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Abstract: Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that
ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly
the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH.
Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to
challenge an autologous MSC-based treatment. ON has been originally induced by the synergic
combination of surgery and steroid administration. Autologous BM-MSCs were then implanted
in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation
in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed
investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction
to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting
for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs,
isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles,
and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a
promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into
the clinical settings.

Keywords: osteonecrosis; femoral head; bone marrow; mesenchymal stromal/stem cells; bone
regeneration; cell therapy

1. Introduction

Osteonecrosis of the femoral head (ONFH), also known as avascular necrosis, is a
progressive degenerative disease characterized by a disruption in blood flow to the femoral
head (FH) [1]. ONFH is a multifactorial disease caused by traumatic (e.g., interruption
of the ligament of teres) or non-traumatic events (e.g., chronic use of alcohol, smoking,
or as a result of steroids, radiotherapy, and chemotherapy) [2]. The current treatments
are not always effective, and in cases in which the bone architecture collapses, a total
hip replacement is required [3]. ONFH can affect relatively young adults with an age at
presentation between 20 and 40 years; prosthesis substitution, which occurs approximately
every 15 years, contributes to the bone morbidity potentially compromising the quality of
life [4]. Thus, alternative therapeutic treatments, possibly using cell-based approaches as
performed for other skeletal-related diseases, shall be implemented [5–8].
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In vitro and in vivo models are required to increase our knowledge about the disease
and to evaluate the efficacy of new therapies for ONFH. To date, several animal models of
ONFH have been generated using surgical or pharmacological approaches [9–12]. The first
consists of the removal of the junctional hip capsule, which is followed by circumferential
cauterization of the periosteum and vessels around the FH. The second and more common
method is based on the intramuscular injection of methylprednisolone (MPSL), which is a
corticosteroid known to be associated with ON. Although ON animal models have been
generated, none is able to precisely recreate the human ON pathophysiology.

In this study, by combining surgical and pharmacological approaches, we originally
generated a rabbit ONFH model with features overlapping human ON. This model has
been then used for testing the in vivo efficacy of autologous bone marrow mesenchymal
stromal/stem cells (BM-MSCs) also accounting for the impact of ON induction in their
compartment before (ON-BM-MSCs) and after ON induction (ON+BM-MSCs).

2. Materials and Methods
2.1. Creation of ON Damage in a Rabbit Model

Eight 3-month-old female New Zealand Oryctolagus cuniculus rabbits (Harlan Labo-
ratories Srl, San Pietro al Natisone, Italy) housed at the interdepartmental animal facility of
the University of Modena and Reggio Emilia were used. The study protocol was approved
by the local animal ethics committee and by the Italian Ministry of Health, according to
Replacement, Reduction and Refinement rules [13]. The first part of the study aimed to
identify the appropriate approach for the induction of ON in the selected animal model.

The first approach consisted of one intramuscular injection of 20 mg/kg MPSL (Pfizer,
New York, NY, USA), which is a known corticosteroid used for ON induction (n = 2) [14,15].

The second approach was the combination of surgical technique and MPSL (n = 2).
Each rabbit was sedated with an intramuscular injection of 1 mg/kg midazolam and
anesthetized with 3% Sevorane (Abbott S.r.l., Roma, Italy); then, a lateral skin incision
was made over the greater trochanter, the subcutaneous tissue was incised, and the tensor
fascia latae was split open. The gluteus medius muscle was detached from the greater
trochanter and elevated anteriorly, and a “T” cut was made on the anterior part of the
hip capsule. Electrocoagulation was performed all around the neck, extending from the
greater trochanter to the cartilage on the FH that was left untouched. The ligament of
teres was then cut to ensure that no extra-osseous circulation to the FH remained [16,17].
The same procedure was performed on the contralateral hip and 20 mg/kg MPSL was
intramuscularly injected. Antibiotic (0.25 g/kg BAYTRIL, Bayer HealthCare LLC Animal
Health Division, Pittsburgh, PA, USA) was administered as prophylaxis [18].

In both approaches, animals were euthanized 4 weeks after damage induction with a
lethal dose of anesthetic, and the FHs were removed and fixed in formalin for subsequent
histological assays. These results allowed identifying the combination of surgical technique
and MPSL as the most suitable method to generate an ON event with pathogenic features
mimicking those reported in humans. Having chosen the approach to induce ONFH,
we reproduced the selected method bilaterally in rabbits to observe ON development at
2 weeks (n = 2) and at 6 weeks (n = 2). After animal sacrifices, FHs were collected for
histological assays to identify the proper timing of BM-MSC treatment. The study has been
performed as reported in Figure 1.
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Figure 1. Overview of the experiments. Bone marrow (BM) was harvested from five rabbits and
mesenchymal stromal/stem cells (MSCs) were isolated and expanded in vitro. Bilateral osteonecrosis
(ON) damage was created in femoral heads (FHs), and after two weeks, BM was again harvested
in order to isolate MSCs and compare cells before (ON-BM-MSCs) and after (ON+BM-MSCs) ON
induction. In parallel, ON-BM-MSCs were implanted into the damaged FHs. Two weeks post-
implantation, FHs were harvested and analyzed by histological assays to evaluate bone regeneration.

2.2. Autologous BM-MSC Treatment in the ON Rabbit Model

Three-month-old New Zealand female rabbits (n = 5) underwent BM harvesting for
MSC isolation under general anesthesia. BM blood was collected from the right femoral
condyle using a Jamshidi 16G T-type BM aspiration needle (CareFusion, San Diego, CA, USA)
connected to a 10 mL syringe pre-loaded with 0.2 mL of Heparin (25,000 IU/mL; Hospira
Italia Srl, Napoli, Italy) [19–21].

As shown in Figure 1, one week after BM harvesting, animals underwent bilateral
ONFH induction as previously described. Two weeks post-ON induction, autologous
BM-MSCs were transplanted only in the right FH, maintaining the left FH as a control.
Under general anesthesia, a 2 cm lateral skin incision was made over the greater trochanter,
and a hole was created using a sharp bone perforator. An intravenous cannula (16G; BD,
Becton-Dickinson, Franklin Lakes, NJ, USA) was inserted approximately 2.5 cm through
this hole toward the FH for the injection of 2 × 106 BM-MSCs. The hole was closed
using bone wax (Johnson & Johnson, New Brunswick, NJ, USA), and the tissue layers
were appropriately closed by suture. During MSC transplantation, we harvested BM
from the left femoral condyle for MSC isolation to compare the MSC performance before
(ON-BM-MSCs) and after the ON damage (ON+BM-MSCs). Two weeks post-implantation,
MSC transplanted FHs were removed for histological assays to evaluate the therapeutic
efficacy of BM-MSCs in comparison to not transplanted FHs as controls.

2.3. BM-MSC Isolation and Amplification

BM samples (n = 5) were collected from the femoral condyle and processed as de-
scribed [22,23]. After treatment with lysis buffer (0.15 M ammonium chloride, 0.009 M
potassium bicarbonate, and 0.01 mM EDTA; all from Carlo Erba, Milano, Italy), the sam-
ples were centrifuged at 306× g; then, cells were counted by 0.4% trypan blue exclusion
(Biochrom AG, Berlin, Germany) and inoculated into culture flasks (Greiner Bio-One
GmbH, Kremsmünster, Austria). A total of 1 × 106 cells/cm2 were seeded and cultured
with Minimum Essential Medium Alpha (α-MEM) without nucleosides (Gibco® Invitro-
gen, Waltham, MA, USA), supplemented with 8% human platelet lysate (PL) [24], 1%
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L-glutamine (Gibco® Invitrogen), 1 IU/mL heparin (Sigma-Aldrich, St Louis, MO, USA),
and 10 µg/mL ciprofloxacin (HIKMA Pharmaceuticals, London, UK).

Nine days post-seeding, fibroblastic colony-forming units (CFU-Fs) were detected,
and clones of more than 50 cells were counted on an inverted microscope (Axio Observer
A1 with Plan-NeoFluar 10× objective). Cells were kept in incubators with a controlled
atmosphere (5% CO2, 37 ◦C) and the medium was replaced every 2–3 days, discarding
non-adherent cells.

Once 80–90% confluence was reached, the BM-MSCs were detached using 0.05%
trypsin/0.02% EDTA (Gibco), counted, and seeded at 6000 cells/cm2. Once BM-MSCs
reached passage 3 (P3), cells were detached, and 2 × 106 BM-MSCs were suspended in
100 µL of normal saline (S.A.L.F. SpA, Laboratorio Farmacologico, Bergamo, Italy) and
loaded in a 1 mL tuberculin syringe (B. Braun, Melsungen, Germany) for transplantation.
Cultures were also maintained until P5 to calculate the cumulative population doubling
(CPD) using the following formula (1):

PD = log10(Pi + 1/Pi)/(log102) (1)

where Pi is the number of cells in each passage in vitro [25].

2.4. Immunophenotypic Characterization by Flow Cytometry

When ON-BM-MSCs (n = 5) and ON+BM-MSCs (n = 5) reached P3, fluorescence-activated
cell sorting (FACS) was performed as previously reported [22]. Cells were stained with
unconjugated anti-rabbit CD45 and unconjugated mouse anti-human CD29 (all from AbD
Serotec, Oxford, UK) in PBS with 0.1% bovine serum albumin (Sigma-Aldrich). Primary
antibodies were detected using a goat anti-mouse antibody conjugated with APC (BD
Pharmingen) to detect CD29 and conjugated with PE (BD) to detect CD45. The anal-
yses were performed using a FACSAria III flow cytometer equipped with FACS DIVA
software (BD).

2.5. Differentiation Assays

Once they reached P3, BM-MSCs isolated from both groups (n = 5 per group) were
induced toward the adipogenic lineage. Cells were seeded at a density of 6000 cells/cm2,
and at 80–90% cell confluence, cells were incubated with adipogenic induction medium
consisting of α-MEM containing 8% PL, 1% P/S, and 1% glutamine supplemented with 10%
rabbit serum (Euroclone S.p.A., Milano, Italy), 5% horse serum (Hyclone Laboratories Inc,
Logan, UT, USA), 1 µM dexamethasone, 60 µM indomethacin, 10 µM insulin, and 0.5 mM
3-isobutyl-1-methylxanthine (all from Sigma-Aldrich) [26]. BM-MSCs were maintained in
differentiation medium for 10 days and stained with Oil Red O solution (Sigma-Aldrich).
Adipogenic differentiation was evaluated by the appearance of characteristic clusters of
cells containing lipid vacuoles stained in red. Images were acquired on an Axio Observer
A1 microscope equipped with Axiovision 4.82 software (Zeiss, Jena, Germany).

Both specimens were also induced toward the osteogenic lineage once they reached
P3. Cells were seeded at a density of 6000 cells/cm2 into 6-well multiwell plates previously
coated with 0.1% gelatin (Gelatin from bovine skin, Type B, Sigma-Aldrich). At 80–90%
cell confluence, cells were incubated with bone induction medium consisting of α-MEM
containing 8% PL, 1% P/S, and 1% glutamine and supplemented with 10 nM dexam-
ethasone, 10 mM β-glycerophosphate, and 0.1 mM L-ascorbic acid-2-phosphate (all from
Sigma-Aldrich). Seven days after the start of the induction, the medium was additionally
supplemented with bone morphogenetic protein-2 (100 ng/mL; PeproTech, Rocky Hill,
NJ, USA), and on the 14th day, differentiated BM-MSCs and controls were stained with
Von Kossa dye [27,28]. Dark deposits of hydroxyapatite were detected using an inverted
microscope with 10× magnification (Axio Observer A1 equipped with Axiovision 4.82
software; Zeiss).
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2.6. Histology

FHs collected from rabbits (n = 5 per group) were fixed in 10% neutral-buffered forma-
lin for 2 days, decalcified in fast decal solution composed by 5% formic acid (Sigma-Aldrich)
and 5% trisodium acetate (BD) in ddH2O for 21 days, and then paraffin embedded [29,30].
Three µm-thick sections were stained with hematoxylin and eosin (H&E, Carlo Erba) [31]
and then examined on a Zeiss Axioskop (Zeiss). Micrographs were acquired with an
AxioCam ICc3 color camera (Microlmaging GmbH, Carl Zeiss Group, Jena, Germany) and
analyzed with AxioVision LE software (Carl Zeiss Imaging Solution, Zeiss). In only FHs
collected from animals transplanted with ON-BM-MSCs and their controls, we quantified
fat degeneration represented by adipose cysts. Ten micrographs were randomly acquired
at 20× magnification for both ON-BM-MSC–treated (n = 5) and control specimens (n = 5).
For each picture, the percentage of adipose areas was quantified by Image J software
(National Institutes of Health, Bethesda, MD, USA) using the function Analyze Particles.
We also investigated differences in direct or indirect/endochondral osteogenesis by Alcian
blue Hematoxylin and Orange G/Eosin staining [32]. Six µm-thick paraffin sections were
stained with 1% Alcian blue dissolved in Mayer’s Acid Hematoxylin and counterstained
with 2% Orange G and 1% Eosin solution (all Sigma-Aldrich). Micrographs were acquired
as previously described.

Based on the properties of endochondral ossification, which is characterized by a
higher osteocyte density compared to mature bone [33,34], we introduced a scoring sys-
tem for osteocyte density (OD) and empty lacuna density (ELD) using the following
Formulas (2) and (3):

OD = number of osteocytes/bone area (2)

ELD = number of empty lacunae/bone area (3)

Five micrographs were randomly acquired at 20×magnification for both ON-BM-MSC-treated
and control specimens. For each picture, bone tissue areas (µm2) were quantified using
Axiovision 4.8.2 software (Carl Zeiss Imaging Solution), and osteocytes and empty lacunae
were counted by two double-blinded operators. OD and ELD were then calculated.

2.7. Statistical Analysis

All data collected are presented as mean ± standard error of the mean (SEM). Statistical
analysis was performed using paired Student’s t-tests. The p-values < 0.05 were considered
statistically significant.

3. Results
3.1. Surgical Procedure Combined with MPSL Is More Efficient Than MPSL Alone at Reproducing
ONFH in Rabbits

We investigated the ability of MPSL administration, alone or in combination with a
surgical procedure, to induce ON damage to identify the best method to obtain an in vivo
model that reproduces human ONFH (Figure 2A). At 4 weeks post-induction, cartilage
tissue was preserved in both approaches. In the BM compartment, lipidic cysts, fibrin
coagula, and inflammatory cells were equally detected in FHs from rabbits subjected to
both methods. Very interestingly, in samples from rabbits undergoing the combinatory
procedure, we observed a consistent reduction in hematopoietic cellularity. Moving to the
bone compartment, the MPSL method did not substantially damage the bone tissue. In
contrast, the combination of the surgical procedure and steroids severely affected bone, as
shown by the relevant number of pyknotic osteocytes and empty lacunae (Figure 2A).



Pharmaceutics 2022, 14, 2127 6 of 16Pharmaceutics 2022, 14, 2127 6 of 17 
 

 

 
Figure 2. Histological analyses at different times after the osteonecrosis (ON) damage induction. (A) 
Comparison at 4 weeks after the ON event using only the pharmacological method with 
methylprednisolone (MPSL; upper panel) or the combination of the surgical procedure and MPSL 
(bottom panel), depicting cartilage and bone tissue. (B) The combination of surgical procedure and 
corticosteroid was also analyzed at 2 weeks and (C) 6 weeks after ON damage (10× and 40× 
magnification; scale bar 100 µm and 50 µm. Arrows: osteocyte lacunae; asterisks: spontaneous bone 
regeneration; arrow heads: hematopoietic cellularity). 

Figure 2. Histological analyses at different times after the osteonecrosis (ON) damage induction.
(A) Comparison at 4 weeks after the ON event using only the pharmacological method with methyl-
prednisolone (MPSL; upper panel) or the combination of the surgical procedure and MPSL (bottom
panel), depicting cartilage and bone tissue. (B) The combination of surgical procedure and corticos-
teroid was also analyzed at 2 weeks and (C) 6 weeks after ON damage (10× and 40× magnification;
scale bar 100 µm and 50 µm. Arrows: osteocyte lacunae; asterisks: spontaneous bone regeneration;
arrow heads: hematopoietic cellularity).
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3.2. Two Weeks after ON Induction Is the Best Timing for MSC Implantation to Recapitulate
Pathogenic Features

We selected the combination of the surgical procedure and corticosteroids as the most
suitable method to generate an ON animal model with pathogenic features observed in
humans. In all specimens, we observed the typical histological features of ON [35,36]: fat
degeneration, lipidic cysts, reduction in hematopoietic cellularity, fibrin coagula, inflamma-
tory cells, polymorphonucleated cells and macrophages, with empty lacuna.

To evaluate the best timing for MSC implantation, we studied the development of the
disease in rabbits at 2 and 6 weeks post-ON induction. As shown in Figure 2B, cartilage
was preserved at 2 weeks post-damage. In the BM compartment, we observed adipose
hypertrophy, inflammatory cells surrounding adipocytes, and a significant reduction in
hematopoietic cells. Numerous empty lacunae and pyknotic osteocytes were detected in
the bone tissue, suggesting that ONFH was already developed.

As seen in Figure 2C, cartilage was preserved at 6 weeks post-damage. The BM com-
partment was characterized by adipocyte hypertrophy, inflammatory cell persistence, and
an early restoration of hematopoietic cells. Bone tissue was still damaged, as demonstrated
by the empty osteocyte lacunae, but supported by some areas of spontaneous bone regener-
ation. These areas were characterized by high osteoblast cellular density along the necrotic
trabecula; they were slowly reabsorbed and simultaneously replaced with new viable bone.
This process seems to be similar to the “creeping substitution” described in humans [37,38].
These results led us to implant ON-BM-MSCs at 2 weeks after ON induction and collect FHs
at 2 weeks after MSC implantation. Therefore, the histological evaluation was performed
at 4 weeks after ON damage, allowing us to attribute bone regeneration to MSCs despite
creeping substitution.

3.3. BM-MSCs Improve Osteogenesis into Damaged FHs

We transplanted autologous ON-BM-MSCs into FHs 2 weeks after damage induction
to assess the capacity of BM-MSCs to generate new bone.

In the control group, we observed lipidic cysts as well as small elongated and irreg-
ularly distributed fibroblast stromal elements mixed with dispersed hematopoietic cells.
Moving from the BM compartment to the bone tissue, we detected some osteocytes with py-
knotic nuclei and more empty lacunae. Close to the necrotic bone, we observed small areas
of viable tissue with a rime of osteoblasts resembling creeping substitution (Figure 3A).

In contrast, in BM-MSC-transplanted FHs, the BM tissue appeared populated with
more heterogeneous hematopoietic cells without adipose hypertrophy. Moreover, cuboidal
and fibroblast stromal elements were homogeneously distributed. The area of lipidic cysts
was quantified by Image J software revealing a percentage of 45.69 ± 6.44% in the control
group and 26.81 ± 7.46% in the MSC-treated group. This difference was statically significant
(p < 0.001; Figure S1, Supplementary Materials). Surprisingly, only the transplanted FHs
exhibited a peculiar ossification mimicking endochondral bone regeneration, which was
characterized by a matrix densely populated by osteocytes (Figure 3A).

We performed Alcian blue Hematoxylin, Orange/Eosin staining to confirm the endo-
chondral process. As reported in Figure 3B, the control group showed only a homogeneous
orange/pink staining identifying the presence of bone tissue, and pyknotic osteocytes and
empty lacunae were still observed. Interestingly, only in the BM-MSC-transplanted group,
close to the necrotic area, were blue positive shades detected within orange/pink bone matrix
and a blue ring surrounded the osteocytes, emphasizing their metabolic activity (Figure 3B).
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Figure 3. Histological analyses of femoral head (FH) treated with mesenchymal stromal/stem cells
(MSCs) compared to the control. (A) In the MSC-treated group, there is a more populated bone
marrow and a better organization of fibroblast stromal elements compared to control. A reactive
osteoblastic rim is present in the control rabbit specimens as well as in the transplanted ones, but
only the treated femoral head (FH) shows a similar endochondral ossification (10× magnification;
scale bar 100 µm). (B) The Alcian blue staining for bone maturity reveals a new bone tissue in treated
FHs (10× and 40× magnifications; scale bar 100 µm and 50 µm). (C) Osteocyte density evaluation in
terms of empty lacunae (ELD) and new osteocytes (OD) in control and treated rabbits. (* p < 0.05;
arrows: osteocyte lacunae; asterisks: spontaneous bone regeneration).

In accordance with the endochondral process, large areas of high osteocyte density
were observed in treated FHs compared to controls. In order to evaluate any changes in the
bone compartment, empty lacunae and new osteocytes were quantified. As seen in Figure 3C,
the BM-MSC treatment statistically significantly increased the OD (1831.32 ± 189.62) com-
pared to the ELD (516.92 ± 61.39; p < 0.05). No significant differences in OD (1138.64 ± 111.19)
and ELD (810.79 ± 87.84; p > 0.05) were detected in the controls. In addition, we ob-
served a statistically significant increase in OD in MSC-treated FHs compared to controls
(p < 0.05). In conclusion, BM-MSCs can improve osteogenesis into damaged FHs early
after transplantation.
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3.4. MSCs Isolated from FHs after Damage Show a Decrease in Clonogenic Ability

Having defined the appropriate ONFH rabbit model, we investigated the impact of ON
damage on the BM microenvironment by comparing ON-BM-MSCs and ON+BM-MSCs.

BM samples were collected from the right femoral condyle before ON induction
(2.25 ± 0.17 mL) to isolate ON-BM-MSCs and from the left femoral condyle post-ON dam-
age (3.45 ± 0.26 mL) to isolate ON+BM-MSCs. The difference in BM volume suggested
an increase in liquid in the BM compartment after the ON event, although no statistically
significant difference was observed (p > 0.05, data not shown).

From the BM specimens, we isolated and counted 4.88 ± 3.03 × 108 and 6.23 ± 1.26 × 108

mononucleated cells, respectively, for the ON-BM-MSC and ON+BM-MSC specimens
(Figure 4A). Four days after seeding, fibroblastoid elements began to adhere to the plastic
surface, and after 9 days of culture, CFU-Fs were detected (Figure 4B) [39].
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The mean CFU-Fs was significantly higher in the ON-BM-MSCs (29.03 ± 3.61/107)
compared to the ON+BM-MSCs (6.94 ± 0.97/107; p < 0.01; Figure 4B). In Figure 4C, we
reported the similar cell morphology of both specimens during culture from P1 to P5. We
observed an increase in cell size with evident cytoskeleton at P5 in both samples.

The CPD was similar for ON-BM-MSCs and ON+BM-MSCs, showing a gradual
increase until P4 (6.88 ± 0.62 for ON-BM-MSCs vs. 5.43 ± 0.72 for ON+BM-MSCs). Inter-
estingly, at P5, the CPD of ON-BM-MSCs decreased (5.39 ± 1.87), while the CPD increased
for ON+BM-MSCs (6.68 ± 0.23), as shown in Figure 4C (p > 0.05).

3.5. ON-BM-MSCs and ON+BM-MSCs Exhibit the Same Immunophenotypic Profile and
Differentiation Potential

We then examined cell populations using immunophenotypic characterization (Figure 5A)
and differentiation assays (Figure 5B) to assess the presence of other cell types, such as
monocytes and endothelial cells, that could adhere to the plastic surface.
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Figure 5. In vitro characterization and comparison of bone marrow-derived mesenchymal stro-
mal/stem cells isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON event. (A) Immunophe-
notypic profile using CD45 and CD29 antibodies and their expression in the two cell populations
as mean ± SEM. (B) Oil red O staining to detect adipogenic in vitro differentiation of two MSC
populations (10× in inset and 20× magnifications; scale bar 100 µm and 50 µm) and (C) Von Kossa
staining to detect osteogenic in vitro differentiation of two MSC populations (10× magnification;
scale bar 100 µm).

Flow cytometry analyses were performed as previously described by Piccinno et al.
and limited to CD29 and CD45 antibodies [40]. As seen in Figure 5A, ON-BM-MSCs



Pharmaceutics 2022, 14, 2127 11 of 16

and ON+BM-MSCs were weakly positive for CD45 (8.84 ± 2.83 and 13.25 ± 2.80, re-
spectively), with the observed difference suggesting an increase in immune cell num-
ber in ON+BM-MSCs (p > 0.05). CD29 was equally expressed in ON-BM-MSCs and
ON+BM-MSCs (65.44 ± 4.89 and 67.31 ± 6.51, respectively).

After adipogenic induction, we observed round lipid droplets inside the cells, and Oil
Red O staining confirmed the adipose differentiation in both MSC populations (Figure 5B).
Similarly, after osteogenic induction, Von Kossa staining was performed, and calcium de-
posits were detected at high levels in induced samples, but they were absent in un-induced
controls (Figure 5C). In conclusion, the proliferation rates, immunophenotypic profiles,
and differentiation abilities were comparable in the ON-BM-MSCs and ON+BM-MSCs,
suggesting that ON did not impact the BM microenvironment.

4. Discussion

The current treatments for ONFH are not always effective in preventing the bone
architecture collapse, lastly requiring a total hip replacement [3,41]. The identification of
advanced clinical treatments represents an urgent medical need.

In this study, we implanted autologous BM-MSCs into an induced ON rabbit challenge
model. For the first time in our knowledge, we proposed an alternative animal model able
to recreate the pathology through the same steps described for humans.

ON could be caused by both non-traumatic and traumatic events. Traumatic ON has
a low incidence in humans compared to non-traumatic ON, which is commonly caused
by the administration of corticosteroids [42]. The most common strategy described in
the literature to generate animal models of ONFH is the injection of MPSL, combining
different doses and number of administrations [43,44]. In our study, we proposed a
synergic role of corticosteroid administration and surgical procedure in order to obtain a
complete histological pattern that includes all pathogenic features: empty lacunae, lipidic
cysts, reduction in hematopoietic cellularity in the BM, fibrin coagula, inflammatory cells,
polymorphonucleated cells and macrophages.

For the first time, to our knowledge, we identified the combination of surgery and
MPSL as the optimal approach to generate ONFH in rabbits, better inducing fat degeneration,
depletion of hematopoietic cells and bone tissue necrosis compared to corticosteroid alone.

The identification of a proper animal model of ONFH then allows the assessment of
new therapeutical approaches, such as an MSC-based strategy. BM-MSCs are generally
administered intravenously or locally at the damaged site [43,44]. The debate on the
intravenous administration of MSCs incorporates several opposing theories. The possibility
of an accumulation of MSCs in the lung is not to be excluded, raising questions about its
efficacy in therapeutic approaches where cells have to reach a specific location [45].

In this study, we administered MSCs locally rather than systemically, in a sufficient
number aiming to achieve a therapeutic outcome, as previously suggested by others [46].
After BM-MSC implantation, we proceeded with the removal of the FHs and the subsequent
histological assays. In vivo experiments lasted only 2 weeks to limit spontaneous bone
regeneration and thus enable evaluation of the real contribution of implanted BM-MSCs in
osteogenesis. MSC-transplanted animals showed an improvement in features compared to
control animals, such as a repopulated BM compartment, a significant reduction in adipose
hypertrophy and regenerated bone tissue through endochondral ossification.

Indirect ossification is a type of physiological bone formation that occurs during em-
bryonic, fetal, and early postnatal life from a template of cartilage [33,47]. It is a prerequisite
for the formation of the niche with a subpopulation of hematopoietic progenitors that form
fetal bone with a medullary cavity [48]. This might also explain why there was a greater
hematopoietic cellularity in treated samples compared to controls.

Alcian blue hematoxylin and eosin/orange G staining confirmed the endochondral
process close to necrotic trabecula in rabbits transplanted with autologous MSCs, while in
the control group, the few areas of bone regeneration were Alcian blue negative, suggesting
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a direct ossification [49]. This observation provides further evidence that MSCs play a
pivotal role in bone regeneration in the ONFH model.

Finally, we introduced a scoring system based on ELD and OD parameters as further
confirmation of the efficacy of the treatment. OD is a known parameter used to evaluate
osteogenesis that correlates with the biomechanical quality of the bone in humans as
reported in the literature [34,50]. In this study, the 60% increased OD in the treated group
supports the potential of autologous implanted BM-MSCs in skeletal regeneration for this
ON model.

One of the limitations of current preclinical models is related to the use of BM-MSCs
collected before the ON induction, from the healthy microenvironment, which omits the
effect of disease on MSC performance. This is an issue for translation toward the clinic,
where autologous MSCs are collected from patients with ON. Therefore, to overcome
these shortcomings, we isolated BM-MSCs before (ON-BM-MSCs) and after ON induction
(ON+BM-MSCs) and compared them in terms of clonogenic ability, growth rate, immunophe-
notypic profile, and ability to differentiate toward the adipose and bone lineages.

This approach additionally enabled us to study the impact of ONFH on BM-MSC
performance in an autologous setting by comparing rabbit ON-BM-MSCs and ON+BM-MSCs.

Our study revealed a significant increase in BM volume harvest in ON+ compared
to ON-FHs. While this has not been completely clear, we can speculate that the infarction
of bone tissue and the subsequent inflammatory reaction leads to liquid accumulation.
This assumption is supported by the observation of a greater number of mononucleated
cells/mL of BM for ON+ than ON- rabbits but a significant (30%) reduction in CFU-F
number in ON+ compared to ON- samples. This could also suggest the higher presence of
immune cells in ON+ BM diluting the number of MSCs able to form CFU-Fs. Thus, we can
assert that ON damage impacts the BM microenvironment, although a cell fraction able
to generate CFU-Fs is preserved. Comparing MSC in vitro performance, we observed a
similar growth rate of ON-BM-MSCs and ON+BM-MSCs. We hypothesize that the disease
exerted a selective pressure on the MSC population, leading to a decline in CFU-F number
but allowing the survival of the best-performing clones.

Flow cytometry analysis was performed to discriminate CD29 positive rabbit MSCs
from CD45 positive white blood cells. ON-BM-MSCs and ON+BM-MSCs showed a similar
expression of CD29 (>65%) while CD45 was about 50% more expressed in ON+BM-MSC
compared to ON-BM-MSC samples, which is a further confirmation of white blood cells as
observed in CFU-F assay [51–53].

Furthermore, focusing on ON-BM-MSCs, we noticed a better growth rate until P5
than those reported in the literature for rabbit MSCs [54]. We can attribute this difference
to the culture medium used for the MSC maintenance. Although Dulbecco’s modified
eagle medium (DMEM) is described in the literature as the typical MSC basal culture
medium, we selected α-MEM to increase MSC proliferation and clonogenicity, as reported
by Lapi et al. [55]. In addition, we replaced 10% fetal bovine serum (FBS) with 8% human
PL in rabbit MSC culture [55] in order to overcome the limits of FBS variability among lots.

The comparison between ON-BM-MSCs and ON+BM-MSCs demonstrated that the
ON microenvironment did not affect MSC performances. This aspect seems particularly
relevant for the clinical translation of autologous BM-MSC implantation.

To our knowledge, other alternative therapeutic treatments are also being developed
and are currently in the pre-clinical phase, as reported in the literature [41,56]. Asada et al.
treated a rabbit model of induced ONFH with autologous BM and observed an improve-
ment in treated animals compared to control ones. They attributed the beneficial effect to
the fraction of MSCs within the BM [57]. In fact, other investigators used MSCs combined
with ceramic scaffolds in a dog model [58], showing their potential efficacy in ONFH treat-
ment. Gene therapy for ONFH is another approach based on the implantation of modified
MSCs into the necrotic area of ONFH to stimulate angiogenesis and cell proliferation for
bone regeneration [9,59–61]. The strength of our approach is based on the use of a not
genetically modified, autologous, and selected MSC population.
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In this study, we originally introduced a rabbit model faithfully mimicking the de-
velopment of human ON features to then introduce a therapeutical approach based on
autologous MSC as a regenerative medicine tool potentially able to reduce, postpone or
abrogate prosthetic strategies in humans.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14102127/s1, Figure S1: Quantification of adipose hypertrophy of femoral
head (FH) treated with mesenchymal stromal/stem cells (MSCs) compared to the control. In the
MSC-treated group, the percentage of areas of lipidic cysts is lower than control group (*** p < 0.001).
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