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Abstract: Labetalol is a drug that exhibits both alpha and beta-adrenergic receptor-blocking properties.
The American Heart Association/American Stroke Association (AHA/ASA) has recommended la-
betalol as an initial treatment option for the management of severe hypertension. The physiologically
based pharmacokinetic (PBPK) model is an in silico approach to determining the pharmacokinetics
(PK) of a drug by incorporating blood flow and tissue composition of the organs. This study was
conducted to evaluate the primary reasons for the difference in PK after intravenous (IV) and oral
administration in healthy and diseased (renal and hepatic) populations. A comprehensive literature
search was done using two databases, PubMed and Google Scholar. Various PK parameters were
screened for the development of the PBPK model utilizing a population-based PK-Sim simulator.
Simulations were performed after creating building blocks firstly in healthy individuals and then
in diseased patients after IV and oral administration. The disposition of labetalol after IV and oral
administration occurring in patients with the hepatic and renal disease was predicted. The model
was evaluated by calculating the Robs/pred ratio and average fold error (AFE), which was in the
two-fold error range. Moreover, Box-whisker plots were made to compare the overall concentration
of the drug in the body at various stages of disease severity. The presented model provides useful
quantitative estimates of drug dosing in patients fighting against severe chronic diseases.

Keywords: labetalol; pharmacokinetics; beta blocker; drug-drug interaction; drug-food interaction;
PBPK; hepatic disease; renal failure

1. Introduction

Labetalol is a β-adrenergic blocker, that was discovered in 1966, followed by the ap-
proval of the Food and Drug Administration (FDA) for medical use in 1977 [1]. It is suitable
for the treatment of severe hypertension, pregnancy-induced hypertension, pain induced by
angina, heart attack, stroke, and other heart diseases [2]. In the treatment of hypertension,
β-adrenergic blockers are thought to be the most suitable first-line alternatives, as stated
in the 7th Report of the Joint National Committee on Prevention, Detection, Evaluation,
and Treatment of High Blood Pressure (JNC 7) [3]. Labetalol selectively and non-selectively
blocks the α-1 adrenergic and β-adrenergic receptors, respectively. It acts by blocking the
actions of certain endogenous chemicals, such as adrenaline on the heart and blood vessels,
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thus lowering heart rate and blood pressure [4]. Labetalol is effective in both oral and
parenteral forms.

Labetalol is categorized as Biopharmaceutics Classification System (BCS) Class 1 [5]. After
oral administration, it is readily absorbed and has an absolute bioavailability of approximately
25% [6]. Labetalol is approximately 50–57% bound to plasma proteins [7] and its volume of dis-
tribution and elimination half-life is 9–15.7 L/kg and 5.52 h, respectively [8,9]. It is metabolized
by a microsomal glycosyltransferase namely uridine 5-disphosphoglucuronosyltransferase
(UDP) with no active metabolites [6] being excreted in the urine and feces (through bile). The
total body clearance of labetalol is 10–25 mL/min/kg [10]. In the case of oral administration,
it has three times the beta-blocking ability than its alpha-blocking ability (i.e., 3:1) while, in
the case of intravenous administration the ratio extends to 6.9:1 [11].

Labetalol falls in pregnancy category C [6]. It can cross the placental barrier and
only a negligible amount of drug can cross the blood-brain barrier. Its most troublesome
side effects are nasal stuffiness, sexual dysfunction, and urinary retention [11]. These side
effects can become more severe as the bioavailability of labetalol increases and excretion
decreases, especially in cases of liver failure and chronic kidney disease. Therefore, it
is highly recommended by the drug authorities to determine the exact dose required in
patients fighting against these diseases [12,13]. For this purpose, there is a need for the
development of in silico methods, that can assist practitioners in adjusting labetalol dosing
in different patients.

Previously, for pharmacokinetic (PK) analysis, conventional mammillary models were
used that were highly dependent on drug quality and had indistinct biological features [14].
However, now for the sake of drug development, a variety of computational models
are present. These models represent a mechanistic representation of the drug in the
biological system allowing a deductive simulation of drug concentration-time profiles by
incorporating information on the drug with little knowledge of the physiological system
at the organism level [15]. Teorell firstly described the concept of physiologically-based
pharmacokinetic (PBPK) modeling in 1937. PBPK recruits richer informational content
compared to the empirical models concerning the anatomy and physiology of the associated
system, making it possible to predict drug exposure in unreachable tissues where the drug
exerts its toxic or beneficial effects. It also provides beneficial information in predicting the
plasma concentration vs. time profiles with the help of preclinical in vitro and in vivo data
to support decisions at various drug development stages [16]. In literature, models have
been developed previously for drugs in the case of hepatically impaired [17] and chronic
kidney disease populations (CKD) [18].

In the case of liver impairment and CKD, many pathophysiological changes occur
that can alter the overall PK of labetalol, thus aggravating the related side effects. PBPK
modeling provides a platform for the incorporation of these respective changes and in turn
determining variations in the PK of the corresponding drug. These include changes in liver
volume, hematocrit, protein binding factor, and GFR (in case of liver failure) and hematocrit,
plasma protein binding factor, small intestinal transit time, gastrointestinal transit time, and
GFR (in case of kidney failure), respectively [19,20]. These changes, when integrated into
the model, may assist in optimizing the doses of labetalol in liver impairment and CKD.

The presented model of labetalol is focused on developing and evaluating the PBPK
model for the prediction of PK in the healthy, hepatically impaired, and CKD population by
utilizing a methodical approach for model building. To date, no model has been developed
on labetalol. The objective of the study is to determine the variations in the labetalol PK
after integrating the pathophysiological changes in the CKD and liver failure population,
which may aid in providing a deeper understanding and guidance about tailoring drug
doses in the respective diseases.
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2. Materials and Methods
2.1. Literature Review

The systematic analysis was conducted by Cochrane Handbook guidelines to accom-
plish the study objective and was reported by using the Preferred Reporting Items for
Systematic reviews and Meta-analysis (PRISMA) statement [21]. The search was done by
using two databases i.e., PubMed and Google Scholar, and the adopted search strategy has
been illustrated in supplementary Figure S1. The duplication of all the selected studies
was removed by using EndNote X9. The articles related to labetalol in populations such as
healthy, renal, liver, hypertension, or pregnancy-induced hypertension and the presence of
plasma concentration versus time profile after oral and IV administration, were included
in the study. Furthermore, articles were excluded based on title and abstract, the involve-
ment of animals in the study, and if the articles were in open access or not. The details of
the sorting of articles are presented in Supplementary Table S1. The units for maximum
plasma concentration (Cmax), area under the concentration-time curve (AUC), and clearance
(CL), were converted into similar units to make them consistent so that the results can
be compared more efficiently. The assessment of the quality of the included studies was
carried out by Jadad scoring [22] and the critical appraisal skills Program (CASP) [23]. A
detail of Jadad scoring, CASP scoring, and the characteristics of the included studies are
given in the Supplementary Tables S2–S4, respectively. Moreover, the details of inclusion
and exclusion criteria have been demonstrated in Supplementary Figure S2. From these
selected articles only four studies contain plasma-concentration time profiles out of which
five profiles of healthy adults and three profiles for disease patients were included in the
model development. A detailed description of the selected studies is given below in Table 1.

Table 1. Characteristics of the studies selected for PBPK modeling.

Sr. Population No. of
Subjects Dose Portion of

Females Age (years) Weight (kg) Reference

Oral

1 Healthy 6 200 mg 2 20–24 N/R [24]

2 Healthy 5 200 mg 0 21–26 N/R [25]

IV

3 Healthy 6 0.5 mg/kg 2 20–24 N/R [24]

4 Healthy a 5 0.5 mg/kg 0 21–26 N/R [25]

5 Healthy b 6 0.5 mg/kg 0 21–26 N/R [25]

Diseased

6 Chronic liver disease (IV) 10 0.5 mg/kg 2 22–24 50–65 [26]

7 Chronic liver disease (oral) 10 200 mg 2 22–42 50–65 [26]

8 Severe renal failure (IV) 4 1 mg/kg 1 37–70 75–87 [27]

IV: Intravenous, N/R: Not reported, Healthy a: characteristics of subjects selected for labetalol-glutethimide study,
Healthy b: characteristics of subjects selected for the labetalol-cimetidine study.

2.2. Modeling Software

The open-system pharmacology suite has been designed to allow efficient modeling
and simulation. In this current study, the PBPK modeling of labetalol in healthy adults
and diseased (liver and kidney) patients was carried out by using a population-based
PK-Sim simulator (version 9.1), which is a component of the computational Systems
Biology Software Suite of Bayer Technology Services GmbH (Leverkusen, Germany) and is
specifically for whole-body PBPK modeling [28].
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2.3. Building Blocks

The drug and disease-related input data were collected through the literature search
conducted previously and the building blocks were created. The non-compartmental
analysis (NCA) was performed by scanning data points of plasma-concentration time
profiles of all the included studies and importing those data points to the excel sheet. Input
parameters that are used in the whole modeling process are compiled in Table 2.

Table 2. Input parameters used in PBPK modeling.

Parameters Value Reference

Physicochemical parameters

Molecular weight (g/mol) 328.412 PubChem

pKa 9.38 PubChem

Lipophilicity (log units) 2.79 PubChem

Absorption

Intestinal permeability (cm/min) 4.67 × 10−5 Predicted in PK-Sim

Distribution

Specific organ permeability (L/min) 0.1 Optimized value a

Fraction unbound (%) 45 [29]

Partition coefficient model Pk-Sim standard

Cellular permeability model Pk-Sim standard

Elimination

Total body clearance (mL/min/kg) 15 [10]

Specific clearance
(L/h) 6 Optimized value a

a optimized using the parameter estimation feature of the PK-Sim Software.

2.4. Modeling Strategy

The drug disposition behavior was firstly modulated in IV administration after cre-
ating the building blocks, and all the parameters related to IV administration were incor-
porated and simulations were performed. After that, a model for oral administration was
modulated as it is a quite complex process compared to IV administration. This complexity
is basically due to the distribution of the drug into multiple compartments. For every
simulation that was run for a specific study, a total of 100 virtual subjects were created with
the corresponding data reported in that specific study. Out of a total of five healthy studies,
one-third (1 IV and 1 oral) of studies were used for PBPK model development, whereas the
other two-thirds (2 IV and 1 oral) were utilized in model verification. The data include a
proportion of females, age (years), weight (kg), height, frequency, and dose administered.
The strategy adopted by PBPK modeling has been described below in Figure 1.

2.5. Model Parameters

Labetalol (C19H24N2O3) has a pKa value of 9.38, a molecular weight of 328.412 g/mol,
and lipophilicity of 2.79 log units, as mentioned previously in Table 2. In PBPK modeling,
each organ is recognized by its physiological properties. For orally administered dosage
forms, the specific intestinal permeability value of 4.67 × 10−5 was incorporated into the
model. For the estimation of cellular permeability and tissue plasma partition coefficient,
PK-Sim standard model was used. The value of specific organ permeability and specific
clearance were optimized using the parameter estimation feature of PK-Sim software to
0.1 L/min and 0.10 L/min respectively. Finally, a total body clearance of 15 ml/min/kg
was incorporated into the model (after drawing both oral and IV simulations by using
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all the values ranging from 10 to 25 mL/min/Kg) based on visual predictive checks and
observed/predicted ratios [10].
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2.6. Model Structure in Diseased Population
2.6.1. Hepatic Disease

Patients with liver cirrhosis often develop different physiological changes that indicate
the severity of the disease. Child-Pugh (CP) classification helps to quantify these changes
as the disease progresses. These physiological changes include changes in liver volume,
hematocrit, plasma protein binding factor, and GFR concerning CP-A, CP-B, and CP-C stages
of liver cirrhosis, that has been reported previously [19]. The study selected for the labetalol-
cirrhosis model did not mention the CP class of liver cirrhosis therefore separate predictions
for every CP class were made and then visually verified by comparing the observed data with
the predicted. After that, a labetalol-cirrhosis model for CP-A was developed.

2.6.2. Kidney Disease

The altered physiological function may affect the PK of a drug in patients with kidney
disease. To quantitatively predict PK for dose management these physiological changes
must be considered when developing a PBPK model in patients with moderate or severe
kidney disease and have been reported previously. These reported physiological changes
for gastric emptying time, small intestine transit time, GFR, plasma protein binding factor,
and hematocrit [20,30]. The selected study has mentioned the severity of kidney disease
for creatinine clearance [27]. After calculating and incorporating the respective changes
i.e., 24.375 min, 2.94 h, 0.398, 0.843, and 11 mL/min/kg for gastric emptying time, small
intestine transit time, hematocrit, plasma protein binding factor, and GFR, respectively, a
labetalol-renal failure model for severe kidney failure was developed.

2.7. Model Verification

The verification of the current model was done by visual inspection, which was further
carried out by comparing the 5th–95th percentile, predicted arithmetic mean, and the
minimum and maximum plasma concentration versus time profile with the observed
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clinical data. The various PK parameters were then determined and the ratio of observed
versus predicted (Robs/Rpre) was calculated. Average fold error (AFE) which is the log-
transformed ratio of the observed and predictive concentration values, was also calculated
to estimate the predictive accuracy of the model for each parameter [31].

Formulas to calculate Robs/Rpre and AFE are given below:

R =
Observed value of PK parameter
Predicted value of PK parameter

AFE = 10
∑ log (fold error)

N

2.8. Influence of Food and Enzymes on Labetalol PK

From the literature review, it has been noted that enzyme induction and enzyme
inhibition may also cause a significant effect on labetalol PK. For this purpose, a study was
performed with glutethimide (enzyme inducer) and Cimetidine (enzyme inhibitor) [25],
because both of the drugs alter the first-pass metabolism of labetalol and interfere with
glucuronide conjugation. Similarly, another study related to food effects on labetalol PK
was also reported. This study has documented an increase in the bioavailability of labetalol
by decreasing its first-pass metabolism [24].

3. Results

The PK parameters after IV and oral administration in healthy IV, oral and diseased
populations of all the articles included in this study, and the effect of food and enzymes on
labetalol PK, have been stated in Supplementary Tables S5–S9, respectively.

3.1. PBPK Model in Healthy Adults

After IV (0.5 mg/kg) and oral (200 mg) administration, the plasma concentration
versus time profiles of simulated and observed data were compared [24,25]. The observed
data sets were visually verified by comparing them with the mean, minimum, maximum,
and 5–95 percentile (Figures 2 and 3). The Robs/Rpre of Cmax, AUC, and CL were calculated
(Table 3). The values for Cmax and CL after IV administration were 1.19–1.60 ng/mL and
0.6–1.2 L/h whereas after oral administration were 1.13–1.26 ng/mL and 0.93–1.18 L/h
respectively. To evaluate and determine the accuracy of the PBPK model, the AFE for
Cmax, AUC, and CL was also calculated and its values for Cmax and AUC were 1.44, 1.207,
and 1.193, 0.84 for IV and oral administration respectively. A detailed description of AFE
calculation has been documented in Supplementary Table S10.

Table 3. Observed and predicted values of various PK parameters and their respective R values in
healthy adults.

Cmax (ng/mL) a AUC0–t (ng/mL·h) b CL (L/h) c Reference

IV

Study Observed Predicted Ratio Observed Predicted Ratio Observed Predicted Ratio

1 144.244 91.9 1.56 297.002 270.74 1.09 1.2 1 1.2 [24]

2 143.099 120.083 1.19 299.91 288.59 1.039 0.99 1.1 0.9 [25]

3 143.09 89.178 1.60 419.66 279.972 1.498 0.7 1.1 0.63 [25]

Oral

4 150.228 131.91 1.13 384.602 477.93 0.80 320 270 1.18 [24]

5 166.82 131.91 1.26 432.0 482.57 0.89 244 260 0.93 [25]

Cmax
a: Maximum plasma concentration, AUC0–t

b: Area under the plasma concentration versus time curve,
CL c: Clearance.
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Figure 2. Comparison of observed and predicted plasma concentration versus time profile in healthy
subjects after IV administration at a dose of 0.5 mg/kg. (A) [24], (B) [25]: simulation for labetalol-
glutethimide study, (C) [25]: simulation for the labetalol-cimetidine study. The solid line [—] indicates
the arithmetic mean, dash line [- - - -] maximum and minimum, the dotted line [....] 5th–95th percentile,
red dots indicate observed data, and the solid line indicated predicted data.
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Figure 3. Comparison of observed and predicted plasma concentration versus time profile in healthy
subjects after oral administration at a dose of 200 mg. (A) [29], (B) [25]. The solid line [—] indicates the
arithmetic mean, dash line [- - - -] maximum and minimum, the dotted line [....] 5th–95th percentile,
red dots indicate observed data, and the solid line indicated predicted data.

3.2. PBPK Model in Diseased Population
3.2.1. Liver Failure

To determine the accuracy of the developed model, the plasma concentration versus
time profiles of observed and predicted data were compared (Figure 4). A significant reduc-
tion in the values of PK parameters Cmax from 295.56 ng/mL to 112.14 ng/mL and AUC
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from 608.73 ng/mL·h to 382.41 ng/mL·h was observed in the case of oral administration
compared to the IV administration where a notable elevation i.e., Cmax from 143.18 ng/mL
to 144.19 ng/mL and AUC from 265.30 ng/mL·h to 283.060 ng/mL·h was detected. The
resultant R obs/R pre ratio of Cmax and CL were 0.99 and 1.16 after IV administration
whereas 2.635 and 0.6 after oral administration, respectively [26]. All the Robs/Rpre ratios
were in two-fold error range except Cmax in the case of oral administration (Table 4). This
discrepancy in observed and predicted Cmax is because the study selected for labetalol-
liver cirrhosis model development has not mentioned the CP category. Out of the five
parameters of the CP classification system only three were mentioned in the study. After
carefully assessing the severity of liver cirrhosis and scoring the mentioned parameters,
we have considered it to be in CP-A class. Moreover, it can be acceptable but we have
to take care of the age, weight, and other parameters while adjusting the doses. The cal-
culated AFE values for Cmax and CL were 1.009, 1.148, and 2.63, 0.60 after IV and oral
administration, respectively. A detail of these calculated values has been added in Sup-
plementary Table S11. Box-whisker plots were made for dose optimization and the AUC
was compared for liver cirrhosis after IV administration in which the median along with
95% confidence interval (C.I) for AUC0–t in healthy was 410.4 ng/mL·h (389.0–435.4) which
increased to 549.4 ng/mL·h (473.6–511.8) in CP-A, 579.9 ng/mL·h (477.3–543.4) in CP-B
and 776.7 ng/mL·h (640.0–722.8) in CP-C whereas after oral administration these values in
healthy were 487.8 ng/mL·h (430.4–570.5), which increased to 607.0 ng/mL·h (535.1–707.7)
in CP-A, 642.2 ng/mL·h (532.4–795.5) in CP-B and 806.3 ng/mL·h (710.0–924.5) in CP-C,
respectively (Figure 5). These changes are associated with a change in AUC as the disease
progresses and help in dose adjustment.

Table 4. Observed and predicted values of various PK parameters and their respective R values in a
diseased population.

Cmax (ng/mL) a AUC 0–t (ng/mL·h) b CL (L/h) c Reference

Study Observed Predicted Ratio Observed Predicted Ratio Observed Predicted Ratio

Hepatic IV

1 143.18 144.1995 0.99 265.30 283.060 0.93 1.4 1.2 1.16 [26]

Hepatic Oral

2 295.567 112.14 2.635 608.733 382.41 1.5 250.6 376 0.6 [26]

Renal IV

3 535.697 588.037 0.9109 590.26 758.806 0.77 1.4 0.98 1.5 [27]

Cmax
a: Maximum plasma concentration, AUC0–t

b: Area under the plasma concentration versus time curve,
CL c: Clearance.

3.2.2. Renal Failure

The comparison of observed and predicted data points after IV administration is given
in Figure 6. A notable increase in the AUC from 590.26 ng/mL·h to 758.806 ng/mL·h and
Cmax from 535.697 ng/mL to 588.037 ng/mL was observed. The calculated Robs/Rpre values
of Cmax and AUC were 0.91 and 0.77, respectively. These values were in two fold error range
and acceptable for the model [27]. A detailed description of the R obs/R pre ratio is given
below in Table 4. The AFE values for Cmax and AUC were 0.912 and 0.77, respectively, and
have been documented in Supplementary Table S11. After developing the PBPK model of
labetalol in healthy, for dose optimization in patients with kidney disease, Box-whisker plots
were made in a sample size comprising 100 subjects (ages: 37–70 years, weight: 75–87 Kg)
after IV administration, and the AUC compared in healthy was 799.7 ng/mL·h (740.0–859.7),
which increased to 876.9 ng/mL·h (818.3–933.5) in moderate renal failure and 1023 ng/mL·h
(952.9–1085) in severe renal failure, respectively (Figure 7). This increase in AUC with an
increase in the severity of the disease helps in dose adjustment in such kinds of patients.
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4. Discussion

The purpose of the current study was to confine and analyze all the studies pub-
lished on the PK of labetalol in humans, utilizing a systematic approach and building a
PBPK model of labetalol in a healthy population. Once the model was developed, it was
extrapolated to the kidney and liver disease population by incorporating physiological
changes occurring in these populations as reported in the previous literature. This model
has adequately chronicled the disposition of labetalol after oral and IV administration
by comparing the predicted plasma concentration versus time profiles of the simulated
data, to that of the observed data obtained from the literature. A considerable amount of
labetalol passes through extensive first-pass metabolism (glucuronidation) and about 55
to 60% of the drug is eliminated through the urine [5]. A dose-dependent increase was
observed in Cmax and AUC values after oral and IV administration. The values obtained
from the current studies dictate a significant difference in IV and oral dose administration
related to different PK parameters.

Both the liver and kidney play an important role in the drug PK. The bioavailability of
a drug is highly influenced by first-pass metabolism of the liver and the amount of drug
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absorbed, whereas the elimination of the drug mainly depends on the glomerular filtration
rate (GFR). Patients dealing with these incompatibilities may face a reduction in the liver
size, hepatic arterial blood flow, albumin, and alpha-1 acid glycoprotein concentration,
GFR, cardiac output, gastric emptying time, and small intestinal transit time, which will
ultimately make them more prone to the development of irreversible complications [19].
Moreover, as labetalol is indicated in the treatment of hypertension, cardiac blood flow
increases according to the Frank-Starling mechanism, but as the arteries become blocked
with the severity of diseases, blood flow to the cardiac muscle decreases. Therefore, caution
should be taken while adjusting doses of labetalol in hypertensive patients. To determine
the degree of liver impairment, CP classification is used for drug dosing, whereas in the
case of renal impairment, GFR is highly recommended. It is important to determine these
changes which in turn can potentially augment the pharmacological and PK effects of
drugs, leading to therapeutic failure or adverse drug effects [19,32].

In the case of chronic liver failure, labetalol kinetics are independent of dose suggesting
that the proportionality between AUC and the oral dose is not dose-dependent. This may
be due to alteration in the first pass glucuronidation, which can change the bioavailability of
labetalol by inducing or inhibiting its metabolic activity [25]. The bioavailability of labetalol
increases from 33 to 63% in this condition [26]. Moreover, the drug-metabolizing ability of
the liver is also reduced in liver failure because of reduced microsomal enzyme content.
The values of Tmax were similar in both control and patient groups, while the values of
Cmax were observed to be increased in patients as compared to the former group [26].

It has been reported that about 55 to 60% of labetalol is eliminated through urine [5]. It
means that more than half of the administered drug is removed from the body through the
kidneys. Therefore, any physiological change occurring in the kidney function can affect
the PK of labetalol leaving the patient more prone to the development of ADRs. This may
be due to the decreased excretion of labetalol from the body [27]. The presented model
was also extrapolated to the renal failure patients as mentioned previously to compare
the observed and predicted PK of labetalol in these patients after IV administration. An
increase in the plasma labetalol concentration was observed in these patients, which may
be due to a decrease in plasma protein binding associated with an increase in the AUC and
a decrease in CL.

It is now clear that patients with liver and renal diseases are more prone to develop
complications when taking medicines that are metabolized in the liver and excreted through
the kidney. Previously, many studies have been published to determine the changes
associated with these diseases [32–35]. As labetalol is used to treat hypertension it has been
reported that labetalol reduces systolic and diastolic blood pressure by about 20%, when
administered in a dose of 0.5 to 1 mg/kg [36].

The strength of this current study may be that no systematic review and PBPK model
has been published on labetalol up till now. Previously, two reviews have been published
that were related to the pharmacology and physiological effects of labetalol, respectively.
This review has a few limitations. Firstly, only a few studies meet the inclusion criteria
and the studies included in the review do not have equal population distribution in both
the disease group and the control group, even though some studies have not focused on
equal gender proportion. Secondly, in a study related to hepatic disease, all of the five CP
parameters were not mentioned, while no plasma concentration versus time profile after
oral administration in case of renal failure was assessable to us. Lastly, the results of some
important studies were also based on data availability. All of these limitations can decrease
the significance of our results.

5. Conclusions

All the relevant data about the PK parameters of labetalol have been comprehended in
this review. The effect of enzymes, food, chronic liver diseases, and chronic kidney disease
on Cmax, Tmax, AUC, and bioavailability have been demonstrated in this review. These
results will ultimately help in dose adjustment in patients with chronic liver diseases and
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chronic kidney disease. Most importantly, the data obtained from this review helped in the
development of the PBPK model. The presented model has successfully explained the PK
of labetalol after IV and oral administration in healthy and diseased individuals. Moreover,
the model is well evaluated by the incorporation of physiological changes occurring in
liver and kidney patients in the drug-disease model.
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