G.; Zhu, D.-Y. Treatment of Cerebral Ischemia by Disrupting Ischemia-Induced Interaction of NNOS with PSD-95. Nat. Med. 2010, 16, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Sommer, J.B.; Bach, A.; Malá, H.; Strømgaard, K.; Mogensen, J.; Pickering, D.S. In Vitro and in Vivo Effects of a Novel Dimeric Inhibitor of PSD-95 on Excitotoxicity and Functional Recovery after Experimental Traumatic Brain Injury. Eur. J. Neurosci. 2017, 45, 238–248. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, M.C.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering MiRNAs’ Action through MiRNA Editing. Int. J. Mol. Sci. 2019, 20, 6249. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.-T.; Lei, P.; Wang, H.-C.; Zhang, A.-L.; Han, Z.-L.; Chen, X.; Li, S.-H.; Jiang, R.-C.; Kang, C.-S.; Zhang, J.-N. MiR-21 Improves the Neurological Outcome after Traumatic Brain Injury in Rats. Sci. Rep. 2014, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; He, J.; Tian, X.; Li, H. Upregulation of MiRNA-9-5p Promotes Angiogenesis after Traumatic Brain Injury by Inhibiting Ptch-1. Neuroscience 2020, 440, 160–174. [Google Scholar] [CrossRef]
- Ghosh, S.; Garg, S.; Ghosh, S. Cell-Derived Exosome Therapy: A Novel Approach to Treat Post-Traumatic Brain Injury Mediated Neural Injury. ACS Chem. Neurosci. 2020, 11, 2045–2047. [Google Scholar] [CrossRef]
- Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-Mediated Transfer of MiR-133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth. STEM CELLS 2012, 30, 1556–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Xiao, G. The Neuroprotective Effects of Progesterone on Traumatic Brain Injury: Current Status and Future Prospects. Acta Pharmacol. Sin. 2013, 34, 1485–1490. [Google Scholar] [CrossRef]
- Xiao, G.; Wei, J.; Yan, W.; Wang, W.; Lu, Z. Improved Outcomes from the Administration of Progesterone for Patients with Acute Severe Traumatic Brain Injury: A Randomized Controlled Trial. Crit. Care (Lond. Engl.) 2008, 12, R61. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Sayeed, I.; Baronne, L.; Hoffman, S.; Guennoun, R.; Stein, D. Progesterone Administration Modulates AQP4 Expression and Edema after Traumatic Brain Injury in Male Rats. Exp. Neurol. 2006, 198, 469–478. [Google Scholar] [CrossRef]
- Smith, S. Progesterone Administration Attenuates Excitatory Amino Acid Responses of Cerebellar Purkinje Cells. Neuroscience 1991, 42, 309–320. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; di Marzo, V. Cannabinoids and the Expanded Endocannabinoid System in Neurological Disorders. Nat. Rev. Neurol. 2019, 16, 9–29. [Google Scholar] [CrossRef]
- Coomber, B.; O’Donoghue, M.F.; Mason, R. Inhibition of Endocannabinoid Metabolism Attenuates Enhanced Hippocampal Neuronal Activity Induced by Kainic Acid. Synapse 2008, 62, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Arizzi, M.; Cervone, K.; Aberman, J.; Betz, A. Behavioral Effects of Inhibition of Cannabinoid Metabolism: The Amidase Inhibitor AM374 Enhances the Suppression of Lever Pressing Produced by Exogenously Administered Anandamide. Life Sci. 2004, 74, 1001–1011. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Pan, H.; Rajesh, M.; Bátkai, S.; Patel, V.; Harvey-White, J.; Mukhopadhyay, B. CB1 Cannabinoid Receptors Promote Oxidative/Nitrosative Stress, Inflammation and Cell Death in a Murine Nephropathy Model. Br. J. Pharmacol. 2010, 160, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Heintz-Buschart, A.; Wilmes, P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018, 26, 563–574. [Google Scholar] [CrossRef]
- Lamichhane, S.; Sen, P.; Dickens, A.M.; Orešič, M.; Bertram, H.C. Gut Metabolome Meets Microbiome: A Methodological Perspective to Understand the Relationship between Host and Microbe. Methods 2018, 149, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.L.; Dong, J.; Galipeau, H.J.; Jury, J.; McCarville, J.; Huang, X.; Wang, X.-Y.; Naidoo, A.; Anbazhagan, A.N.; Libertucci, J.; et al. Commensal Microbiota Induces Colonic Barrier Structure and Functions That Contribute to Homeostasis. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurans, L.; Venteclef, N.; Haddad, Y.; Chajadine, M.; Alzaid, F.; Metghalchi, S.; Sovran, B.; Denis, R.G.P.; Dairou, J.; Cardellini, M.; et al. Genetic Deficiency of Indoleamine 2,3-Dioxygenase Promotes Gut Microbiota-Mediated Metabolic Health. Nat. Med. 2018, 24, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020, 11, 2546. [Google Scholar] [CrossRef]
- al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef] [PubMed]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease. Genome Med. 2016, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Brenner, L.A.; Stearns-Yoder, K.A.; Hoffberg, A.S.; Penzenik, M.E.; Starosta, A.J.; Hernández, T.D.; Hadidi, D.A.; Lowry, C.A. Growing Literature but Limited Evidence: A Systematic Review Regarding Prebiotic and Probiotic Interventions for Those with Traumatic Brain Injury and/or Posttraumatic Stress Disorder. Brain Behav. Immun. 2017, 65, 57–67. [Google Scholar] [CrossRef]
- Blander, J.M.; Longman, R.S.; Iliev, I.D.; Sonnenberg, G.F.; Artis, D. Regulation of Inflammation by Microbiota Interactions with the Host. Nat. Immunol. 2017, 18, 851–860. [Google Scholar] [CrossRef]
- Saglam, E.; Zırh, S.; Aktas, C.C.; Muftuoglu, S.F.; Bilginer, B. Papaverine Provides Neuroprotection by Suppressing Neuroinflammation and Apoptosis in the Traumatic Brain Injury via RAGE- NF- B Pathway. J. Neuroimmunol. 2021, 352, 77476. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, Q.; Li, W.; Zhang, D.; Ma, B.; Li, S.; Li, W.; Zhou, M.; Hang, C. Biphasic Activation of Nuclear Factor Kappa B and Expression of P65 and C-Rel after Traumatic Brain Injury in Rats. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. 2014, 63, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Mu, X.S.; Hayes, R.L. Increased Cortical Nuclear Factor-ΚB (NF-ΚB) DNA Binding Activity after Traumatic Brain Injury in Rats. Neurosci. Lett. 1995, 197, 101–104. [Google Scholar] [CrossRef]
- Manivannan, S.; Marei, O.; Elalfy, O.; Zaben, M. Neurogenesis after Traumatic Brain Injury—The Complex Role of HMGB1 and Neuroinflammation. Neuropharmacology 2021, 183, 108400. [Google Scholar] [CrossRef] [PubMed]
- Andersson, U.; Yang, H.; Harris, H. Extracellular HMGB1 as a Therapeutic Target in Inflammatory Diseases. Expert Opin. Ther. Targets 2018, 22, 263–277. [Google Scholar] [CrossRef]
- El-Far, A.H.; Sroga, G.; al Jaouni, S.K.; Mousa, S.A. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression. Int. J. Mol. Sci. 2020, 21, 3613. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-Y.; Lu, C.-H.; Wu, C.-H.; Li, K.-J.; Kuo, Y.-M.; Hsieh, S.-C.; Yu, C.-L. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020, 25, 5591. [Google Scholar] [CrossRef] [PubMed]
- Levenson, C.W. Zinc and Traumatic Brain Injury: From Chelation to Supplementation. Med. Sci. 2020, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Chen, J.; Motamedi, M.; Bell, B.; Listiak, K.; Pons, N.; Danscher, G.; Frederickson, C. Evidence That Synaptically-Released Zinc Contributes to Neuronal Injury after Traumatic Brain Injury. Brain Res. 2000, 852, 268–273. [Google Scholar] [CrossRef]
- Hellmich, H.; Frederickson, C.; DeWitt, D.; Saban, R.; Parsley, M.; Stephenson, R.; Velasco, M.; Uchida, T.; Shimamura, M.; Prough, D. Protective Effects of Zinc Chelation in Traumatic Brain Injury Correlate with Upregulation of Neuroprotective Genes in Rat Brain. Neurosci. Lett. 2004, 355, 221–225. [Google Scholar] [CrossRef]
- Domínguez, M.; Blasco-Ibáñez, J.; Crespo, C.; Marquez Mari, A.; Martínez-Gui, F. Zinc Chelation during Non-Lesioning Overexcitation Results in Neuronal Death in the Mouse Hippocampus. Neuroscience 2003, 116, 791–806. [Google Scholar] [CrossRef]
- Doering, P.; Stoltenberg, M.; Penkowa, M.; Rungby, J.; Larsen, A.; Danscher, G. Chemical Blocking of Zinc Ions in CNS Increases Neuronal Damage Following Traumatic Brain Injury (TBI) in Mice. PLoS ONE 2010, 5, e10131. [Google Scholar] [CrossRef] [Green Version]
- Levenson, C.W. Zinc Supplementation: Neuroprotective or Neurotoxic? Nutr. Rev. 2005, 63, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Won, S.; Hamby, A.; Yoo, B.; Fan, Y.; Sheline, C.; Tamano, H.; Takeda, A.; Liu, J. Decreased Brain Zinc Availability Reduces Hippocampal Neurogenesis in Mice and Rats. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2009, 29, 1579–1588. [Google Scholar] [CrossRef] [Green Version]
- Adamo, A.M.; Oteiza, P.I. Zinc Deficiency and Neurodevelopment: The Case of Neurons. BioFactors (Oxf. Engl.) 2010, 36, 117. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.; Shakkour, Z.; Tabet, M.; Abdelhady, S.; Kobaisi, A.; Abedi, R.; Nasrallah, L.; Pintus, G.; Al-Dhaheri, Y.; Mondello, S.; et al. Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone. Antioxidants 2020, 9, 943. [Google Scholar] [CrossRef]
- Zhang, M.; Teng, C.; Wu, F.; Ge, L.; Xiao, J.; Zhang, H.; Chen, D. Edaravone Attenuates Traumatic Brain Injury through Anti-inflammatory and Anti-oxidative Modulation. Exp. Ther. Med. 2019, 18, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lian, D.; Wu, J.; Liu, Y.; Zhu, M.; Sun, J.; He, D.; Li, L. Brain-Derived Neurotrophic Factor Reduces Inflammation and Hippocampal Apoptosis in Experimental Streptococcus Pneumoniae Meningitis. J. Neuroinflamm. 2017, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Wang, H.; Fang, J.; Zhu, Y.; Zhou, J.; Wang, X.; Zhou, Y.; Zhou, M. Curcumin Provides Neuroprotection in Model of Traumatic Brain Injury via the Nrf2-ARE Signaling Pathway. Brain Res. Bull. 2018, 140, 65–71. [Google Scholar] [CrossRef] [PubMed]
Novel Potential Therapies | Mechanism of Action | Pre/Clinical Evidence | Result | Reference |
---|---|---|---|---|
1. NMDAr partial agonists (d-cycloserine) | Partial agonism of NMDA receptors in the loss of function period following TBI | Lateral fluid percussion TBI model. Following TBI, rats were injected with daily intraperitoneal d-cycloserine (10–30 mg/kg), which was given from 24 h until 15 days post injury. A control group received vehicle. (Animal study) | 30 mg/kg dose significantly reduced memory deficits compared to the control group. 10 mg/kg was ineffective in attenuating memory deficits. Loss of function of NMDA receptors was >1 h—7 days post injury | [111] |
Partial agonism of NMDA receptors in the loss of function period following TBI | Weight-drop TBI model in male mice, subsequently treated with 10 mg/kg of d-cycloserine (i.p.) or vehicle in different regimens. (Animal study) | Functional recovery assessed by NSS score was better in the d-cycloserine treated group at 24 or 72 h post trauma | [112] | |
2. NMDAr subunit GluN2B antagonists (Ifenprodil, Taxoprodil) | Ifenprodil: selective GluN2B inhibitor | Controlled cortical impact TBI model in rats. Infenprodil vs. saline was injected by the intraperitoneal route immediately after injury, and then every 90 min until 6 h after injury. (Animal study) | BBB breakdown, brain edema and injury volume were lower in the ifenprodil-treated group vs. the saline-treated group. | [113] |
Taxoprodil: selective GluN2B inhibitor | A randomized, double-blind, placebo-controlled study to evaluate the efficacy of a 72-h intravenous infusion in patients with severe TBI. 404 males and females were treated within 8 h of injury. (Human study) | Taxoprodil-treated group had better outcome con the Glasgow outcome scale at 6 months. Mortality rate was 7% less than in the placebo group. | [114] | |
3. Ryanodine receptor antagonist (Dantrolene) | Ryanodine receptor antagonist, blockage of calcium induced calcium-release from the ER, protecting against glutamate induced excitotoxicity | Cerebral cortical neurons of mice were exposed to KCl or glutamate alone or in combination with dantrolene. (Animal study) | Dantrolene reduced the glutamate induced increase in [Ca2+]i by 70% | [115] |
4. Vitamin B12 | ↓ ER stress related apoptosis | Controlled cortical impact was performed in male mice who were subsequently treated with vitamin B12 by the intraperitoneal route. The TBI + vitamin B12 group was compared to the TBI group. (Animal study) | TBI + VB12 showed: ↓ ipsilateral brain edema, tissue damage ↓ GRP78, IRE1α, XBP-1 and CHOP Better functional recovery after 7 days | [116] |
5. Protein synthesis inhibitors (Minocycline) | ↓ excessive release of NO, ↓ Activation of Caspase 1 and 3, Fe2+ and Fe3+ chelating activity, ↓ IL-1B | Rats were subjected to weight drop model of TBI, and were subsequently divided intro TBI + vehicle, or TBI + minocycline at different doses. (Animal study) | Minocycline treated groups had increased neuronal viability, chelating activity for iron in vitro, and attenuated neurological impairment | [117] |
6. PSD-95 inhibitors (ZL006) | Inhibition of PSD-95 reducing neurotoxic levels of NO | Female mice were subjected to controlled cortical impact, after 30 min post injury they were treated with ZL006 or vehicle. (Animal study) | ZL006 (PSD-95 inhibitor) treated group had reduced expression of apoptotic markers, improved neuroscores, and attenuated cognitive impairment | [118] |
7. Endocannabinoids | 2-arachidonylglycerol attenuates inflammatory response, protects BBB | Male mice were subjected to controlled cortical impact. 30 min following TBI, WWL70 (inhibitor of the principal enzyme that degrades 2-AG) was administered vs. saline. (Animal study) | Improved motor coordination and working memory performance, reduced lesion size in the cortex and neurodegeneration in the dentate gyrus | [119] |
8. mGLU5 agonists (CHPG) | Reduction of excitotoxic damage | Male rats were subjected to a weight drop TBI model and were distributed among sham, TBI, TBI + vehicle, and TBI + CHPG (mGluR5 agonist) groups. (Animal study) | The use of delayed CHPG led to a decrease in the number of degenerating neurons. Reduced excitotoxic damage | [120] |
9. Bacterial cell wall synthesis inhibitors (Ceftriaxone) | Activates the EAAT2 promoter in human fetal astrocytes, increasing glutamate reuptake | Rat model of SAH compared SAH + intracisternal treatment with ceftriaxone at different doses compared to SAH + saline. (Animal study) | Decreased hippocampal neuronal apoptosis, improved neurological outcomes and reduced extracellular glutamate concentration | [121] |
10. Prebiotics | Regulation of systemic inflammation | Open-label trial of MTT in 18 participants with autism. (Human study) | GI symptom relief, autism severity was lower (according to CARS) | [122] |
11. RAGE inhibitors (Glycyrrhizin, FPS-ZM1) | Rage inhibition leads to ↑ HMGB1 which activated neural genesis, attenuation of glycosylation, antioxidative stress, metal ion chelation, and reduced scavenging of reactive 1,2-dicarbonyl compounds or ROS/RNS | Glycyrrhizin (10 mg/kg) and FPS-ZM1 (1 mg/kg) were administered to inhibit microglial RAGE and HMGB1 respectively (Animal study) | Blockade of RAGE/HMGB1 suppresses proinflammatory microglia polarization and granted neuroprotection | [123] |
12. Zinc | Regulates cellular oxidant production and signaling cascades in the brain, modulates hippocampal neurogenesis | Double-blind randomized placebo-controlled clinical trial evaluated 100 patients with severe head trauma. Patients received placebo vs. 120 mg Zinc (Human study) | Improvement in the SOFA, Glasgow coma scale, and inflammation factors | [124] |
13. MicroRNA/exosome therapy | Regulate gene expression by degradation of mRNA or by inhibiting its translation | Rats were subjected to controlled cortical impact; 24 h later, exosomes were injected intravenously. (Animal study) | Sensorimotor functional recovery, improved spatial learning by promoting angiogenesis, neurogenesis and reducing neuroinflammation | [125] |
14. Neurosteroids (Progesterone) | Modulates inflammatory response, apoptosis and AQ4, regulation of inflammatory response | Randomized double-blind, placebo-controlled clinical trial was held. One hundred trauma patients with a Glasgow score of 4–12 were analyzed, and the subjects were randomized to receive intravenous progesterone or placebo. (Human study) | Lower 30-day mortality rate than controls | [126] |
Randomized double-blind, placebo-controlled clinical trial evaluated 882 patients with non-penetrating TBI. Progesterone was administered i.v. within 4 h of trauma and compared with placebo. (Human study) | No mortality difference was seen between the two groups. The trial was stopped early because of futility. | [127] | ||
15. ROS scavenger (Edaravone) | Donates electrons to neutralize ROS | Rats were subjected to a weight drop model and were subsequently treated with edaravone 2 h and 12 h after injury. (Animal study) | Edaravone significantly reduced hippocampal neuronal loss, reduced oxidative stress, BBB permeability and neurological deficit after recovery | [128] |
16. Curcumin | ↑ BDNF/TrkB/PI3K/Akt signaling | Rats were subjected to a TBI model and 28 days after were treated with 30 mg /kg of Cur vs. vehicle. (Animal study) | Cur ameliorated TBI-impaired spatial memory, reduced chronic neuroinflammation, reduced inflammatory factors and increased neurogenesis in the hippocampus | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baracaldo-Santamaría, D.; Ariza-Salamanca, D.F.; Corrales-Hernández, M.G.; Pachón-Londoño, M.J.; Hernandez-Duarte, I.; Calderon-Ospina, C.-A. Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics 2022, 14, 152. https://doi.org/10.3390/pharmaceutics14010152
Baracaldo-Santamaría D, Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernandez-Duarte I, Calderon-Ospina C-A. Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics. 2022; 14(1):152. https://doi.org/10.3390/pharmaceutics14010152
Chicago/Turabian StyleBaracaldo-Santamaría, Daniela, Daniel Felipe Ariza-Salamanca, María Gabriela Corrales-Hernández, Maria José Pachón-Londoño, Isabella Hernandez-Duarte, and Carlos-Alberto Calderon-Ospina. 2022. "Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside" Pharmaceutics 14, no. 1: 152. https://doi.org/10.3390/pharmaceutics14010152
APA StyleBaracaldo-Santamaría, D., Ariza-Salamanca, D. F., Corrales-Hernández, M. G., Pachón-Londoño, M. J., Hernandez-Duarte, I., & Calderon-Ospina, C. -A. (2022). Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics, 14(1), 152. https://doi.org/10.3390/pharmaceutics14010152