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Abstract: Photodynamic therapy has the potential to be a new and effective cancer treatment.
Even if in vitro and in vivo research show promise, the molecular mechanism remains unclear.
In this study, molecular docking simulations predict the binding affinity of the 5,10,15,20-tetrakis(4′-
sulfonatophenyl)-porphyrin tetraammonium photosensitizer on several potential targets in photo-
dynamic treatment. Our results indicate that this photosensitizer binds to several receptor targets,
including B-cell lymphoma 2 (BCL-2) and other related proteins BCL-xL, MCL-1, or A1. The binding
affinity of the porphyrin derivative with human serum albumin was determined using UV–vis
absorption spectroscopy and predicted using molecular docking. We conclude that the studied por-
phyrin photosensitizer binds to human serum albumin and may inhibit the cancer cell line through its
interactions with HIS and MET AA residues from BCL-2, MCL-1, and β-catenin receptors or through
its low estimated free energy of binding when interacting with A1 and BCL-B receptors.

Keywords: molecular docking; in silico; cancer therapy; cancer protein target; BCL-2 family protein;
PDT; HSA; binding affinity; UV–vis absorption spectroscopy

1. Introduction

Cancer is the leading cause of death around the globe. In 2020, 324,635 new cases of
melanoma were recorded, and 57,043 fatalities were due to the disease [1]. Melanoma is
a type of skin cancer with high multidrug resistance, risk of mortality, and recurrence [2].
Surgery, radiation, chemotherapy, and biological therapy are the standard treatments for
melanoma [2].

Photodynamic therapy (PDT) is a potential cancer treatment option that is effective
even for melanoma patients. This process requires the use of a visible light source to
photoactivate a sensitizer. The sensitizer must be safe, and its toxicity must be achieved
only when it is photo-activated due to generation of reactive oxygen species (ROS) such as
singlet oxygen. Photodamage to proteins can occur in the photosensitizer (PS) region due
to high levels of ROS resulting in tumour cell death [3–5].

Porphyrin-based photosensitizers are among the most widely studied compounds
used in PDT [6–8].

In a prior study, we concluded that 5,10,15,20-tetrakis(4’-sulfonatophenyl)-porphyrin
tetraammonium (TPPS) is an effective photosensitiser [9]. We explored the mechanisms
that cause apoptosis in the Mel-Juso melanoma cell line after incubation with TPPS-
functionalized iron oxide nanoparticles (γ-Fe2O3 NPs TPPS) followed by irradiation, and
we came to the following conclusions:
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First, caspase-3 is active, and pro-caspase-3 levels are reduced, implying that apoptosis
is being initiated. However, with the low increased levels of Bcl-2-associated X protein
(Bax), caspase-3 activation is most likely achieved through multiple pathways.

Second, the decrease in mini-chromosome maintenance complex component 2 (MCM-
2) protein levels may lead to melanoma cell death, decreased tumour development, and
cell adhesion.

Third, the decrease in β-catenin protein levels may contribute to apoptosis induction,
proliferation suppression, and cell adhesion reduction [9].

Generation of ROS for γ-Fe2O3 NPs TPPS is higher than in the case of TPPS alone due
to the capacity of NPs to transport the photosensitizer intracellular [9].

Cell death occurs via apoptosis when PS is found in the mitochondria, necrosis when
PS is found in the cell membrane, and autophagy when PS is found in the lysosomes [10].
When the PS is found in mitochondria, lysosomes, or the endoplasmic reticulum, it causes
apoptosis by oxidative stress [11].

Still, the apoptotic molecular targets in PDT are yet unclear; however, some studies
identify possible pathways [6,12]. The short biological half-life and narrow area of impact
in live cells yield singlet oxygen, indicating its intense reactivity toward proteins, and other
biochemical substrates [13]. Because singlet oxygen has a short migration time, we know
that the sensitizers should be close to the target [14].

Given the high-rate constants for reactions with ROS, several proteins are viewed as
one of the main PDT targets [15]. BCL-2 family proteins permeabilize the outer membrane of
the mitochondria to regulate cell death [16,17]. Tumour necrosis factor receptor superfamily
member 6 (Fas) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB)
are proteins identified as possible targets in PDT that are linked to apoptosis [18].

The Eukaryotic Translation Initiation Factor 2 Alpha Kinase 1 (EIF2AK1) enzyme
mediates the phosphorylation of eukaryotic Translation Initiation Factor 2A (eIF2α), which
causes stress to the endoplasmic reticulum and leads to apoptosis upstream of the mito-
chondrial pathway [19]. Abnormal levels of β-catenin are linked to various malignancies,
including melanoma. β-catenin inhibition may slow tumour growth [9,20]. Fas is a cell
surface death receptor involved in PDT; some studies indicate that this receptor is overex-
pressed after PDT [11,21].

This study aims to elucidate the mechanism of action, the pharmacogenomics, and phar-
macokinetics of TPPS as a photosensitizer that may be used in melanoma cancer treatment.

Since the specific mechanism of action is yet unknown, using our in silico exper-
tise [22–24], we predicted the pharmacodynamic profile of the TPPS. Consequently, using
molecular docking, we calculated the interaction of TPPS with the BCL-2 protein family,
namely the β-catenin, NFKB, Fas, and EIF2AK1 proteins.

Kessel and Castelli’s in vitro study identified BCL-2 as the target of 9-capronyloxy-
tetrakis (methyoxyethyl) porphycene (CPO) that induces a rapid apoptotic response [17].
Therefore, we compare the TPPS activity on the BCL-2 receptor with the one of CPO.

Moreover, we used Swiss Similarity, a web service that conducts a ligand-based virtual
screening of multiple libraries of small compounds to identify an approved clinical drug
with the highest similarity with TPPS [25]. The interaction of the drug identified with Swiss
Similarity and the protein targeted in this study was also computed and compared with
the molecular docking results of TPPS.

The predominant plasma protein in humans is serum albumin (HSA). HSA is a single-
chain protein with three homologous domains separated into two subdomains (A and B).
HSA is an important drug transporter in plasma that may bind both endogenous and exoge-
nous compounds [26]. The interaction of TPPS with HSA is critical for pharmacokinetics
and in vivo effectiveness. Consequently, we also predicted the interactions between TPPS
and HSA using molecular docking simulations. Furthermore, using UV–vis absorption
spectroscopy, we determined the binding affinity of TPPS when it interacts with HSA.

Moreover, the pharmacogenomics and absorption, distribution, metabolism, excretion,
and toxicity (ADMET) of TPPS is calculated with ADMETlab 2.0 web service [27]. Super-
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CYPsPred web tool was also used to predict the cytochrome activity of TPPS [28]. Other
possible targets of TPPS were predicted using the SuperPred web service [29].

To summarise, this study intended to predict the pharmacodynamics of TPPS when
interacting with cancer therapy protein targets and to evaluate its interaction with HSA us-
ing molecular docking and UV–vis absorption spectroscopy. The TPPS pharmacogenomics
and pharmacokinetics were also predicted and compared with the computed values of
CPO and clinically used PS temoporfin.

2. Materials and Methods
2.1. Materials

TPPS was purchased from PorphyChem SAS, Dijon, France, and its purity was >95%.
HSA (human serum albumin) was purchased from Sigma Aldrich (St. Louis, MI, USA),
purity > 96%. Stock solutions of the two compounds were prepared in ultrapure water at
4 × 10−6 M for TPPS and 3 × 10−6 M for HSA. Seven samples were prepared containing a
fixed concentration of TPPS (1.5 × 10−6 M) and varying the HSA concentrations from 0 to
2 × 10−6 M. After preparation, the samples were left for 2.5 h at room temperature (24 ◦C),
in dark, before analysis.

2.2. Molecular Target Selection and Similarity Virtual Screening

To predict the mechanism of action of TPPS, we selected proteins from the BCL-2
family and other proteins involved in PDT or cancer therapy (Table 1).

We have used the 3D structures of proteins from the RCSB Protein Data Bank (PDB) [30]
(Table 1) and prepared them for molecular docking analysis. Where the experimentally
obtained protein structures were not available, we used Alpha-Fold to predict the struc-
tures [31,32].

All small molecules were 3D-protonated and energy-minimised using forcefield MMFF94X
at a 0.01 gradient and Gasteiger (PEOE) partial charges from MOE software [33–36].

Since the four cations (NH4
+) of the 5,10,15,20-tetrakis(4’-sulfonatophenyl)-porphyrin

tetraammonium considerably cumber our molecular docking model, we did not consider
them in simulations, using instead the anionic compound. The role of NH4

+ in the por-
phyrin structure is to improve solubility and not influence the binding interaction.

The Swiss Similarity ligand-based virtual screening was used to predict the clinically
used compound with the highest TPPS similarity.

For the Autodock simulations, we converted the small molecules into the .pdbqt
format using Open Babel [37].

2.3. Pharmacodynamic, Pharmacogenomic, and Pharmacokinetic Predictions

For the pharmacokinetic predictions, we used ADMETlab 2.0, a web-based application
for calculating ADMET properties in an accurate and thorough manner [27].

We used the SuperCYPsPred web tool to predict cytochrome activity. This web server
uses both MACCS and Morgan fingerprints [28].

To predict the possible targets of TPPS, we used the SuperPred web service that corre-
lates chemical similarities between molecules with molecular targets and treatments [29].
The results were compared with the predictions made for temoporfin.

For the predictions, we used the SMILES format of TPPS, CPO, and
temoporfin compounds.

2.4. Molecular Docking

We used Autodock 4.2.6 software for the docking studies [38]. For the predictions,
the grid box was selected to contain the whole protein to perform blind docking; the grid
points spacing, the grid point dimension, and the Cartesian coordinates of the central grid
point of the map are different for each protein (Table 1).

We used genetic algorithm (GA) search parameters (with which we generated 100 con-
firmations for each protein–ligand interaction), and the file was saved as Lamarckian [39].
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Table 1. Selected targets in PDT used in molecular docking approach, protein databank code (PDB),
the grid points spacing (GPS), chain used, grid points in dimension (GPD), and coordinates of central
grid point of the map (GPM) for each model.

Target Identification Code
GPS Blind Molecular Docking

GPD (x y z) GPM (x y z)

BCL-2 PDB 2XA0 [40] 0.375 Å 112; 106; 96 33.111, −12.383, −15.527
BCL-B PDB 4B4S [41] 0.375 Å 112; 126; 116 −11.425, 20.511, 7.450

BCL-xL PDB 3WIZ [42] 0.519 Å 126; 100; 126 40.398, 2.687, −22.529
MCL-1 PDB 3WIX [42] 0.375 Å 108; 122; 98 −9.969, 2.268, −48.521

A1 PDB 5UUL [43] 0.375 Å 116; 124; 102 −9.348, 5.397, −5.604
BCL-W PDB 2Y6W [44] 0.419 Å 100; 124; 92 −22.718, 9.756, −4.104
β-catenin PDB 1LUJ [45] 0.853 Å 78; 70; 126 23.902, 31.829, 33.523

NFKB PDB 1SVC [46] 0.536 Å 126; 126; 126 40.385, 8.741, 38.710
Fas PDB 1DDF [47] 0.375 Å 126; 94; 84 1.736, −1.315, 2.392

EIF2AK1 AF-Q9BQI3-F1 [31,32] 0.525 Å 126; 126; 126 11.643, −1.149, −3.074
HSA (blind) PDB 1N5U [48] 0.658 Å 126; 78; 126 24.950, 5.672, 19.674

2.5. UV–Vis Absorption Spectroscopy

UV–vis absorption spectra of samples were recorded with a Lambda 950 UV–Vis-NIR
spectrophotometer (PerkinElmer, Inc., Waltham, MA, USA), between 200 and 600 nm, in
10 mm quartz cuvettes.

3. Results
3.1. Small Molecules and Similarity Report

Swiss Similarity virtual screening revealed that temoporfin (Table 2) has the highest
similarity to TPPS and is already approved for head and neck squamous cell carcinoma
treatment [49]. Temoporfin has a similarity score of 0.668 with TPPS. Therefore, we also
predicted the interactions with our selected protein targets.

Table 2. The small compounds used in this article, the SMILES code, and their 2D structure.

Compound Name and
SMILES Code 2D Structure

TPPS:
O=S(=O)([O-])c9ccc(c7c1ccc(n1)c(c2ccc(S(=O)(=O)[O-
])cc2)c3ccc([nH]3)c(c4ccc(S(=O)(=O)[O-
])cc4)c5ccc(n5)c(c6ccc(S(=O)(=O)[O-])cc6)c8ccc7[nH]8)cc9
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The 2D structures of TPPS, temoporfin, and CPO and the SMILES codes of those
compounds are presented in Table 2.

3.2. Pharmacodynamic, Pharmacogenomic, and Pharmacokinetic Predictions

We predicted the interaction of the cytochromes CYP1A2, CYP2C19, CYP2C9, CYP2D6,
and CYP3A4 with TPPS, temoporfin, and CPO using the SuperCYPsPred web service [28]
(Table 3).

As shown in Table 3, according to MACCS fingerprint predictions, TPPS and temo-
porfin are inactive on CYP1A2, CYP2C19, CYP2D6, and CYP3A4 and active on CYP2C9
according to MACCS fingerprint but inactive on all CYPs according to Morgan fingerprint
(Table 3). According to both fingerprints, CPO is inactive on CYP1A2, CYP2C19, CYP2D6,
CYP3A4, and CYP2C9.
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Table 3. TPPS, temoporfin, and CPO predictions (pred) and probabilities (prob) to be inactive or
active compounds on CYPs targets using MACCS and Morgan fingerprints [28].

Target Fingerprint
TPPS Temoporfin CPO

Pred Prob Pred Prob Pred Prob

CYP1A2 MACCS Inactive 0.799 inactive 0.599 Inactive 0.771
CYP1A2 Morgan Inactive 0.563 inactive 0.531 Inactive 0.768
CYP2C19 MACCS Inactive 0.698 inactive 0.547 Inactive 0.779
CYP2C19 Morgan Inactive 0.829 inactive 0.847 Inactive 0.729
CYP2C9 MACCS Active 0.628 active 0.571 Inactive 0.607
CYP2C9 Morgan Inactive 0.6 inactive 0.673 Inactive 0.782
CYP2D6 MACCS Inactive 0.762 inactive 0.612 Inactive 0.59
CYP2D6 Morgan Inactive 0.802 inactive 0.509 Inactive 0.548
CYP3A4 MACCS Inactive 0.737 inactive 0.598 Inactive 0.698
CYP3A4 Morgan Inactive 0.711 inactive 0.623 Inactive 0.504

The target predictions computed with SuperPred [29] show that both temoporfin and
TPPS may interact with several targets. In this study, we present only the therapeutic
targets relevant to melanoma cancer therapy (Table 4). The temoporfin target with the
highest probability (96.37%) is the DNA (apurinic or apyrimidinic site) lyase; as shown in
Table 4, glioma, melanoma, ocular cancer, and solid tumours are the therapeutic indications
(Table 4). The TPPS target with the highest probability (95%) is the thymidylate synthase as
shown in Table 4, and gastric adenocarcinoma is the therapeutic indication (Table 4).

ADMET predictions were also made for TPPS compared with temoporfin and CPO
porphyrin derivatives using ADMETlab 2.0 and are presented in Table 5 [27].

According to the predictions, none of the medications had a high possibility of inhibit-
ing hERG and binding to the androgen receptor ligand-binding domain or peroxisome
proliferator-activated receptor gamma (Table 5). TPPS, CPO, and temoporfin produce mito-
chondrial membrane potential, bind P53 and the oestrogen receptor ligand-binding domain,
and cause respiratory toxicity. TPPS but not CPO or temoporfin induces hepatotoxicity
in humans.

CPO and temoporfin have a high probability of producing drug-induced liver injury
and binding to the aryl hydrocarbon receptor, whereas TPPS’s probability is low. TPPS
and temoporfin have a low carcinogenicity risk, whereas CPO has a high risk. For TPPS
and CPO, the heat-shock factor response element is low, while for temoporfin, it is high.
The results also show that porphyrin derivatives do not violate the acute-toxicity criteria
(Table 5).

Table 4. Temoporfin and TPPS predicted targets and their therapeutic indications [29].

Temoporfin

Target Name Therapeutic Indication Prob Accuracy

DNA (apurinic or apyrimidinic site) lyase Glioma, melanoma, ocular cancer, solid tumour/cancer 96.37% 91.11%
Beta-1 adrenergic receptor Melanoma 83.6% 95.56%

C-X-C chemokine receptor type 4

Acute lymphoblastic leukaemia, acute myeloid leukaemia,
B-cell chronic lymphocytic leukaemia, breast cancer,
haematological malignancy, melanoma, Merkel cell
carcinoma, multiple myeloma, myelodysplastic syndrome,
non-Hodgkin’s lymphoma pancreatic cancer, renal cell
carcinoma, sarcoma solid tumour/cancer

76.64% 93.1%

Galectin-3 Melanoma 73.88% 96.9%
Toll-like receptor 8 Melanoma, solid tumour/cancer 55.13% 96.25%
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Table 4. Cont.

TPPS

Target Name Therapeutic indication Prob Accuracy

Telomerase reverse transcriptase

Acute myeloid leukaemia, brain cancer, breast cancer,
head and neck cancer, liver cancer, melanoma, multiple
myeloma, non-small-cell lung cancer, ovarian cancer,
pancreatic cancer, prostate cancer, solid tumour/cancer

79% 90%

C-X-C chemokine receptor type 4

Acute lymphoblastic leukaemia, acute myeloid leukaemia,
B-cell chronic lymphocytic leukaemia, breast cancer,
haematological malignancy, melanoma, Merkel cell
carcinoma, multiple myeloma, myelodysplastic syndrome,
non-Hodgkin’s lymphoma pancreatic cancer, renal cell
carcinoma, sarcoma solid tumour/cancer

74% 93.1%

Histone deacetylase 1

Acute myeloid leukaemia, breast cancer, colorectal cancer,
cutaneous T-cell lymphoma, diffuse large B-cell
lymphoma, hepatocellular carcinoma, leukaemia,
melanoma, Merkel cell carcinoma, multiple myeloma,
non-small-cell lung cancer, ovarian cancer, peripheral
T-cell lymphoma, renal cell carcinoma, solid
tumour/cancer

60% 96%

Galectin-3 Melanoma 55% 96.9%

Table 5. The ADMET prediction for TPPS, temoporfin, and CPO. The prediction probability is
represented as a score between 0 and 1, where 0 is the lowest chance (“−” represent a low probability
and “+” a high probability) [27].

Prediction Probability TPPS Temoporfin CPO

hERG blockers 0.3–0.5 (−) 0.3–0.5 (−) 0.1–0.3 (−−)
Human hepatotoxicity 0.9–1.0 (+++) 0.1–0.3 (−−) 0.3–0.5 (−)

Drug-induced liver injury 0.1–0.3 (−−) 0.9–1.0 (+++) 0.9–1.0 (+++)
Carcinogenicity 0.3–0.5 (−) 0–0.1 (−−−) 0.9–1.0 (+++)

Respiratory toxicity 0.9–1.0 (+++) 0.9–1.0 (+++) 0.9–1.0 (+++)
Androgen receptor ligand-binding domain 0–0.1 (−−−) 0.1–0.3 (−−) 0–0.1 (−−−)

Aryl hydrocarbon receptor 0.3–0.5 (−) 0.7–0.9 (++) 0.9–1.0 (+++)
Oestrogen receptor ligand-binding domain 0.7–0.9 (++) 0.9–1.0 (+++) 0.7–0.9 (++)

Peroxisome proliferator-activated receptor gamma 0–0.1 (−−−) 0.3–0.5 (−) 0–0.1 (−−−)
Heat-shock factor response element 0–0.1 (−−−) 0.7–0.9 (++) 0–0.1 (−−−)
Mitochondrial membrane potential 0.7–0.9 (++) 0.9–1.0 (+++) 0.5–0.7 (+)

P53 0.5–0.7 (+) 0.9–1.0 (+++) 0.7–0.9 (+++)
Acute-toxicity rule 0 alert 0 alert 0 alert

3.3. Molecular Docking

The lower the estimated free energy of binding (EFEB) (kcal/mol) or the estimated
inhibition constant (KI), the more likely the ligand will bind to that target [50]. We used
Autodock 4.2.6 software to predict the EFEB and the inhibitory constant (KI) of TPPS when
interacting with biological target proteins BCL-2, BCL-B, BCL-xL, MCL-1, A1, BCL-W,
β-catenin, NFKB, Fas, and EIF2AK1. Except for EIF2AK1, where we used the Alpha Fold
predicted model, we used the crystal structures imported from PDB (Table 6).

Our predictions show that TPPS had the lowest EFEB when interacting with A1
(−14.99 kcal/mol) and BCL-B (−11.49 kcal/mol), according to the Autodock prediction
(Table 6), (Figure 1). However, in general, TPPS has a good predicted interaction with the
proteins studied given by the values of EFEB lower than −6 kcal/mol [39] as shown in
Table 6.
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Table 6. Biological target, the lowest EFEB, and KI for TPPS and the clinically used compound,
temoporfin, predicted using Autodock software.

Target TPPS
EFEB (kcal/mol)

TPPS
KI (nM)

Temoporfin
EFEB (kcal/mol)

Temoporfin
KI (nM)

BCL-2 −7.90 1610 −10.26 30.08
BCL-B −11.49 3.76 −10.83 11.55

BCL-xL −8.81 349.53 −9.19 184.88
MCl-1 −9.95 51.27 −9.23 171.65

A1 −14.99 0.01023 −10.63 16.05
BCL-W −9.05 233.04 −9.92 53.25
β-catenin −9.81 64.39 −7.35 4070

NFKB −10.92 9.78 −9.84 61.66
Fas −7.69 2290 −10.20 33.26

EIF2AK1 −10.99 8.77 −11.44 4.13
HSA −8.35 761.92 -

The Autodock simulation shows that the CPO photosensitizer had the lowest EFEB
of −10.22 kcal/mol when interacting with the BCL-2 receptor. This value is higher than
the predicted value of TPPS (Table 6). Yet, if we compare the results obtained using the
SwissDock webserver, CPO has the lowest EFEB of −8.94 kcal/mol, and TPPS has the
lowest EFEB of −10.41 kcal/mol (Table 6).

3.4. Determination of the Binding Affinity through UV–Vis Absorption Spectroscopy

The recorded UV–vis absorption spectra of the samples (Figure 2) show how the
spectral properties change with increasing the concentration of HSA (HSA), while the
concentration of TPPS (TPPS) was kept unmodified.

The UV–vis absorption spectrum of TPPS presents an absorption band with maximum
at 413 nm (the Soret band) and the Q bands, at higher wavelengths, with maxima at 518 nm,
555 nm, and 583 nm. The positioning of the Soret band of TPPS at 413 nm indicates that, at
this concentration, the solution contains only TPPS monomers.

HSA has one absorption band with maximum at 277 nm and has no absorbance in the
wavelength domain where the peaks of TPPS appear.

Figure 2 shows that the increase of the concentration of HSA in the samples leads to a
bathochromic shift of the peak from 413 nm to 420 nm. A hypochromic effect is observed
for the HSA concentration range 0–0.66 µM, but for HSA between 0.66 µM and 2 µM, the
absorption peak undergoes a hyperchromic effect.

These spectral modifications suggest that the two compounds bind, forming a complex.
The docking simulation indicates that the complex is formed when TPPS binds to HSA
close to Sudlow’s site II.

The strength of an interaction between two compounds, namely a ligand and a receptor,
is described by the binding affinity, or Gibbs free energy of binding, and it is linked to the
dissociation constant (KD) [51,52].

In order to determine the binding affinity of TPPS with HSA, we used the Scatchard
plot that allows the calculation of the dissociation constant [53]:

n TPPS + HSA ⇔ Complex (1)

KD =
[HSA]× [TPPS]n

[Complex]
(2)

[TPPSb]

[TPPSf]× [HSA]
=

n
KD
− [TPPSb]

[HSA]× KD
(3)

where n are the number of the binding sites, [TPPSb] represents the concentration of TPPS
bound molecules, and [TPPSf] is the concentration of TPPS free molecules. [TPPSf] and
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[TPPSb] are proportional to the absorbances displayed in Figure 2 for the absorption bands
at 413 nm and at 420 nm, respectively.
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Figure 1. Two-dimensional structures of TPPS and amino acid (AA) residues from its binding site
when interacting with (A) BCL-B receptor and (B) A1 receptor.

Equation (3) allows us to determine KD by plotting [TPPSb]/([TPPSf] × [HSA]) vs.
[TPPSb]/[HSA] (Figure 3).

The straight-line fitting of the data in Figure 3 indicate one biding site. If the data had
been described by two linear parts on the Scatchard plot, then two binding sites would
have been involved [53].

Considering the Equation (3), we determined from Figure 3 KD as the inverse value of
the slope, obtaining a value of 707 nM.

In this case, KD is equivalent to the KI, which is estimated through in silico methods.
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4. Discussion

TPPS and temoporfin (the compound with the highest predicted similarity to TPPS
according to the Swiss Similarity report) have similar pharmacogenomic profiles. Both
compounds interact similarly with the cytochromes CYP1A2, CYP2C19, CYP2C9, CYP2D6,
and CYP3A4, which are strongly involved in the metabolism of drugs (Table 3).

The target predictions indicate that TPPS may interact with four melanoma targets:
telomerase reverse transcriptase, C-X-C chemokine receptor type 4, histone deacetylase
1, and galectin-3 (Table 4). The highest probability target is represented by telomerase
reverse transcriptase (79%) with a model accuracy of 90%. Telomeres are critical for genetic
integrity and decrease with age. The length of telomeres is related to many disorders,
including melanoma [54]. Moreover, mutations in the telomerase reverse transcriptase are
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more common in sun-exposed melanoma than in non-exposed melanoma, and they tend to
co-occur with other common melanoma mutations such as BRAF and CDKN2A (Cyclin
Dependent Kinase Inhibitor 2A) [55]. According to SuperPred, temoporfin may interact
with five melanoma targets: DNA (apurinic or apyrimidinic site) lyase, beta-1 adrenergic
receptor, C-X-C chemokine receptor type 4, galectin-3, and toll-like receptor 8.

ADMET predictions indicate that except for human hepatotoxicity, TPPS is well-
tolerated, similar to or better than temoporfin or CPO. TPPS has a low chance of drug-
induced liver injury and carcinogenicity, whereas CPO presents a very high (+++) probabil-
ity for both and temoporfin for drug-induced liver injury (Table 5).

In PDT, protein oxidation occurs most frequently at CYS, MET, TYR, HIS, and TRP AA
residues due to their affinity for singlet oxygen. CYS and MET are oxidized to sulfoxides,
HIS gives a thermally unstable endoperoxide, TRP converts to N’-formylkynurenine, and
phenolic oxidative coupling of TYR is probable [56].

Molecular docking studies are often used to predict ligand–target interactions in
PDT-related studies [57].

Based on our molecular docking findings, we investigated the interaction between
the AA residues and TPPS. In addition, we compared the interactions with those of the
clinically used compound temoporfin and CPO. MCL-1 overexpression is involved in
delaying various stimuli that induce apoptosis and might protect tumour cells from PDT-
induced death. MCL-1 in combination with BCL-XL represents a promising target in
melanoma. In both in vivo and in vitro tests, downregulation of MCL-1 is correlated with
higher efficiency of the photosensitizer in PDT-induced apoptosis [58–61]. In the MCL-1
receptor, TPPS forms several interactions with HIS252 (Figure 4B). Between HIS252 AA and
TPPS are several interactions including a conventional H-bond and an attractive charge
with O atoms. HIS252 also forms a Pi-cation interaction and a Pi–sulphur interaction
(Figure 4B). At the same receptor, temoporfin binds closely to the TPPS predicted binding
sites in the run with the lowest-predicted binding energy (−9.23 kcal/mol). Temoporfin
forms H-bond interactions with THR269, SER255, and ARG248 AA residues. Furthermore,
temoporfin presents a van der Waals interaction with HIS252 AA residue (Figure 4A).

In the β-catenin receptor, TPPS forms a Pi–Sigma and a Pi–Pi T-shaped interaction
with HIS265 AA residue (Figure 5B). In this receptor, MET271 forms a conventional H-bond
interaction with the TPPS O atom (Figure 5B). Temoporfin interacts with the β-catenin
receptor in a different binding site and forms an H-bond interaction with AA residue
TYR489 (Figure 5A).

In the BCL-2 receptor, TPPS forms a sulphur–X interaction with the MET115 AA
residue (Figure 6B). Methionine is an AA that contains sulphur and is easily oxidized [62].
Moreover, in this receptor, HIS120 forms an attractive charge interaction with the O atom
(Figure 6B). Temoporfin interacts with the BCL-2 receptor close to the TPPS binding site and
forms similar interactions with LEU137 and VAL133 AA residues (Figure 6A). Temoporfin
forms a Pi–alkyl interaction with MET115 AA residue.

Our molecular docking studies indicate that TPPS has the lowest binding affinity
when interacting with BCL-2. Xue et al. study showed that BCL-2 protein is destroyed by a
phthalocyanine photosensitizer during PDT [63]. Moreover, the involvement of BCL-2 and
Bax in PDT-mediated cell death was underlined by Srivastava et al. [64] and Kim et al. [65].

Donohoe et al. [66]’s study indicated that the degradation of anti-apoptotic proteins,
including BCL-2, is linked to the accumulation of photosensitizers in mitochondria. Ac-
cording to the study membrane degradation can be caused by CPO and temoporfin PS [66].
When interacting with the same receptor, CPO is also docked close to TPPS predicted sites
(Figure 7). TPPS and CPO have interactions with eight AA: TYR108, MET115, GLN118,
VAL133, GLU136, LEU137, ALA149, and PHE153 (Figures 6B and 7). Moreover, all the
porphyrin derivatives form interactions with MET115 AA residue: CPO forms a van der
Waals interaction, TPPS a sulphur–X interaction, and temoporfin a Pi–alkyl interaction
(Figures 6B and 7).
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Figure 4. Two-dimensional structures of TPPS, temoporfin, and AA residues from its binding site
when interacting with the MCL-1 receptor. (A) The interaction between temoporfin and MCl-1;
(B) the interaction between HIS252 AA residue and TPPS is highlighted in the right corner. HIS252
produces a 1.93 Å-length H-bond interaction with O, a 5.38 Å-length attractive charge with O, a
4.43 Å-length Pi–sulphur interaction, and a 3.80 Å-length Pi–cation interaction. The distance between
atoms influences the type of chemical interaction.

Since HSA is the primary drug carrier, the interaction between HSA and TPPS was
studied both in silico and experimental by UV–vis absorption spectroscopy. The in silico
evaluation shows that at a temperature of 25 degrees Celsius, the lowest binding affinity
is −8.35 kcal/mol (Table 6), and the estimated KI is 760 nM. This is supported by the
experimental constant (707 nM) determined by Scatchard plot of the spectroscopic data.

The interactions of the AA residues from the predicted binding site show that in
the run with the lowest-predicted binding energy, the TPPS compound is bound close to
Sudlow’s site II (Figure 8).

The interactions between other photosensitizers and HSA have been computed or
experimentally determined in several studies [67–69]. In comparison with our results,
Guevara et al. study showed that three glycosylated photosensitizers bind to HSA close
to Sudlow’s site I and form strong interactions with TRP214 [67]. Zheng et al. predicted
the interaction of tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminium(III)
phthalocyanine photosensitizer with HSA. Their study also showed that the photosensitizer
interacts with TRP214 AA residue [68]. Szafraniec’s study showed that two derivatives
of chlorophyll bind to HAS to Sudlow’s sites I and II [69]. Escobar et al. predicted and
determined a high interaction of tetracarboxyphenyl porphyrin with bovine serum albumin
also near the Sudlow’s site II, similar to our study [70].
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Figure 5. (A) Two-dimensional structure of temoporfin and AA residues from its binding site when
interacting with the β-catenin receptor. (B) Two-dimensional structure of TPPS and AA residues from
its binding site. The interaction between HIS265 and MET271 AA residues and TPPS is highlighted
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H-bond interaction with the TPPS O atom. The distance between atoms influences the type of
chemical interaction.
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5. Conclusions

When compared to temoporfin and CPO, TPPS shows that it is a well-tolerated
molecule with low or equivalent toxicity and a similar pharmacogenomic profile. TPPS
has low estimated binding energies when interacting with our selected protein targets.
The lowest-predicted binding energies of TPPS are obtained when interacting with A1
and BCL-B receptors. When interacting with BCL-2, MCL-1, and β-catenin, TPPS forms
interactions with MET and HIS AA residues. TPPS showed a binding affinity that indicates
biological activity on HSA. The similarity between experimental and computed KI indicate
that TPPS may bind to HSA near Sudlow’s site II, as predicted through molecular docking.
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tion, data formal analysis, and writing—review and editing; A.S., conceptualization, methodology,
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