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Abstract: In this study, we developed PLGA nanoparticles (NPs) as an effective carrier for 5′-Se-
(phenyl)-3-(amino)-thymidine (ACAT-Se), an organoselenium compound, nucleoside analogue that
showed promising antitumor activity in vitro. The PLGA NPs were prepared by the nanoprecipitation
method and modified with a pH-responsive lysine-based surfactant (77KL). The ACAT-Se-PLGA-
77KL-NPs presented nanometric size (around 120 nm), polydispersity index values < 0.20 and
negative zeta potential values. The nanoencapsulation of ACAT-Se increased its antioxidant (DPPH
and ABTS assays) and antitumor activity in MCF-7 tumor cells. Hemolysis study indicated that ACAT-
Se-PLGA-77KL-NPs are hemocompatible and that 77KL provided a pH-sensitive membranolytic
behavior to the NPs. The NPs did not induce cytotoxic effects on the nontumor cell line 3T3,
suggesting its selectivity for the tumor cells. Moreover, the in vitro antiproliferative activity of
NPs was evaluated in association with the antitumor drug doxorubicin. This combination result in
synergistic effect in sensitive (MCF-7) and resistant (NCI/ADR-RES) tumor cells, being especially
able to successfully sensitize the MDR cells. The obtained results suggested that the proposed
ACAT-Se-loaded NPs are a promising delivery system for cancer therapy, especially associated
with doxorubicin.

Keywords: selenium compounds; pH-responsive nanoparticles; combination therapy; tumor cell
lines; multidrug resistance (MDR)

1. Introduction

Chemotherapy is the most common treatment for many types of cancer. However, the
majority of the currently available chemotherapeutic agents show poor specificity by the
tumor site, causing significant side effects and drug resistance [1–3]. In this regard, it is of
the utmost importance the development of new compounds as well as new drug delivery
systems to achieve a more effective antitumor treatment.

Nucleoside analogues represent an important class of chemotherapeutic agents used
for the treatment of patients with cancer [4,5]. They are synthetic compounds, analogues of
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natural nucleosides, which act as antimetabolites. Inside the cells, they are phosphorylated
and converted to their respective nucleotide analogues, which inhibit intracellular enzymes
such as DNA polymerase or ribonucleotide reductase, as well as by being incorporated into
newly synthesized DNA, causing inhibition of DNA synthesis. Nevertheless, resistance
to nucleoside analogues are common and can occur by poor conversion into their active
metabolites or by limited uptake by the tumor cells, due to a decreased expression of nucle-
oside transporter proteins [6–8]. Based on this background, new nucleosides derived from
zidovudine containing chalcogenium are developed (5′-arylchalcogeno-3-aminothymidine,
ACATs) [9]. Among these compounds, the 5′-Se-(phenyl)-3-(amino)-thymidine (ACAT-Se)
present interesting antitumor potential; however, innovative pharmaceutical technological
approaches are required to improve this activity.

The polymeric nanoparticles (NPs) present several advantages such as versatility, due
to the possibility to customize the polymers, in addition to greater bioavailability, high
encapsulation capacity for hydrophilic payloads, controlled release, good dispersion in
water and ability to overcome the barrier of the lipid bilayer of the cell membrane by
different endocytosis pathways [10–13]. Furthermore, after parenteral administration, the
NPs can easily reach the tumor tissues because of the defective and leaky structure of tumor
vessels, as well as the impaired lymphatic system. This phenomenon is known as enhanced
permeability and retention effect (EPR) and allows the NPs to accumulate at the tumor
site [14–16]. These characteristics make the NPs a promising approach to improve the
efficacy of therapeutic cancer treatments [17]. Moreover, due to their elevated metabolism,
tumor cells have slightly lower extracellular pH values (~6.5) than healthy tissues (pH 7.4),
and this difference can be exploited to develop pH-sensitive drug delivery systems [18].
In this sense, our research group was studying a unique and exclusive group of anionic
amino acid-based surfactants derived from Nα,Nε-dioctanoyl lysine with pH-responsive
behavior. They were incorporated into different NPs, assigning them a great potential to
destabilize the endosomal membrane in mildly acidic environment [19–23].

In this study, to obtain an efficient drug delivery system for cancer therapy, we de-
signed pH-responsive NPs incorporating 77KL (Nα,Nε-dioctanoyl lysine with an inorganic
lithium counterion) for the encapsulation of the organoselenium compound ACAT-Se. The
NPs were prepared using poly(lactic-co-glycolic acid) (PLGA), a biocompatible, biodegrad-
able and safely administrable polymer approved by the US FDA (Food and Drug Ad-
ministration) and EMA (European Medicines Agency) [24,25]. In addition, poloxamer, a
nonionic surfactant also approved by FDA [26], was used as a stabilizer and with the aim to
increase the sensitization of tumors to the antineoplastic drug and to overcome multidrug
resistance (MDR) in cancer cells [26,27]. The NPs were characterized and the role of pH
in the membrane-lytic activity of NPs was evaluated using the erythrocyte as a model for
the endosomal membrane. The in vitro drug release profile and scavenging properties
of the NPs were also assessed. Furthermore, the safety of the NPs was evaluated by the
hemocompatibility assay, and their nonspecific cytotoxicity was assessed using a nontumor
cell line. The potential antitumor activity was assessed using sensitive and MDR tumor
cell lines.

Finally, some studies suggest that selenium compounds present synergism with differ-
ent cancer therapies, increasing the efficacy of the treatment and reducing the toxicity in the
normal tissue [1,28,29]. In this context we evaluated if the NPs present synergic antitumor
activity with doxorubicin (DOX), an antineoplastic drug commonly used for the treatment
of a wide range of cancers [30].

2. Materials and Methods
2.1. Materials

Poly(D,L-lactic-co-glycolic acid) (PLGA, 50:50, 24–38 kDa), sorbitan monooleate (Span
80®), poloxamer 407 (Pluronic® F-127), 2-2-diphenyl-1-picrylhydrazyl (DPPH), radical,
2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,5-diphenyl-3-(4,5-dimethyl-
2-thiazolyl) tetrazolium bromide (MTT), neutral red (NR) dye, phosphate-buffered saline
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(PBS), and trypsin-EDTA solution (0.5 g porcine trypsin and 0.2 g EDTA·4Na per liter of
Hank’s Balanced Salt Solution) were obtained from Sigma–Aldrich (São Paulo, SP, Brazil).
Fetal bovine serum (FBS) and Dulbecco’s Modified Eagle’s Medium (DMEM), supple-
mented with L-glutamine (584 mg/L) and antibiotic/antimycotic (50 mg/mL gentamicin
sulfate and 2 mg/L amphotericin B), were purchased from Vitrocell (Campinas, SP, Brazil).
All other solvents and reagents were of analytical grade.

5′-Se-(phenyl)-3-(amino)-thymidine (ACAT-Se) was obtained from the LabSelen-NanoBio
(Federal University of Santa Maria, Brazil). This compound was synthesized and fully
characterized as previously described (da Rosa et al., 2017).

2.2. Preparation of Nanoparticles

The NP suspension were prepared by a nanoprecipitation method [31]. Firstly, ACAT-
Se (0.030 g) previously dissolved in methanol (6 mL) was added in a solution containing
PLGA (0.050 g) and Span® 80 (0.080 g) in acetone (30 mL), and this organic solution was
kept for 20 min under magnetic stirring. Then, the organic solution was quickly poured
into an aqueous solution (30 mL) containing Pluronic® F-127 (0.150 g) and the pH-sensitive
adjuvant 77KL (0.005 g). The pH of this aqueous solution was previously adjusted to 8.0
with NaOH 0.1 M (early pH~7.0). After 10 min under magnetic stirring (530 rpm), the
organic solvent was eliminated by evaporation under reduced pressure to achieve 10 mL
of final volume (ACAT-Se-PLGA-77KL-NPs).

NPs without the active compound (PLGA-77KL-NPs) and the pH-sensitive adjuvant
77KL (ACAT-Se-PLGA-NPs and PLGA-NPs) was also prepared for comparison proposes.
All formulations were made in triplicate.

2.3. Characterization of Nanoparticles

The NP suspensions were diluted in ultrapure water (1:500 v/v) for the determination
of the mean hydrodynamic diameter and the polydispersity index (PDI) by dynamic light
scattering (DLS) using a Malvern Zetasizer ZS (Malvern Instruments, Malvern, UK). Each
measurement was performed using at least three sets of ten runs. The zeta potential (ZP)
was evaluated by electrophoretic mobility, using the same equipment. For this measure-
ment, samples were diluted in 10 mM NaCl aqueous solution (1:500 v/v). Analysis of
pH was done directly in the NP suspensions, at room temperature, using a calibrated
potentiometer (UB-10; Denver Instrument, Bohemia, NY, USA).

2.4. Analytical Method

A reversed-phase liquid chromatography (RP-LC) method was developed for the
quantification of ACAT-Se in the NPs. The method was performed, at room temperature, on
a Shimadzu LC system (Shimadzu, Kyoto, Japan) equipped with an SPD-M20A photodiode
array (PDA) detector, using a Gemini NX C18 Phenomenex column (150 mm × 4.6 mm;
5 µm). The UV detection was set at 263 nm and the LC system was operated isocratically,
using a mobile phase consisted of potassium phosphate buffer (pH 3.0, 15 mM), acetonitrile
and methanol (70:20:10, v/v/v), run at a flow rate of 0.8 mL/min. The method was
validated according to international guidelines for specificity, linearity, precision, accuracy,
and robustness.

2.5. ACAT-Se Content and Entrapment Efficiency

For the determination of the total ACAT-Se content in the NP suspension, the NP
samples were diluted in acetonitrile (1:5, v/v), followed by vortex mixing for 10 min
(1300 rpm) and ultrasound for 10 min at 40 ◦C. Then, the samples were diluted in mobile
phase to 20 µg/mL, filtered through a 0.45 µm membrane, and injected into RP-LC system,
using the previously described method. The total content of the active compound in the NP
suspensions was calculated against a methanolic solution of ACAT-Se (3 mg/mL) diluted
in mobile phase to the same concentration.
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The entrapment efficiency (EE%) was determined by the ultrafiltration/centrifugation
technique using Amicon Ultra-0.5 Centrifugal Filters (10,000 Da MWCO, Millipore, Cork,
Ireland). An aliquot of the NP suspension was transferred to the centrifugal device and
submitted to centrifugation at 3610× g for 20 min. The ultrafiltrate (free content) was
analyzed by the RP-LC method. The EE% was calculated by the following equation:

EE% =

(
Totalcontent− Freecontent

Totalcontent

)
× 100

2.6. In Vitro Release Studies

The in vitro release studies of ACAT-Se from PLGA NPs were performed by the
dialysis method. The samples (500 µL) were transferred to a dialysis bag (Sigma–Aldrich,
14,000 MWCO), sealed, and immersed in 50 mL of phosphate buffer solution (PBS), pH 7.4
or 5.4 (pH adjusted with NaOH or phosphoric acid, respectively), with constant shaking
(150 rpm), in water bath at 37 ◦C for 24 h. At predetermined time intervals, 2 mL of the
release medium was collected and replaced for an equivalent amount of fresh release
medium to maintain the sink conditions. The collected samples were filtered through a
0.45 µm membrane and analyzed by the previously described RP-LC method. The release of
free ACAT-Se (methanolic solution) was also evaluated in pH 7.4, for comparison proposes.

The Korsmeyer Peppas
(

ktn = Mt
M∞

)
equation was used to understand the mecha-

nisms by which the drug release happened. In this equation, k considers the geometric
characteristics of the system, n gives the information about the diffusional release mech-
anism of a drug from a polymeric device and Mt and M∞ are absolute values of drug
released at time t and infinity [32,33].

2.7. In Vitro Antioxidant Activity

The percent scavenging activity of the NPs was determine using DPPH and ABTS
assays [34,35]. NPs and free ACAT-Se were diluted at the concentrations of 25, 50, 100, 200
and 300 µg/mL. The samples (75 µL) were placed in 96-well plates with a 50 mM DDPH
solution (150 µL) in methanol and kept in the in dark at room temperature for 30 min. The
absorbance was measured at 550 nm using a microplate reader Multiskan FC (Thermo
Fisher Scientific, Shanghai, China) (Sample Abs). The same procedure was used for the ABTS
assay; the ABTS solution was prepared by mixing 5 mL of 7 mM ABTS in water with 88 µL
140 mM sodium persulfate, and this solution was kept in the dark at room temperature
for 12 h. Subsequently, this solution was diluted in a 10 mM phosphate solution pH 7.0 to
obtain a 42.7 µM of ABTS in the final solution. The absorbance was measured at 734 nm.
The NPs turbidity interference (Blank Abs) was determinate preparing samples solutions
with 150 µL of methanol or water instead of the DPPH or ABTS solutions, respectively. The
negative control (Negative control Abs) was assessed by mixing the DPPH or ABTS solutions
with 75 µL of water. Percent scavenging activity was calculated by the following equation:

Scavenging activity % =

(
(Sample Abs− Blank Abs)× 100

Negative control Abs

)
− 100

2.8. In Vitro Cell Biocompatibility Studies

The study of the nonspecific cytotoxicity of NPs was assessed using the nontumor cell
line 3T3 (murine Swiss albino fibroblasts), which was obtained from European Collection
of Authenticated Cell Cultures (ECACC) repository by purchasing them at Sigma-Aldrich.
The cells were cultured in DMEM medium (4.5 g/L glucose) supplemented with 10% (v/v)
FBS, at 37 ◦C with 5% CO2. When they achieved approximately 80% confluence, were
seeded (6.5 × 104 cells/mL) in 96-well cell culture plates and incubated for 24 h. The cells
were treated with free and nanoencapsulated ACAT-Se for 72 h at 37 ◦C with 5% CO2, and
the cell viability was evaluated by the MTT assay using a microplate reader Multiskan FC
(Thermo Fisher Scientific, Shanghai, China) set at 550 nm. The cell viability after treatment
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with the antitumor drugs methotrexate (MTX) (50 µg/mL) and DOX (10 µg/mL) was also
assessed for comparison purposes.

2.9. Hemocompatibility Studies

The NPs hemocompatibility was evaluated using the hemolysis assay [22]. Erythro-
cytes were isolated from human blood, obtained from healthy volunteer donors invited
according to the guidelines established by the Ethics Committee in Research, from the
Federal University of Santa Maria, Brazil (protocol CAAE 44017921.3.0000.5346). Red blood
cells were isolated, by centrifugation, washed and suspended in isotonic PBS (pH 7.4;
300 mOsmoL/L) at a cell density of 8 × 109 cell/mL. The ACAT-Se-PLGA-77KL-NPs and
PLGA-77KL-NPs were diluted in PBS pH 7.4 at concentrations of 5, 7.5, and 10% (v/v)
corresponding to 150, 225 and 300 µg/mL of ACAT-Se, respectively. Free ACAT-Se was also
assessed in the same concentrations for comparison purposes. The samples were incubated
with 25 µL of the erythrocyte suspension for 5 h under gentle shaking and then centrifuged
at 10,000× g for 5 min to stop the reaction. Positive and negative controls were prepared
by incubating the erythrocyte suspension with water and PBS, respectively. Afterwards,
an aliquot of 200 µL of at sample were placed in 96-well plates and the absorbance was
determined at 550 nm using a microplate reader Multiskan FC (Thermo Fisher Scientific,
Shanghai, China).

2.10. pH-Dependent Membrane-Lytic Activity of Nanoparticle

The hemolysis assay was used to determine the pH-dependent membrane-lytic activity
of the NPs using the erythrocytes as a model of endosomal membrane [36]. An aliquot
of 25 µL of erythrocytes suspension, prepared as described for the hemocompatibility
assay, was incubated with the NP suspensions diluted in PBS pH 7.4, 6.6 or 5.4 at the
concentrations of 5, 7.5 and 10% (v/v), corresponding to 150, 225 and 300 µg/mL of ACAT-
Se, respectively. For the positive control, the erythrocytes suspension was diluted in water,
and for the negative control in PBS pH 7.4, 6.6 or 5.4. The samples were incubated at room
temperature under constant shaking for 5 h and then centrifuged at 10,000× g for 5 min.
Supernatants were placed in 96-well plates and the absorbance was determined at 550 nm
using a microplate reader Multiskan FC (Thermo Fisher Scientific, Shanghai, China).

2.11. In Vitro Protein Corona

The NP suspensions were dispersed in cell culture medium (DMEM 5% FBS) or in
plasma [37]. The mean hydrodynamic diameter was determined using a Malvern Zetasizer
ZS (Malvern Instruments, Malvern, UK), immediately after dilution (t = 0 h) and after
24 and 72 h of incubation at 37 ◦C, simulating the environment found during the in vitro
cytotoxicity experiments or in vivo conditions.

2.12. In Vitro Antitumor Activity

The MCF-7 (human breast cancer) cell line was obtained from Eucellbank of Celltec
UB (University of Barcelona, Spain) and cultured in DMEM medium (4.5 g/L glucose)
supplemented with 10% (v/v) FBS, at 37 ◦C with 5% CO2. The cells were seeded into 75 cm2

cultivation flasks and harvested using trypsin-EDTA when the cells reached approximately
80% confluence. The multidrug-resistant (MDR) cell line NCI/ADR-RES (human ovarian
cancer cells) was kindly donated by Dr. Antoni Benito from the University of Girona (Spain)
and cultured continuously in the same DMEM medium (4.5 g/L glucose), but containing
doxorubicin (DOX) 1 µg/mL.

Both tumor cell lines were used to evaluate the potential in vitro antineoplastic ac-
tivity of the free and nanoencapsulated ACAT-Se. The MCF-7 and NCI/ADR-Res cells
(1 × 105 cells/mL) were seeded in 96-well cell culture plates in 100 µL of complete culture
medium, incubated for 24 h. Then, the medium was replaced for 100 µL of the treatments
diluted in DMEM medium with 5% FBS. The free ACAT-Se and ACAT-Se-PLGA-77KL-NPs
were prepared at the concentrations of 0.5, 5, 10, 20, 40 and 60 µg/mL of ACAT-Se. The
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PLGA-77KL-NPs were diluted at the same proportion of the ACAT-Se NPs to evaluate
the interference of the NP matrix. Control cells were exposed to the DMEM medium with
5% FBS only. Additionally, the antitumor drugs MTX (50 µg/mL) and DOX (10 µg/mL)
were used as positive controls. Cells were incubated for 24 or 72 h and their viability
was assessed by the MTT and NRU assays. For the MTT assay the medium was replaced
by 100 µL of 0.5 mg/mL MTT solution in DMEM without FBS, incubated of 3 h at 37 ◦C
with 5% CO2. Then, the medium was replaced by 100 µL of DMSO to dissolve the purple
formazan product. Similarly, for the NRU assay, the medium was discarded and 100 µL
of 50 µg/mL NR dye solution was added, incubated of 3 h at 37 ◦C with 5% CO2. After
the incubation time, the microplates were washed with PBS, then the PBS was replaced by
100 µL of a solution containing 50% ethanol and 1% acetic acid in distilled water. For both
assays, the microplates were shaking for 10 min at room temperature and the absorbance
was measured at 550 nm using a microplate reader Multiskan FC (Thermo Fisher Scientific,
Shanghai, China).

2.13. Synergic In Vitro Antitumor Activity with Doxorubicin

This assay was applied to study the effect of the interaction between the free or
nanoencapsulated ACAT-Se and the reference chemotherapeutic drug DOX. The study
was also performed comparatively on the tumor cell lines MCF-7 and NCI/ADR-RES, and
the treatments were prepared at the concentrations of 10, 20, 40 and 60 µg/mL of ACAT-
Se with fixed DOX concentration of 0.05 and 10 µg/mL for MCF-7 and NCI/ADR-RES,
respectively. The synergic activity of PLGA-77KL-NPs (blank NPs) was also evaluated
for comparison purposes. They were diluted at the same proportion of the ACAT-Se
NPs and incubated with the same DOX concentrations. After 72 h of incubation, cell
viability was assessed using MTT and NRU assays. Results were used to calculate the
combination index (CI) and dose-reduction index (DRI) by the median-effect method using
CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA). According to Chou–Talalay
method, CI < 0.9, 0.9 < CI > 1.1, and CI > 1.1 indicate synergism, additive effect, and
antagonism, respectively [1,38–40]. The DRI is a measure of how many fold the dose of
each drug in a synergistic combination may be reduced at a given effect level, compared
with the doses of each drug alone. DRI > 1 indicate a favorable dose reduction and greater
DRI value indicates a greater dose reduction effect [38,41].

2.14. Statistics

Results are expressed as mean ± standard error (SE) or mean ± standard deviation
(SD) and statistical analyses were performed using one-way analysis of variance (ANOVA)
to determine the differences between the datasets, followed by Student–Newman–Keuls
test for multiple comparisons, using SPSS® software (SPSS Inc., Chicago, IL, USA). The
robustness of the RP-LC method was verified using Minitab 17 (MINITAB® Statistical
Software, Release 17, Minitab Inc., State College, PA, USA). All experiments were performed
at least three times. p < 0.05 was considered to be significant.

3. Results
3.1. Characterization of Nanoparticles

The results of the determination of mean hydrodynamic diameter, PDI, ZP and pH of
the NPs with and without ACAT-Se are showed in Table 1. The NP suspensions presented
nanometric size (~120 nm), low PDI values that indicates a homogenous size distribution,
negative zeta potential (~−4 mV) and neutral/slightly acidic pH. No significant difference
was observed between the NPs with or without ACAT-Se (p > 0.05).
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Table 1. Physicochemical characterization of NP suspensions.

Particle Size
(nm) ± SD PDI ± SD ZP

(mV) ± SD pH ± SD ACAT-Se Content
(mg/mL) ± SD

Entrapment
Efficiency (%)± SD

ACAT-Se-PLGA-77KL-NPs 118.9 ± 11.4 0.129 ± 0.04 −4.3 ± 0.70 7.1 ± 0.78 2.9 ± 0.19 64.1 ± 2.3
PLGA-77KL-NPs 126.5 ± 10.8 0.136 ± 0.02 −3.4 ± 0.67 6.6 ± 0.89 - -

SD, standard deviation, n = 3.

3.2. Analytical Method

The developed RP-LC method was linear in the range 1–40 µg/mL (y = 47,589.60 ×
− 5772.05, r = 0.9998), showing significant linear regression (Fcalculated = 15,339 > Fcritical = 4.8,
p < 0.05) with no linearity derivation (Fcalculated = 1.5 < Fcritical = 3.3, p > 0.05). Limit of de-
tection (0.0056 µg/mL) and the limit of quantification (0.17 µg/mL) were obtained using
the signal-to-noise ratio. The relative standard deviation values for repeatability, interday,
and between-analyst precision lower than the acceptance criterion of 2% proved the method
precision. The recovery test was used to evaluate the accuracy, evidenced by recovery values
between 98 and 102%. Method specificity was proved by a peak-purity evaluation using
the PDA detector, ACAT-Se peak showed peak purity index higher than 0.9999 confirm-
ing the absence of any co-eluting interference. Finally, robustness was evaluated using a
factorial model with three factors in two levels (flow rate ± 2%, organic solvent ± 2% and
buffer solution pH ± 0.2). Pareto chart indicates that assay values are not affected by small
modifications in experimental environment (p > 0.05), confirming the method robustness.

3.3. ACAT-Se Content and Entrapment Efficiency

The previously described RP-LC method was successfully applied to determine the
ACAT-Se content into the NPs, which was found as 2.9 ± 0.19 mg/mL. The EE was
determined as 64.1 ± 2.3% (Table 1).

3.4. In Vitro Release Studies

The cumulative release of ACAT-Se is shown in Figure 1. After 24 h, 56.3 ± 1.5% and
64.9 ± 3.0% of ACAT-Se was release from the NPs in pH 7.4 and 5.4, respectively, while
86.6 ± 0.88% of free ACAT-Se was released. By n values of the Korsmeyer Peppas equation,
the release mechanism of ACAT-Se from the NPs is Fickian diffusion (n = 0.26 and 0.40 in
pH 7.4 and 5.4, respectively).

Figure 1. In vitro release of free and nanoencapsulated ACAT-Se. Results are expressed as mean ±
SE of three independent experiments. Statistical analyses were performed using ANOVA, followed
by Student–Newman–Keuls multiple comparison test. a Significant difference between Free ACAT-Se
and ACAT-Se-PLGA-77KL-NPs (p < 0.05), b between PLGA-77KL-NPs pH 7.4 and 5.4 (p < 0.05).
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3.5. In Vitro Antioxidant Activity

The scavenging activity of free ACAT-Se, PLGA-77KL-NPs, and ACAT-Se-PLGA-77KL-
NPs is presented is Figure 2. In DPPH assay, free ACAT-Se demonstrate low scavenging
activity (8.9–16.9%); however, the nanoencapsulated form significantly increase this activity
at 300 µg/mL (41.6 ± 4.5%, p < 0.05). On the other hand, ABTS assay was more sensitive to
detect differences between free and nanoencapsulated ACAT-Se radical scavenging activity.
The ACAT-Se-PLGA-77KL-NPs has superior scavenging activity than free ACAT-Se in all
the concentrations tested (p < 0.05).

Figure 2. Scavenging activity of free ACAT-Se, PLGA-77KL-NPs and ACAT-Se-PLGA-77KL-NPs
using ABTS (line graph) and DPPH (bar graph) assays. Results are expressed as mean ± SE of
three independent experiments. Statistical analyses were performed using ANOVA followed by
Student–Newman–Keuls multiple comparison test. a Significantly different from Free ACAT-Se
(p < 0.05), b from PLGA-77KL-NPs (p < 0.05).

3.6. In Vitro Cell Biocompatibility Studies

Free ACAT-Se, ACAT-Se-PLGA-77KL-NPs, and PLGA-77KL-NPs showed no cytotoxic
effects towards the nontumor cell line 3T3 after 72 h of treatment. Furthermore, the ACAT-
Se NPs were less cytotoxic (cell viability between 83.8 and 99.8%) than DOX and MTX (cell
viability of 11.9 and 51.4%, respectively, p < 0.05) (Figure 3a).
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3.7. Hemocompatibility Studies

Blood compatibility of the NP suspension was evaluated by the hemolysis assay,
which estimates the erythrocyte-damage by the quantification of the hemoglobin released.
After 5 h of incubation, NP suspensions and the free compound were nonhemolytic, as
the hemolysis rate was lower than 5% in all tested conditions (maximum hemolysis rate of
2.0 ± 1.2% for ACAT-Se-PLGA-77KL-NP) (Figure 3b).

3.8. pH-Dependent Membrane-Lytic Activity of Nanoparticle

In this assay, the erythrocytes were used as a model of endosomal membrane to
verify if the 77KL confers to the NPs the ability to disrupt lipid bilayer membranes in a
pH-dependent manner. No significant hemolysis rates were obtained for the NP without
ACAT-Se and 77KL under all tested conditions (Figure 4). On the other hand, the presence
of 77KL on the PLGA-77KL-NPs increased significantly (p < 0.05) the hemolysis at pH 5.4
to 97.1%, in comparison to 1.8 and 0.22% at pH 6.6 and 7.4, respectively, at concentration
of 10% (v/v). In addition, at pH 5.4 the PLGA-77KL-NPs were 39.7 and 29.8-fold more
hemolytic than PLGA-NPs at the concentrations of 7.5 and 10%, respectively.

Likewise, the ACAT-Se NPs presented similar results to those observed for the NPs
without ACAT-Se. ACAT-Se-PLGA-NPs did not generate hemolysis on the tested condi-
tions. In contrast, the ACAT-Se-PLGA-77KL-NPs presented low hemolysis at physiological
pH (between 0.91 and 2.0%), a slight increase was observed at pH 6.6 (between 1.8 and
5.4%), and the membrane-lytic activity increased significantly at pH 5.4 (p < 0.05) in all
tested concentrations (hemolysis between 98.2 and 100%). Furthermore, at pH 5.4 the
ACAT-Se-PLGA-77KL-NPs were 46.4, 49.2 and 39.4-fold more membranolytic than the NPs
without 77KL (p < 0.05), at 150, 225 and 300 µg/mL, respectively. Finally, the pH-dependent
activity of nonencapsulated ACAT-Se was assessed, but negligible hemolysis rates were
observed in the tested conditions.
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Figure 4. pH-dependent membrane-lytic activity of NPs after 5 h of incubation with human ery-
throcytes at different pH values. Each value represents mean ± SE of three experiments. Statistical
analyses were performed using ANOVA followed by Student–Newman–Keuls multiple comparison
test. a Significantly different from pH 7.4 (p < 0.05) and b from pH 6.6 (p < 0.05). Asterisk indicates
significant difference between NPs with and without 77KL (p < 0.05).

3.9. In Vitro Protein Corona

The NPs did not show increase in mean hydrodynamic diameter (p > 0.05) after
incubation at 37 ◦C with human plasma or cell culture medium (DMEM with 5% FBS)
during 72 h (Figure 5). These results indicated that the proteins of plasma or culture medium
did not bind on the NP surface. A decrease in the NP mean hydrodynamic diameter was
observed after incubation with plasma at 0 and 72 h; however, the statistical analysis
evidenced that the observed variations in the mean size were not statistically significant.

Figure 5. Mean hydrodynamic diameter of ACAT-Se-PLGA-77KL-NPs after 0, 24 and 72 h of incuba-
tion with water, DMEM 5% FBS and plasma. Each value represents mean ± SE of three experiments.
Statistical analyses were performed by Student t-test and no significant differences were found.
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3.10. In Vitro Antitumor Activity

The cytotoxicity of free ACAT-Se or nanoencapsulated ACAT-Se was evaluated against
a sensitive and a resistant tumor cell line, MCF-7 and NCI/ADR-RES, respectively. Firstly,
by MTT assay (Figure 6), the results evidenced that the antitumor activity of ACAT-Se-
PLGA-77KL-NPs against MCF-7 cells was greater than that of the free compound, especially
after 72 h of treatment. Moreover, at 60 µg/mL the NPs were more cytotoxic than MTX,
while no difference was observed in comparison to DOX cytotoxicity, after 24 and 72 h of
incubation. In contrast, the nanoencapsulation of ACAT-Se did not increase its cytotoxicity
toward the resistant cell line; however, the ACAT-Se-PLGA-77KL-NPs presented cytotoxi-
city equivalent to the positive controls DOX and MTX in almost all the tested conditions.

Figure 6. In vitro cell viability by MTT assay in MCF-7 and NCI/ADR-RES cell lines after 24 and
72 h of treatment. antitumor drugs MTX (50 µg/mL) and DOX (10 µg/mL) were used as positive
controls. Data are expressed as mean of three independent experiments ± SE. Statistical analyses
were performed using ANOVA followed by Student–Newman–Keuls multiple comparison test.
$ Significant difference from PLGA-77KL-NPs (p < 0.05), # significant difference from free ACAT-Se
(p < 0.05), & significant difference from MTX (p < 0.05), * no significant difference from DOX (p > 0.05),
and + no significant difference from MTX (p > 0.05).

The NRU assay (Figure 7) was less sensitive than MTT to detect the cytotoxic effects on
MCF-7 cells; nevertheless, it was evidenced that the cell viability decreased from 91.1% for
free ACAT-Se to 50.9% for ACAT-Se-PLGA-77KL-NPs (5.48-fold more cytotoxic, p < 0.05)
after 24 h at the higher tested concentration. Conversely, NRU assay was more sensitive
than MTT to detect the cytotoxicity on NCI/ADR-RES cells. Through this endpoint, the
cell viability after 72 h incubation with the nanoencapsulated ACAT-Se at 60 µg/mL was
63.3%, lower than that detected by the MTT assay (78.8%). At this same condition, it
was also evidenced that the ACAT-Se-PLGA-77KL-NPs were more cytotoxic than the
non-encapsulated ACAT-Se (cell viability of 99.2%, p < 0.05).
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Figure 7. In vitro cell viability by NRU assay in MCF-7 and NCI/ADR-RES cell lines after 24 and
72 h of treatment. antitumor drugs MTX (50 µg/mL) and DOX (10 µg/mL) were used as positive
controls. Data are expressed as mean of three independent experiments ± SE. Statistical analyses
were performed using ANOVA followed by Student–Newman–Keuls multiple comparison test.
$ Significant difference from PLGA-77KL-NPs (p < 0.05), # significant difference from free ACAT-Se
(p < 0.05), & significant difference from MTX (p < 0.05), * no significant difference from DOX (p > 0.05),
and + no significant difference from MTX (p > 0.05).

3.11. Synergic In Vitro Antitumor Activity with Doxorubicin

The cytotoxic effects of ACAT-Se-PLGA-77KL-NPs after coincubation with DOX were
greater than those achieved with free ACAT-Se coincubated with DOX in almost all tested
concentrations. On NCI-ADR/RES and MCF-7 cells by both viability assays (Figure 8).
Noteworthy, in MCF-7 cell line the combination of NPs with DOX cause synergistic effect in
all concentrations as detected by MTT and NRU assays (CI < 0.9) (Figure 9). Additionally,
by the CI values observed, this association can be consider a strong synergism in some
concentrations (CI = 0.1453 at 60 µg/mL ACAT-Se + 0.05 µg/mL DOX, by MTT assay and
CI = 0.1578 at 10 µg/mL ACAT-Se + 0.05 µg/mL DOX, by NRU assay) [1]. In contrast, the
association of free ACAT-Se with DOX resulted in antagonism (CI > 1.1) in MCF-7 cells at
all tested concentrations as detected by both viability assays.

Synergistic interactions were also evidenced for ACAT-Se-PLGA-77KL-NPs after
coincubation with DOX in the resistant cell line in all tested concentrations, as detected by
MTT and NRU assay (CI < 0.9). In contrast, the treatment with free ACAT-Se associated
with DOX cause additive effect (40 and 60 µg/mL of ACAT-Se) or antagonism (10 and
20 µg/mL of ACAT-Se) by the MTT assay, and synergism (40 and 60 µg/mL of ACAT-Se)
or antagonism (10 and 20 µg/mL of ACAT-Se) by NRU assay.

Finally, the association of ACAT-Se-PLGA-77KL-NPs and DOX in all conditions re-
sulted in DRI values >1, suggesting that this combination therapy is able to reduce the dose
of each individual treatment.
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Figure 8. In vitro cell viability as detected by MTT and NRU assays after 72 h coincubation of free or
nanoencapsulated ACAT-Se with DOX in MCF-7 and NCI/ADR-Res cell lines. Data are expressed as
mean of three independent experiments ± SE. Statistical analyses were performed using ANOVA
followed by Student–Newman–Keuls multiple comparison test. # Significant difference from free
ACAT-Se + DOX (p < 0.05).
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Figure 9. Combination index values for association of free ACAT-Se or ACAT-Se-PLGA-77KL-NPs
with DOX in MCF-7 and NCI/ADR-Res cell lines.

The association of PLGA-77KL-NPs (blank NPs without the organoselenium compound)
and DOX resulted in low cytotoxic effects in both MCF-7 (cell viability between 74–80% and
79–83%, by MTT and NRU assay, respectively) and NCI/ADR-RES cells (cell viability between
83–87% and 69–79%, by MTT and NRU assay, respectively) (Figure S1, Supplementary Materials).
Moreover, the CI values indicated that this association results in antagonism (CI > 1.1) in MCF-7
cells, by both MTT and NRU assays, in all tested concentrations. Likewise, in NCI/ADR-
RES cells, the association of PLGA-77KL-NPs and DOX displayed antagonism by MTT assay
and antagonism (40 and 60 µg/mL) or additive effect (10 and 20 µg/mL) by NRU assay
(Figure S2, Supplementary Materials).

4. Discussion

Chemotherapy is considered one of the most significant cancer treatment approaches;
however, chemotherapeutic agents are nonspecific, attacks both normal and cancerous cells,
leading to severe toxicity to normal tissues [42,43]. Polymeric NPs have great potential to
improve the efficacy of cancer treatment by their ability to accumulate at tumor sites [17,43].
Additionally, a popular approach to target cancer cells is the exploration of pH difference
between healthy (~7.4) and tumoral tissues (6.5–7.2) [44]. Therefore, we design promising
pH-sensitive PLGA-based NPs encapsulating the organoselenium compound ACAT-Se as
a new alternative to antineoplastic therapy. For this purpose, the NPs were modified by the
incorporation of the pH-sensitive surfactant 77KL, and the surfactant Pluronic® F-127 was
utilized to stabilize the NPs, due its ability to overcome MDR in cancer cells and also due
its higher cytocompatibility among some other poloxamers [27,45].

The NP suspensions were successfully prepared by the nanoprecipitation method,
which is widely used due to its simplicity, quickness, reproducibility, and safety [46,47].
The developed NPs appeared macroscopically as a homogeneous slightly white (PLGA-
77KL-NPs) or creamy-white (ACAT-Se-PLGA-77KL-NPs) solution. The hydrodynamic
size was found to be between 100 and 200 nm, which is consider an optimal size for drug
delivery systems since the NPs take the advantage of EPR effect in tumors and avoid
filtration in the spleen and the uptake in the liver [48]. The zeta potential provides a
indicative evidence towards the nature of surface charge of the NPs [49]. The developed
NPs showed negative ZP that can be attributed to the carboxyl groups of PLGA residing
on the surface of the NPs [50]; conversely, the low module value can be associated to
the shielding effect of the coated nonionic surfactants (Pluronic® F-127 and Span® 80)
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present on the surface of NPs [51]. Since zeta potential value can indicate colloid stability
via electrostatic repulsions, it does not provide any insight on the van der Waals forces.
Therefore, it is not uncommon to come across stable colloids with ZP between −30 and
+30 mV, and vice versa [49]. Moreover, Honary & Zahir [52] suggest that the performance
of ZP measurements in distilled water rather than in physiological salt solution is the best
way to determine the physical stability of the NPs. Therefore, this measuring condition
could be a complementary experiment to corroborate our results.

In addition, the total ACAT-Se content in the NP suspension and the EE was success-
fully determinate by the developed RP-LC method. This method was also able to measure
the amount of ACAT-Se released from the NPs. Moreover, the Korsmeyer–Peppas model
indicates that the release of ACAT-Se from the NPs follows the Fickian diffusion release
mechanism, the same mechanism was report for others PLGA NPs [20,53,54].

Organochalcogenium compounds were reported to be effective against free radical
species and presented exciting results as radical scavengers [9,55]. In this sense, we evaluate
the antioxidant potential of the free and nanoencapsulated ACAT-Se using DPPH and ABTS
assays, both based on absorption decreases upon exposure to proton radical scavengers [56].
Free ACAT-Se presented poor scavenging activity using the DPPH assay, and this result
corroborates with the earlier study reported by da Rosa and coworkers, who showed that
free ACAT-Se was ineffective in scavenging the DPPH free radical at 1 mM (381 µg/mL).
On the other hand, the nanoencapsulation increased the radical scavenging activity of
ACAT-Se 2.5-fold (at 300 µg/mL). This same tendency was observed in ABTS assay, in
which the ACAT-Se-PLGA-77KL-NPs presented superior radical scavenging activity in
comparison to free ACAT-Se. It is worth mentioning that the increase of the antioxidant
activity by the nanoencapsulation was also reported in other studies [57–60]. Some authors
suggest that the increase of this activity could be attributed to the superior contact surface
area between the H donator and DPPH or ABTS molecules provided by the nanometric
size of the particles, which thus offers easier access of the hydrogen atom to the radical
site [58,60]. Moreover, the higher sensitivity of ABTS assay can be associated to its faster
reaction kinetics and higher response to antioxidants [56].

The pH-dependent hemolysis assay evidenced that the inclusion of the 77KL in the
NP suspensions confer to them a pH-dependent behavior. Moreover, this behavior did not
change after the entrapment of ACAT-Se into NPs. The increase hemolysis at pH 5.4 could
be explained by a modification in the hydrophobic/hydrophilic balance of 77KL by the
protonation of it carboxylic group, which results in an increase of its hydrophobicity, causing
membrane solubilization or altering the permeability of the membrane, hence, inducing cell
lysis [21,61]. This remarkable pH-responsive behavior suggests the potentiality of these NPs
as an effective nanocarrier for intracellular drug delivery. Finally, these results corroborated
our previous studies, in which the NPs with 77 KL or 77 KS (surfactant with sodium
counterion) showed increased membrane-lytic activity in the pH range characteristic of
endosomal compartments [19–22].

Considering that is no available regulatory guidelines for the evaluation of toxic-
ity of nanoparticulate materials, the use of in vitro assays are highly important [62]. In
this context, the hemocompatibility of the developed NPs was evaluated by the hemol-
ysis assay. This study assess the impact of physicochemical characteristics of NPs (size,
porosity and surface functionality) on red blood cells [62]. The NP suspensions presented
nonhemolytic activity regardless of the tested concentration; these results suggest that
the NPs are hemocompatible. Furthermore, we evaluate the NPs cytotoxicity using a
nontumor cell model. Here, we found no significant cytotoxic effects after cell treatment
with free and nanoencapsulated ACAT-Se for 72 h, suggesting the biocompatibility of our
proposed nanosystem.

The study of protein corona formation is an important tool to predict NPs behavior
in biological systems [63]. Our results indicate that the plasma or cell culture medium
proteins did not bind to the ACAT-Se-PLGA-77KL-NPs surface. In this regard, low protein
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adsorption is interesting, since protein corona might activate immune cells, promoting
phagocytosis that resulting in NPs clearance [64].

Considering that ACAT-Se is an thymidine analogue, we suggest that its cytotoxicity
can be related to inhibition of intracellular enzymes (like polymerases or ribonucleotide
reductase), or to inhibition of DNA chain elongation, by the assimilation of its active form
in DNA chain [9,65]. Cell viability studies were performed using MTT and NRU assays.
The MTT assay measure mitochondrial function, by the conversion of yellow tetrazolium
salt to a purple formazan crystal through the action of mitochondrial dehydrogenases.
While NRU assay measure the functionality of the lysosomes and cell membranes by the
accumulation of NR dye in the lysosomes of viable cells [22,66]. In MCF-7 cells, the two
endpoints evidenced improve on the antitumor activity of ACAT-Se with its association
to the NPs. In contrast, on NCI/ADR-RES cells the benefits of nanoencapsulation were
only observed by the NRU assay. In this case, the ACAT-Se-PLGA-77KL-NPs seems to
change the functionality of the lysosomes and/or cell membranes of the MDR cells with no
important disorders in mitochondrial function. Consequently, the different selectivity of
the two endpoints on MCF-7 and NCI/ADR-RES cells suggests that the nanocarrier interact
by different mechanisms in each cell type. In addition, resistant/MDR cell lines present
diverse resistance mechanisms, such as increased activity of drug efflux pump, decreased
drug influx, activation of DNA repair and metabolic modifications [67,68]. Therefore, these
mechanisms might be responsible for the low cytotoxic activity of all monotherapies tested
by MTT assay in our study. However, the results achieved in the synergism assay evidenced
that the combination of ACAT-Se-PLGA-77KL-NPs and DOX was able to sensitize the
MDR cell line, suggesting that this association can overcome the resistance mechanisms of
NCI/ADR-RES cells. Finally, in the same concentrations that the NPs are cytotoxic to the
tumor cells, no cytotoxic effects were evidenced in the nontumor cell line. Therefore, these
results suggest that the NPs present high selectivity for the tumor cells.

The PLGA-77KL-NPs (blank NPs) present a slight cytotoxicity in MCF-7 cells as
detected by the MTT assay, especially after 72 h of treatment. The cytotoxic effects of this
nanoformulation can be associated with the NP size, shape and components (especially
the surfactants), which might interfere within the cell membrane integrity, resulting in
an imbalance between intra and extracellular ions, proteins and vital molecules required
to keep the normal cell functions [69,70]. Nevertheless, the cytotoxicity displayed by the
unloaded-NPs are expressively lower than that revealed by ACAT-Se-PLGA-77KL-NPs,
indicating, thus, that the antiproliferative activity of the latter is majority related to the
presence of ACAT-Se and not due to the NP matrix.

Combining two or more therapeutic agents is an effective approach to improve the
efficacy of an antitumor treatment. By the combination therapy, it is possible to target
multiple pathways, which can allow the reduction of tumor growth, metastatic potential,
and drug resistance, thus increasing patient survival rate [1,71]. Furthermore, combination
therapy has the potential to decrease treatment toxicity, allowing use a lower dosage
of each individual drug. Therefore, this approach can increase the chance of disease
control and decrease the chance of cancer cells becoming increasingly malignant and
incurable [71]. Moreover, different selenium compounds present synergistic activity with
chemotherapeutic drugs on tumor cell lines [1,72–74]. In this context, we decided to study
the antitumor effects of the association of free or nanoencapsulated ACAT-Se with the
antitumor drug DOX. Besides that, as ACAT-Se has antioxidant activity, especially after
nanoencapsulation, its association with DOX can also be interesting to reduce the side
effects induced by this drug, since reactive oxygen species (ROS) apparently plays a key
role in doxorubicin-induced cardiotoxicity [3,30].

Our data revealed that free ACAT-Se and PLGA-77KL-NPs in combination with DOX
were mostly antagonistic. Conversely, the combination treatment of ACAT-Se-PLGA-77KL-
NPs and DOX resulted in synergistic effect (CI < 0.9), indicating that it is possible to reduce
the concentrations of each individual treatment (DRI > 1) in both cell lines. Therefore, our
overall results evidenced that the synergistic effect is actually attributed to the association
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of DOX and ACAT-Se nanoencapsulated into the NPs, since we did not observe synergism
by the association of free ACAT-Se and blank PLGA-77KL-NPs with DOX. In addition,
the combination of ACAT-Se-PLGA-77KL-NPs and DOX was the only condition able to
sensitize the resistant MDR tumor cells, achieving 76.7% of cytotoxicity as detected by
the MTT assay. The synergistic effect of the combined therapy with the NPs and DOX
in the resistant cell line can be also associated to the Pluronic® F-127 ability to inhibit
P-gp efflux pumps, since over expression of P-gp is one of the resistance mechanisms
in MDR cells [75,76]. These results suggest that the association of the proposed pH-
responsive nanocarrier with DOX is a promising approach to improve antitumor therapy
and overcome MDR.

5. Conclusions

In this study, we successfully prepared pH-sensitive PLGA-NPs loaded with the
organoselenium compound ACAT-Se. The pH-dependent membrane-lytic study evidenced
that the inclusion of 77KL in the NPs gives it a pH-dependent behavior. Nanoencapsulation
of ACAT-Se was able to increase its antioxidant potential. Moreover, ACAT-Se-PLGA-77KL-
NPs displayed higher in vitro antitumor activity than free ACAT-Se in MCF-7 cells. In
addition, this formulation displayed negligible cytotoxicity to the nontumor cell line 3T3,
highlighting its selectivity to tumor cells. Hemocompatibility of the NPs was evidenced
by the hemolysis assay. Finally, the nanoformulation proposed in this study presented
synergistic antitumor activity with DOX, and by this approach, it was possible to sensitize
NCI/ADR-RES cells overcoming MDR. Based on the overall results, the ACAT-Se-loaded
nanocarrier system can be proposed as a promising approach to overcome MDR, besides
its great potentiality to improve the individual and/or combined antitumor therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14010080/s1, Figure S1: In vitro cell viability
detected by MTT and NRU assays after 72 h coincubation of PLGA-77KL-NPs (blank NPs without the
organoselenium compound) with DOX in MCF-7 and NCI/ADR-Res cell lines. Data are expressed
as the mean of three independent experiments ± SE. Figure S2: Combination index values for the
association of PLGA-77KL-NPs (blank NPs without the organoselenium compound) with DOX in
MCF-7 and NCI/ADR-Res cell lines.
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