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Abstract: Digital twins capacitate the industry 4.0 paradigm by predicting and optimizing the perfor-
mance of physical assets of interest, mirroring a realistic in-silico representation of their functional
behaviour. Although advanced digital twins set forth disrupting opportunities by delineating the
in-service product and the related process dynamic performance, they have yet to be adopted by
the pharma sector. The latter, currently struggles more than ever before to improve solubility of
BCS II i.e., hard-to-dissolve active pharmaceutical ingredients by micronization and subsequent
stabilization. Herein we construct and functionally validate the first artificially intelligent digital
twin thread, capable of describing the course of manufacturing of such solidified nanosuspensions
given a defined lifecycle starting point and predict and optimize the relevant process outcomes. To
this end, we referenced experimental data as the sampling source, which we then augmented via
pattern recognition utilizing neural network propagations. The zeta-dynamic potential metrics of the
nanosuspensions were correlated to the interfacial Gibbs energy, while the density and heat capacity
of the material system was calculated via the Saft-γ-Mie statistical fluid theory. The curated data was
then fused to physical and empirical laws to choose the appropriate theory and numeric description,
respectively, before being polished by tuning the critical parameters to achieve the best fit with reality.

Keywords: digital twin; Pharma 4.0; nanosuspensions; spray drying; milling; micronization; solubility
improvement; digital shadow; artificial neural networks; SAFT; Gibbs energy

1. Introduction

A digital twin is the mirrored functional space model of a manufacturing unit that
responds to physical state changes which is purposed for surveillance, optimization and
prediction [1].The depth of the replication appointment to the physical asset by the digital
model space remains ambiguous, hence various integration levels occur, whilst optimality
appears controversially dependent of the corresponding functionality, complexity and avail-
ability of infrastructures [2]. The birth of the digital twin pertained to a crafty inspiration of
the NASA Apollo 13 mission controllers 52 years ago. In a need-based, lifesaving attempt,
the crew set up and modified simulations to mimic the multiplicity of the spacecraft’s
physical conditions, those which occurred 45,000 miles from the Earth’s surface. This first
successful approach spurred inspiration across applied scientific fields.

Since then, digital modeling is emancipating the state-of-the-art approach for deliv-
ering process and product lifecycle awareness, enabling unparalleled plantwide control,
optimization, and prediction for material manufacturing [3]. Akin to such product material
ontologies, artificial neural networks (ANNs) have ascended as a surrogate, responsive
framework, poised to identify and simulate non-linear dependencies between digital twin
variables [4]. As such, ANNs constitute the requirements for demanding, multiple, com-
plex experiments towards the generation of the product manufacturing cycle (PML) data,
irrelevant. Moreover, ANNs recognize the relationship patterns between independent and
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dependent variables of the PML, whether the available data set is insufficient or noisy [5].
The latter advancement proves to be of extreme importance, hence such variables lie at
the core of the digital twin mechanistic and/or empirical algorithms, whilst poor data
set availability effects common burdens when dealing with expensive raw and starting
materials, such as those handled by the pharma industry. Successful applications of the
ANNs in the field include the calculation of API’s critical quality attributes and their physic-
ochemical properties, the prediction of the in-vitro drug release profile, the identification
of raw material–tablet properties characterization, the dissolution behavior, and the size
effect of injectable microparticle prediction [6].

For such a heavily regulated sector, ANN-fused artificially intelligent digital twins
might accurately predict the critical process parameters, the final product’s quality at-
tributes, integrate the process steps and lead seamless scale-up studies. The advantages
of possessing this blend of stochastic, empirical, and mechanistic knowledge becomes
invaluable in terms of technical, economical and risk eliminating factors by the creation of
novel, in-silico intelligent analogues to the physical product. Counterintuitively, although
digital twin applications could transform the pharmaceutical industry, whereas precision
and risk elimination are evidently required, the penetration of these Pharma 4.0 tools
appears limited. In addition, artificially intelligent, advanced digital twin systems, i.e.,
ANNs-fused digital twins, have not been reported by the field’s literature.

Under this lens, arguably, one significant contemporary technological challenge of
the pharmaceutical industry is to improve solubility and in vivo dissolution profiles of
poorly soluble active pharmaceutical ingredients (APIs). To address this challenge, APIs
are mixed with stabilizers and formulation excipients composites and comminuted by
wet media milling into nanosuspensions. The obtained, coated, liquid crystals are further
stabilized by spray drying solidification to allow for further processability. Taking into
account the proven reliability and scalability of this method, we introduced novel thermo-
dynamic models to calculate such composite material solubility by assessing the obtained
stabilizer-coated nanoparticle Gibbs energy anisotropic minimization, quantified by the
implementation of PC-SAFT interrogations coupled with elastic tensor analysis [7].

In this current research, we build on these foundations to create a novel, fully op-
erational, neural network-intelligent digital twin, capable of describing the course of
manufacturing of solidified nanosuspensions given a defined PML launching chronic point,
and also predict and optimize the engaged process outcomes [2]. Elaborating on this
strategy, the ANN was embedded in a stepwise manner among data sampling, model
deployment and curve fitting towards the implementation of the digital twin (Figure 1).
The ANN fulfilled the mission of augmenting the abundance of the available discrete data
generated to calibrate and validate the model whilst eliminating the experimental burden
and the model’s uncertainty [8].
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Figure 1. Digital twin deployment and parameter estimation strategy by steps: (a) real data sam-
pling from the physical object, (b) data multiplication via pattern recognition using artificial intelli-
gence algorithms aiming accuracy enhancement, (c) determination of the proper descriptive physi-
cal and empirical laws, and (d) adjustment of tuning parameters to achieve best curve fit. 

2. Materials and Methods 
2.1. Process Design 

The API’s formulation processes, including wet milling and spray drying steps, were 
modelled using the Siemens gProms Formulated Products® platform Process Systems En-
terprise, gPROMS, (www.psenterprise.com/products/gproms, accessed on 2 August 
2022). Before formulation, it is crucial to select the compatible polymer or surfactant to 
coat the liquid crystals, the one which best enhances the API’s dissolution performance 
[9]. This pivotal step was included in the process model; the selection was based on the 
implementation of the computational statistical associating fluid theory criteria (PC-
SAFT) to substitute for the experimental trials. 

In detail, the stabilizer’s addition generates a semi-solid interface that adds to the 
dissolution’s Gibbs energy decrease by GEE (J mol−1), according to Equations (1)–(3) [7]. 𝐺𝐸𝐸 = 𝐺௦ + 𝐺 = 𝑅𝑇𝑙𝑛 మభ  (1)𝐺௦ = 2𝛾𝑉𝑟 (1 − 𝐶𝑟) (2)
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post and prior the powder’s size decrease respectively, T (K) is the dissolution tempera-
ture and R (J mol−1 K−1) is the universal gas constant. In Equation (2) γ (Ν m−1) is the surface 
tension, Vm (m3 mol−1) the API’s molar volume, r (m) the particle’s characteristic size and 
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Figure 1. Digital twin deployment and parameter estimation strategy by steps: (a) real data sampling
from the physical object, (b) data multiplication via pattern recognition using artificial intelligence
algorithms aiming accuracy enhancement, (c) determination of the proper descriptive physical and
empirical laws, and (d) adjustment of tuning parameters to achieve best curve fit.

2. Materials and Methods
2.1. Process Design

The API’s formulation processes, including wet milling and spray drying steps, were
modelled using the Siemens gProms Formulated Products® platform Process Systems
Enterprise, gPROMS, (www.psenterprise.com/products/gproms, accessed on 2 August
2022). Before formulation, it is crucial to select the compatible polymer or surfactant to
coat the liquid crystals, the one which best enhances the API’s dissolution performance [9].
This pivotal step was included in the process model; the selection was based on the
implementation of the computational statistical associating fluid theory criteria (PC-SAFT)
to substitute for the experimental trials.

In detail, the stabilizer’s addition generates a semi-solid interface that adds to the
dissolution’s Gibbs energy decrease by GEE (J mol−1), according to Equations (1)–(3) [7].

GEE = Gs
m + Gi

m = RTln
K2

K1
(1)

Gs
m =

2γVm

r

(
1− C

r

)
(2)

Gi
m = 1.7

εAPIσAPI
ρstab∆(σstab−API)(εstab−API)mstab

γVm

r
(3)

The Gs
m and Gi

m terms refer to the particle’s surface and the interface caused by the
stabilizer Gibbs energy. Where K2

K1
is the ratio of the dissolution equilibrium coefficient

post and prior the powder’s size decrease respectively, T (K) is the dissolution temperature
and R (J mol−1 K−1) is the universal gas constant. In Equation (2) γ (N m−1) is the surface
tension, Vm (m3 mol−1) the API’s molar volume, r (m) the particle’s characteristic size

and C (m) a parameter equal to 1.5
(

Vm
NA

) 1
3 , while in Equation (3) ∆ (m) is the material’s
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distance between the molecular layers, mstab (−) the stabilizer’s number of segments per
chain based on PC-SAFT theory, and ε (eV) and σ (m) are the depth of pair potential
and the segment diameter, respectively. The terms εstab-API and σstab-API were calculated
using the Berthelot-Lorentz combining rules. Stabilizer candidates were chosen, namely
Poloxamer-188, Poloxamer-407 and HPC-SL. As far as poloxamers are concerned, since
both are copolymers containing ethylene oxide (EO) and propylene oxide (PO) groups
in different proportions, the component’s PC-SAFT parameters were calculated using
Berthelot-Lorentz rules (see Table 1).

Table 1. PC-SAFT parameters of EO and PO groups for the calculation of the Poloxamers copolymers’
corresponding ones.

Group mseg (−) σi (A) ui/k (K) Source

EO 0.052 MWtotal 2.89 206.74
[10–14]PO 0.037 MWtotal 3.34 192.72

The polymer that contributes dominantly to the Gibbs energy decrease is the one to be
chosen as the stabilizer. Gibbs energy is not calculated experimentally, yet on the other hand
the zeta-dynamic potential can be correlated to the interfacial Gibbs energy. The physical
parameter estimations regarding the API and the stabilizers were performed using the
gProperties® package of Siemens Process Systems Enterprise (https://www.psenterprise.
com/products/gproms/properties, accessed on 2 August 2022). The Saft-γ-Mie equations
of state were utilized to calculate the temperature dependence on the density and the heat
capacity of the components.

The wet milling process model was based on the main batch grinding Equation (4)
and three supplementary empirical grinding functions, each of them complemented by
their corresponding breakage rate. This batch grinding mass balance set up explains the
change of the powder’s mass fraction containing particles of size interval i:

dwi
dt

= ∑i−1
j=1

[
Sjwj

d(b(i, j))
dxi

]
− Siwi (4)

The initially examined breakage function was the one proposed by de Vegt et al. [15],
and it is referred to as the de Vegt model (Equation (5)). The corresponding breakage rate is
strongly dependent on the product’s material properties (Equation (6)):

b(i, j) =
Si
Sj

(5)

S(i) = c
Ekin,iE f ract,i

√
Py
ρ

VH
√

xiK1c
(6)

Ekin,i = Wm,kinρVi (7)

E f ract,i = 0.896

(
π
(
1− υ2)

Y

) 2
3
(

0.0183δ2
(

V0

Vi

)1/4
)5/3

(8)

In Equations (5)–(7), S(i) (s−1) is the breakage rate of a particle of size interval i, Ekin (J)
and Efract (J m−3) are the kinetic energy of the particles and the fracture energy, respectively,
Py (Pa) is the yield pressure, ρ (kg m−3) is the particle’s density, V (m3) is the mill’s chamber
volume, H (Pa) is the particle’s hardness, xi (m) is the particle size i, K1C (Pa m−1/2) is
the stress intensity factor, Wm,kin the mass specific impact energy (J kg−1) and b(i,j) (−) is
the mass fraction of the product that fell from size interval j to i. In Equation (8), δ is the
solubility parameter (Pa1/2), Vi (m3) is the particle’s volume, υ (−) is the Poisson’s ratio, Υ
(Pa) is the Young’s modulus of elasticity and V0 (m3) is the unit’s crystal volume. While all
the other parameters in Equations (6) to (8) are pre-estimated, the breakage rate parameter

https://www.psenterprise.com/products/gproms/properties
https://www.psenterprise.com/products/gproms/properties
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c (−) is a tuning parameter, estimated by experimental data. The second breakage function
and breakage rate used for the wet milling simulations is proposed by Austin et al. [16]
and it is referred to as the Austin model (see Equations (9) and (10)):

b(i, j) = ϕ

(
xi
xj

)γ

+ (1− ϕ)

(
xi
xj

)β

(9)

S(i) =

 a
(

xi
xcrit

)d
xj ≥ xcrit

0 xj < xcrit

(10)

where ϕ, γ, β, d (−) and a (s−1) are the tuning parameters, while xi and xj are the product’s
and the post-breakage final particle size accordingly (m), and xcrit is the critical particle size,
namely the size after which no breakage occurs. The last breakage function was the one
proposed by Kapur et al. [17] and it is referred to as the Kapur model (model Equations (11)
and (12)):

bi,j =

(
xi
xj

)e

(11)

Si = Axk
i (12)

where e, k (i) and A (s−1) are the tuning parameters. Apparently, all three breakage functions
and rates encumber tuning and physical parameters respectively, with Austin presenting
the highest number of considered tuning parameters and de Vegt the lowest. The parameter
estimation was conducted in the Siemens Process Systems Enterprise gPromsFP® Model
Validation platform (https://www.psenterprise.com/products/gproms/modelbuilder,
accessed on 2 August 2022), applying the Maximum Likelihood Estimation method. In the
spray drying process, the droplets’ hydrodynamic diameter was assumed to obey lognor-
mal distribution and for the drying rate calculation the Oakley’s model was adapted [18].
For each particle size interval i was defined from the particle size distribution and was
dispersed in a droplet, which in turn belongs to a size interval z, the local mass and en-
ergy balance describing the spray drying model which is described respectively by the
Equations (13) and (14).

− .
ms,i,z

dxi,z,j,t

dt
=

.
Ni,z,j,t (13)

.
ms,i,z

(
Cp,s,i + ∑

Nj
j=1 xi,z,j,tCp,j

)dTi,z

dt
= hAi,z

(
Tg − Ti,z

)
+

.
ms,i,z ∑

Nj
j=1 λj

dxi,z,j,t

dt
(14)

where
.

ms,i,z (kg s−1) is the corresponding solids particles flowrate, xi,z,j,t (kg kg−1) is the

dry basis moisture content of the liquid specie j,
.

Ni,z,j,t (kg s−2) is the drying rate time
derivative, Cp,s,i (J kg−1 K−1) is the solid material’s specific heat capacity and Cp,j the
liquid specie’s corresponding one, Ti,z (K) is the solid particle’s temperature, h (J m−2 s−1

K−1) is the heat transfer coefficient, Ai,z (m2 s−1) is the shrinking rate of the surface area
of the droplet, Ti,z (K) is the droplet’s temperature, and λj (J kg−1) is the latent heat of
vaporization of the liquid specie j. The local vapor phase’s mass balance for the evaporated
liquid specie j and the vapor’s phase energy balance is described in Equations (15) and (16),
respectively.

dmv,j

dt
=

.
mv,inxv,j,in −

.
mv,outxv,j,out + ∑Ni

i=1 ∑Nz
z=1

∫ tτ

t=0

.
Ni,z,j,tdt (15)

dHv

dt
= Hv,in − Hv,out + ∑Ni

i=1 ∑Nz
z=1 ∑

Nj
j=1

∫ tτ

t=0

.
Ni,z,j,tdt Cp,v,j(Tv − T0)−∑Ni

i=1 ∑Nz
z=1 h

∫ tτ

t=0
Ai,z,t(Tv − Ti,z)dt (16)

https://www.psenterprise.com/products/gproms/modelbuilder
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where
.

mv,in and
.

mv,out (kg s−1) are the inlet and outlet mass flowrate of the vapor phase
respectively, xv,j,in and xv,j,out (kg kg−1) are the inlet and outlet mass fractions of the liquid
specie j in the vapor phase respectively, Hv,in and Hv,out (J s−1) are the inlet and outlet
enthalpy flowrates of the vapor phase respectively and Cp,v,j (J kg−1 K−1) is the specific
heat capacity of liquid specie j in the vapor phase, tτ (s) is the droplets residence time inside
the spray dryer’s chamber and Tv (K) is the vapor phase’s temperature. The unhindered
drying rate Nu,z,j (kg s−1), i.e., the drying rate of the very same droplets without containing
solids described by Equation (17) and is interlinked to the actual drying rate by the relative
drying rate f (−) (Equation (18)).

.
Nu,z,j,t =

h
λj

Ai,z,t

(
Tv − Twb,j

)
(17)

.
Ni,z,j,t = f

.
Nu,z,j,t (18)

where Twb,j (K) is the wet bulb temperature of the liquid specie j.

2.2. Experimental Study and Digital Twin Thread Structuring

The wet milling process of the API Itraconazole nanosuspension was performed by
a Pulverisette 7 Premium (Fritsch GmbH, Idar-Oberstein, Germany). Delivered discrete
experimental values [19] were first used to train an ANN and form a complete size reduction
profile (see Table 2), while afterwards this profile is used as a basis to fit the tuning
parameters of the digital twin model. The process reduced the powder’s particles’ sizes
approximately by one order [8]. Post wet milling, the micronized API suspension was spray
dried to remove the liquid phase and obtain the desired dry powder product [19]. The
spray dryer used in the experiment was the Büchi B-191 Mini Spray dryer (Büchi, Flawil,
Switzerland).

Table 2. Discrete experimental sampling values used as training data for the ANN. These values
represent three performed experiments using Itraconazole as API and Poloxamer-188 as stabilizer [19],
which proved to be the most suitable after the Gibbs energy analysis.

Time (s) Experiment 1
D50 (µm)

Experiment 2
D50 (µm)

Experiment 3
D50 (µm)

360 1.39 1.31 1.37
720 0.874 0.792 0.846

1440 0.784 0.742 0.783
2160 0.522 0.501 0.520
2880 0.467 0.434 0.436
3600 0.305 0.297 0.301

The technical specifications of the mill’s mechanical parameters, such as the rotation
and the revolution speed, the capacity and the equipment’s volume, were determined
by the manufacturer. Moreover, the specific ranges of input data were adopted by the
manufacturer’s technical specification sheet of the Buchi B191 Mini Spray dryer (Büchi,
Switzerland). Both data input sets are herein demonstrated in Table 3.
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Table 3. Input and output parameters considered for the development of the digital twin.

MODEL PARAMETER TYPE VALUE UNIT

Water quantity input 9 mL
API content input 0.5 g

Stabilizer content input 0.25 g
Mannitol content input 1 g

Wet mill Initial particle size (D50) input 1.5 µm
Grinding time input 1 h
Rotor speed input 600 rpm

Rotor diameter input 40 mm
Equipment volume input 48 mL

D50(t) output - -

Air temperature input 110 ◦C
Air flow input 800 L h−1

Spray dryer Air pressure input 5 bar
Drying chamber volume input 5 L

Drying time input 1 h
Final product size (D50) output 10 µm

The system descriptive equations were concluded by Section (B), containing linear and
differential equations. For instance, the Equations (13)–(18) were considered as a system of
six non-linear algebraic equations:

f
(

t,
.
xi,z,j,t,

.
Ni,z,j,t

)
= 0 Equation (13) (19)

f
(

t, xi,z,j,t,
.
xi,z,j,t, Ti,z,

.
Ti,z

)
= 0 Equation (14) (20)

f
(
t,

.
mv,j, Ni,z,j,t

)
= 0 Equation (15) (21)

f
(

t,
.

Hv, Ni,z,j,t, Ti,z

)
= 0 Equation (16) (22)

f
(

t,
.

Nu,z,j

)
= 0 Equation (17) (23)

f
(

t,
.

Nu,z,j,
.

Ni,z,j,t

)
= 0 Equation (18) (24)

The system’s variables embedded first order derivatives and were calculated utilizing
finite difference approximations. Specifically, the Backward Differentiation Approximations
(BDF) were adopted, which present a universally approved method to approach DAE
system solutions [20]. By applying the BDF using a time step size hs, at time tn, the
DAE system transforms into a linear system featuring six equations bearing six unknown
variables, each derivative of them being approximated as in Equation (25).

.
xi,z,j,tn = h−1

s ∑k
l=0 al xi,z,j,tn−l (25)

where k is the degree of the interpolating polynomial and al is the lth polynomial’s level
coefficient.

2.3. Integration of Artificial Neural Networks for Parameter Tuning

The ANN was properly trained to simulate the dynamic comminution profile inside
the physical mill. Data sampling during the wet mill process is a difficult task, hence it
requires temporary terminations. In addition, the final crystal size itself is not adequate for
the characterization of the mill’s performance. It is therefore crucial to obtain additional
information of the dynamic profile in order to fulfil the purposed optimization and pre-
diction purposes. The discrete experimental training data includes the D50 values taken
after sampling in between 6-min intervals. The transfer function used for the hidden layers
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was the Sigmoid Function (Equation (26)), due to its ability to identify non-linear relation-
ships. For the output layer, the transfer function selected was the Rectified Linear Unit
(ReLU), hence the case was addressed through a regression scenario and not as a classifica-
tion (Equation (27)). The ANN training adopted the error backpropagation methodology
towards defining the weights’ adjustments, but its layout was forward propagating. Fur-
thermore, the weights wi,j connecting a layer with nj neurons with the next layer with ni
neurons, followed the He initialization (Equation (28)).

f (x) =
1

1− e−x (26)

g(x) = max (0, x) (27)

wi,j ∝

√
2
nj

i ∈ (1, ni) , j ∈
(
1, nj

)
(28)

For the identification of the D50(t) profile, polynomial regression was used with high
efficiency, especially whereas polynomial fitting is of a higher order (≥4).

3. Results
3.1. Material Critical Quality Attributes and the Material System’s Interfacial Gibbs
Energy Assesment

The density and the heat capacity temperature profile of the pure stabilizers, calculated
via the Saft-γ-Mie statistical fluid theory, are shown in Figure 2. Poloxamer-188 material
poses the lowest density and the lowest heat capacity, while HPC is denser than poloxamers.
Calculations of the pure stabilizers’ densities were pivotal for the determination of the
stabilizer’s interfacial Gibbs energy. Apparently, density effects the intermolecular forces
of the stabilizer-API composite (see Table 4). For higher temperatures, the composite’s
cohesive forces decrease as the kinetic energy of the molecules increases, and thus they
tend to escape their structured positions [21]. For the same reason, when temperature
increases the material tends to expand, the density decreases, and the corresponding
particle’s surface tension γ (N m−1) decreases as well, see Equation (29) [9]. In addition, the
zeta-potential bourn within the semi-solid interface that the stabilizer’s addition forms [22],
is utilized as indicator of its efficiency (Table 3). A stabilizer causing high absolute values
of zeta-potential, creates strong repulsive forces (Coulomb forces) preventing the particles
from aggregating.

γ = −0.33kBT
(

NAρ

Mr

) 2
3
[

ln
(

S0

55.6

)
+ 5
]

(29)

In Equation (29), where kB (J K−1) is the Boltzmann constant, Mr (g mol−1) and ρ
(g m−3) are respectively the molecular weight and the density of the particle, NA (mol−1)
the Avogadro number and S0 (−) the solubility of the pure API in water in absence of the
stabilizer.

According to the results shown in Table 4, the free Gibbs energy of the interface is
correlated both to the density and the zeta-potential. The decrease of surface density and
tension enhances the binding with the stabilizer, which in turn plays a crucial role in
the zeta-potential absolute value increase [23]. While Gibbs energy is a measurement of
the maximum non-expansion work available in a system, interfaces of higher Gibbs free
energy favors the effects of the electrostatic Coulomb forces. Among the three investigated
stabilizers, Poloxamer-188 presents the highest interfacial Gibbs energy, and as a result the
highest contribution in the dissolution Gibbs energy enhancement (Equation (1)) and the
highest absolute zeta-potential, making it suitable for selection.
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Table 4. Interfacial Gibbs energy and material properties correlation.

Stabilizer Gi
m Density (kg m−3) Z-Potential

HPC-SL 0.0019 1320 −11.7
Poloxamer-407 0.0039 954 −13.7
Poloxamer-188 0.0056 951 −17.0

3.2. Parameter Fitting

The results of the milling’s dynamic profile mapping appear in Figure 3. The arti-
ficial neural network achieved fitting within 1.6% mean squared error (MSE), while the
second-order polynomial achieved fitting with 1.1% MSE. Although using polynomial
fitting provides a bit lower percentage of MSE, the advantages of using ANNs for pattern
recognition are numerous, as discussed in the introduction section. Also, the discrete
experimental data points appear to be noisy. Deep neural networks identify noisy data
rather than memorize it and include it in the training process [24]. However, there exist
data fusion algorithms with insignificant computational requirements used to minimize
noise during sampling, such as the Extended Kalman filter.

The Maximum Likelihood Estimation best-fit results comparing the three breakage
functions are shown in Figure 4. The Austin model provided the best experimental fit
with the lowest MSE, while the de Vegt model provided the highest one. Furthermore, as
discussed above, the Austin model’s breakage function included more tuning parameters
than the rest, with the Kapur model being the second and the de Vegt model being the
last one. Considering this fact, it was found that the polyparametricaly tuned model
exhibited a suitable experimental fit curve. As expected, the integration of numerous
tuning parameters enhances the curve fitting performance, especially when it desired to



Pharmaceutics 2022, 14, 2113 10 of 16

interpolate complex experimental data profiles. The tuning parameter herein successfully
plays the role of “correction factor”.
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3.3. Sensitivity Analysis
3.3.1. Wet Milling

A sensitivity analysis was performed against the various considered tuning parameters
regarding the breakage functions conducted to examine their effects on the model outputs.
Figure 5 shows the effect of the de Vegt model’s breakage rate parameter c (−) on the
final D50 size profile. Parameter c is the tuning parameter existing in the model, while
the others are predetermined according to the material’s and the mill’s characteristics (see
Equations (6)–(8)).

The de Vegt model’s breakage distribution function remained the same during the
analysis as when combining Equations (5) and (6) the final form appears dependent on the
xi
xj size reduction ratio (Equation (30)).

b(i, j) =

(
xi
xj

)1.25

(30)
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Figure 5. Breakage parameter c effect on the size comminution profile.

Apparently, increasing c provides higher breakage rates for larger particles and results
in efficient comminutions. However, with the latter featuring the only tuning parameter
for a given API, each desired final size shall unveil its own unique reduction profile. De
Vegt model’s breakage function is ideal for qualitative analysis cases, e.g., when only the
initial and the final sizes are of the main interest. In Figures 6 and 7, Austin’s comminution
profiles are illustrated, based on the breakage rate’s sensitivity analysis. The effects of the
tuning parameters a (s−1) and d (−) were interrogated, and it was found that by increasing
each or both of a and d, the breakage rates of interval sizes i (Equation (10)), and thus
the comminution efficiency, increases (Figure 6). The breakage distribution function b(i,j)
during the Austin model’s relative sensitivities remained the same, with ϕ = 0.3, γ = 1.17
and β = 4. In comparison to de Vegt model, a desired D50 size is achieved via various
profile paths (Figure 7a). In addition, even when ϕ = 1 and γ = 1.25, namely when the
distribution function b(i,j) is the same with the de Vegt’s one, the existence of the exponent
d as a secondary tuning parameter in the S(i) calculation function allows the formation
of multiple profiles leading to the same result (Figure 7b). This is the benefit of engaging
multiple tuning parameters within the breakage rate function, as they render the digital
twin capable of fitting multiple profiles.
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Figures 8 and 9 illustrate the Kapur model D50 time profile results (e = 6), following
the same strategies. The Kapur model proved to be a sufficient breakage function as it
recognizes multiple time profiles. Nevertheless, the b(i,j) distribution function contains one
tuning parameter in comparison with the Austin model, and this is the reason that effective
experimental fit accuracy cannot be approached by the theory.
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3.3.2. Spray Drying

Two-factor sensitivity analysis was conducted to the spray drying model to map
the design space. Figure 10 presents the obtained analysis’s contour diagram, whereas
the factors considered are the air temperature and the air volume flow rate, while the
response is the final product’s humidity, which constitutes the critical quality attribute
related to the process. The contours below describe the final moisture content of the product
decrease as the air’s temperature and/or its volumetric flow rate increases for the given
initial dry humidity (g g−1). The air water capacity threshold rises proportionally with
temperature when the temperature increases the air’s given humidity (g g−1) covering a
lower proportion of the moisture threshold and its relative humidity decreases, allowing
humidity absorption [7].
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4. Discussion

In our artificially intelligent digital twin thread, comminution efficiency appears
dependent both on the material system selection and on the equipment’s parameter settings.
The relevant capacity and the physical properties of the API and of the grinding media were
included in the digital twin’s working parameters, defining the quality attributes of the final
product. Therefore, this digital twin thread is capacitated to analyze what-if equipment
and material scenarios for early production assessments towards the reduction of material
waste and the optimization of time schedule and process functions serving multiple batch
mill units [25]. In addition, the algorithm is poised to identify irreversible faults and
incompatibilities beforehand, for the related processes and the material system (e.g., over-
efficient comminution profiles, API’s unwanted loss by dissolution during milling etc.) and
propose controller actions to avoid them. Spray drying is a complex procedure, crucial
for the final API’s powder formation. It is a continuous process enabling real-time data
sampling and immediate response to changes of the physical object’s properties. In our
digital twin, the spray drying process is described as a multi-parametric block, since
the final temperature and moisture content of the product depend on the drying air’s
temperature, pressure, and capacity as far as the initial product’s flow, temperature, and
droplet size distribution. Therefore, it can predict the drying efficiency given the air
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temperature specification, hence apart from the convergent mass and energy balances it
exploits psychrometric calculations to determine the air’s relative humidity and its moisture
capacity threshold [7], thus being advantageous in delivering realistic analysis reports.

Our algorithm may receive real-time data and return forecasts of the temperature
profile inside the spray dryer for any given initial input conditions, an extremely important
operation, hence the product is required to be obtained in a stable crystalline state, while its
temperature should not overcome the API’s and the excipients’ melting point [26,27]. This
digital twin ameliorates any scale-up related efforts and product degradation risks, while
contributing to the optimization of the process outlining the system’s design spaces. In this
recursive digital model, the proper empirical law selection, the one that more accurately
describes the physical object’s progress, is dependent on the crowd of its tuning parameters,
namely the parameters acceptable to be adjusted within boundless values towards improve-
ment of the model’s prediction accuracy. Considering processes like wet milling, although
the material and energy balances invoke fundamental laws of physics, models that describe
specific functions, such as the comminution laws, must include data-driven parameters.
Under this lens, for this specific unit block, using trained neural networks could replace
such models efficiently, although limitations should be considered, and those lie in the
idiosyncratic nature of the methods such as the ability of the empirical models to point out
relative dependencies between variables [28]. ANNs identify patterns without obeying
a strict mathematical function, thus generalizing the relationship between independent-
dependent variables. Both ANNs and polynomial fitting are efficient, depending on the
circumstances chosen. In addition, as the adjective “empirical” implies, experiments cannot
be avoided completely, hence even the structure of the mathematical models requires real
data for their parameter training.

Contemplating the limitations of the integration depth of our approach, there exist
cases where a specific level of uncertainty is required, for instance when model discrepancy
needs to become recognized. A model can simultaneously be mechanistically biased,
including over-confident parameter estimates, and therefore can also be effected by model
discrepancy. In this research, the adjusted parameters were not predetermined, hence
they do not possess physical status, yet their existence lies within calibration purposes,
such as fitting experimental data towards the enhancement of the digital twin’s validity.
Such tuning parameters, although as iterated irrelevant of physical interrelations, become
scientifically vital, whereas complex process simulations are considered, as they aid the
translation of the data set ontologies to the related physical property [8]. Adjusting tuning
parameters to discrete data points vertically amplifies the model’s data value and therefore
improves overall accuracy as uncertainty, and its minimization, shall be in frame with the
output results.

The digital twin thread requires input modifications when APIs other than Itracona-
zole are considered. Specifically, different APIs provide different experimental data and
consequently different ANN weights and physichochemical parameters must be plugged
to the system’s agent. ANNs, however, carry the flexibility to link different input types
with desired outputs, and as such various physicochemical properties can be utilized, con-
stituting this digital twin as a universal predictive platform suitable for BCS II drugs [29],
whereas the iterated processes are examined. Pharma 4.0 capacitating digital twins fused
with artificial wisdom will in the future decrease the need for the implementation of
experiments and exploit real time manufacturing process data towards the constant ad-
justment of the tuning parameters, succeeding the control and prediction of the process’s
progress and material’s quality attributes in time. Although fully functional digital twins
require demanding computational and sensoring infrastructure as continuous curve fit-
ting, probabilistic forecast, information evaluation and system configuration are taking
place simultaneously, their multimodal capabilities shall be undeniably useful for industry
deployment in the years to come.
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