Halophyte Plants as Potential Sources of Anticancer Agents: A Comprehensive Review
Abstract
:1. Introduction
2. Anticancer Activity of Halophytes
2.1. Acanthaceae Family
2.2. Aizoaceae Family
2.3. Amaranthaceae Family
2.4. Apiaceae Family
2.5. Asteraceae Family
2.6. Brassicaceae Family
2.7. Convolvulaceae Family
2.8. Cymodoceaceae Family
2.9. Cyperaceae Family
2.10. Fabaceae Family
2.11. Juncaceae Family
2.12. Malvaceae Family
2.13. Myrtaceae Family
2.14. Plantaginaceae Family
2.15. Plumbaginaceae Family
2.16. Poaceae Family
2.17. Portulacaceae Family
2.18. Rhizophoraceae Family
2.19. Solanaceae Family
2.20. Tamaricaceae Family
3. Conclusions and Future Perspectives
Family | Species | Organs | Extract | Cell Line | IC50 | Proposed Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
Acanthaceae | Acanthus ebracteatus Vahl | Shoots | Protein hydrolysate | A431 cells (skin carcinoma) | 425.9 ng/mL | [34] | |
Acanthus ilicifolius L. | Leaves and roots | Ethyl acetate | MCF7 cells (breast carcinoma) PA1 cells (ovarian carcinoma) | 24.22 μg/mL (leaf) 29.20 μg/mL (root); 15.74 μg/mL (leaf) 20.00 μg/mL (root) | nd | [33] | |
Leaves | Ethanol | HepG2 cells (hepatocellular carcinoma) | 100 μg/mL | Apoptosis induction (DNA damage) | [31] | ||
Roots | Water | HepG2 cells (hepatocellular carcinoma) | 39.76 μg/mL | Apoptosis induction (DNA damage) | [32] | ||
Avicennia alba Blume | Leaves | Methanol | MCF7 and HeLa cells (breast and cervical carcinomas) | 57.02 and 44.30 µg/mL | Reduction in cell size and cell detachment | [36] | |
Leaves | Chloroform/methanol | WiDr cells (human colon carcinoma) | 173.78 µg/mL | Apoptosis induction (cell arrest in the G0–G1 phase) | [37] | ||
Avicennia marina (Forssk.) Vierh | Leaves | Methanol | HeLa cells (cervical carcinoma) | 107 µg/mL | nd | [40] | |
Leaves | Methanol extract and fractions | MDA-MB-231 cells (breast carcinoma) HEK cells (human embryonic kidney) | MDA-MB-231 cells: Crude extract 250 µg/mL Active faction (luteonin) 28 µg/mL (97 µM) | Luteonin: apoptosis induction (DNA fragmentation, decreased expression of BCL2, decreased expression of TP53). | [203] | ||
Fruits | Isolated compounds from ethanol/butanol fractions of ethanol extract | GSC-3# and GSC-18# cells (human glioma stem cell lines) | 6′-O-(n-butanol) ilekudinoside B ester: 12.21 µg/mL (14 µM) for GSC-3# and 5.23 µg/mL (6 µM) for GSC-18# | nd | [204] | ||
Leaves and stems | Ethyl acetate | MCF-7 cells (estrogen positive breast cancer) | na | Apoptosis induction (ROS production, disruption of Δψm), decrease in caspase-7 protein levels); autophagy | [39] | ||
Leaves and seeds | Water, ethanol, methanol, ethyl acetate extracts, and fractions from the latter | AU565, MDA-MB-231, and BT483 cells (breast cancer) HepG2 and Huh7 cells (liver) NIH3T3 cells (nontumoral) | Fraction 2-5: 0.75 μg/mL on AU565 cells Fraction 3-2-9: 2.1 μg/mL on AU565 cells | Apoptosis induction (DNA fragmentation, cell nucleus condensation and fragmentation, decreased PARP and caspase-8, increased caspase 3) | [38] | ||
Leaves | Ethyl acetate | Xenograft MDA-MB-231 tumor growth in nude mice | nd | Suppression of tumor growth | [38] | ||
Aizoaceae | Mesembryanthemum crystallinum L. | Leaves | Ethanol extract, ethyl acetate and butanol fractions | HCT116 cells (colon carcinoma) | na | Ethyl acetate and butanol fractions: reduction of ROS, apoptosis induction). Butanol fraction: cell-cycle arrest at G2/M phase | [44] |
Sesuvium portulacastrum L. | Whole plant | Methanol, acetone, hexane, and diethyl-ether | MDA-MB-231 cells (breast carcinoma), IMR-32cells (neuroblastoma), HCT116 cells (colon carcinoma) | Hexane extract: 942.07, 703.40 and 407.87 µg/mL for MDA-MDB-231, IMR32 and HCT116 cells | Apoptosis induction: nuclear condensation, cell shrinkage, of apoptotic bodies | [45] | |
Amaranthaceae | Arthrocnemum indicum Willd. Moq. | Shoots | 80% methanol | Caco-2 cells (colon carcinoma) | na | Decline of DNA synthesis, cell-cycle arrest at the G2/M phase. | [51] |
Atriplex halimus L. | Leaves | Ethanol | HepG2 cells (hepatocellular carcinoma) MCF-7 cells (human breast adenocarcinoma) A549 cells (lung cancer) | HepG2: 54.86 μg/mL MCF-7: 153.6 μg/mL A549: 101.9 μg/mL | Apoptosis induction (expression of TP53, BCL2, and BAX genes) | [54] | |
Chenopodium album L. | Branches and leaves | Petroleum ether | A549 cells (lung carcinoma) | 33.31 µg/mL | Cell-cycle arrest at the G1 phase | [63] | |
Chenopodium ambrosioides L. | Whole plant | Essential oil | MCF7 cells (breast carcinoma) | 18.75, 9.45 and 10.50 µg/mL after 6, 24 and 48 h of incubation | nd | [64] | |
Chenopodium ambrosioides L. | Leaves | Essential oil, ethanol extract, dichloromethane fraction | RAJI cells (lymphoblast) K562 cells (lymphoblast) | Essential oil: 1.0 g/mL; dichloromethane fraction: 34.0 g/mL (RAJI cells) Ethanol extract: 47.0 g/mL (K562 cells) | nd | [65] | |
Chenopodium quinoa Willd. | Seeds | Polysaccharide fraction | SMMC 7721 cells (liver cancer) MCF7 cells (breast carcinoma) L02 and MCF 10A cells (“normal” cell line) | 121.4 μg/mL (24 h), 53.4 μg/mL (48 h) 83.5 μg/mL (24 h), 64.6 μg/mL (48 h) | nd | [66] | |
Salicornia brachiata Roxb | Shoots | Methanol | HepG2 cells (hepatocellular carcinoma) | 267.84 μg/mL | Modification of cellular morphology | [205] | |
Salicornia europaea L. | Leaves | Ethyl acetate and methanol | MCF7 cells (breast carcinoma) | 97.9 and 117.1 μg/mL | nd | [68] | |
Suaeda fruticosa (L.) Forssk | Leaves | Hexane | HCT116 cells (colon carcinoma) HepG2 cells (hepatocellular carcinoma), and MCF7 cells (breast carcinoma) | 17.2 μg/mL 33 μg/mL 28.1 μg/mL | Apoptosis induction, cell-cycle arrest at the G0–G1 phase, chromatin condensation, membrane blebbing | [74] | |
Suaeda fruticosa (L.) Forssk | Shoots | Hexane, dichloromethane, methanol, and water | A549, DLD-1, Caco-2 and HT-29 cells (lung and colon carcinoma) | Hexane extract: 49, 10, 140 and 12 µg/mL | nd | [80] | |
Suaeda monoica Forssk | Whole plant | Ethanol, methanol, acetone, and diethyl ether | MDA-MB-231 cells (breast carcinoma) | Ethanol: 172.38 µg/mL; methanol: 148.77 µg/mL; acetone: 185.56 µg/mL; diethyl ether: 60.18 µg/mL | nd | [206] | |
Suaeda palaestina Eig Zohary | Shoots | Dichloromethane | A549 cells (lung carcinoma) HepG2 cells (hepatocellular carcinoma) | 34.82 µg/mL 30.76 µg/mL | nd | [207] | |
Suaeda salsa L. | Shoots | Acidic polysaccharide (molecular weight = 53.8 kDa; composition: mannose, rhamnose, glucuronic acid, galacturonic acid, galactose and xylose in a molar ratio of 0.6: 8.0: 1.0: 83.6: 5.0: 7.2). | MCF7 and MCF-10A cells (human breast carcinoma) | na | Apoptosis induction (reduction of Δψm, increase in the levels of BAX, cytochrome C, caspase-3 and caspase-9, decrease in the level of Bcl-2 | [208] | |
Apiaceae | Crithmum maritimum L. | Whole plant | Hexane, ethyl acetate, methanol, ethanol | Huh7 and HepG2 cells (hepatocellular carcinoma) | na | Ethyl acetate extract: cell-cycle arrest at the G0/G1 phase after 24 h of incubation and in the G2/M phase after 48 h; increase in necrotic and apoptotic cells | [85] |
Eryngium maritimum L. | Shoots and roots | Water | HepG2 cells (human hepatocellular carcinoma) Hep2 cells (human laryngeal epidermoid U138-MG cells (human glioma) Vero cells (African green monkey kidney) | Shoots: 32.4 µg/mL; roots: 35.0 µg/mL Shoots: 50 µg/mL; roots: 30.3 µg/mL Shoots: 32.9 µg/mL; roots: 16.3 µg/mL | nd | [70] | |
Asteraceae | Achillea millefolium L. | Shoots | Methanol extract combined with bleomycin | DU145 cells (prostate carcinoma) and HFFF2 cells (human non-malignant fibroblasts) | nd | nd | [88] |
Aerial parts | Petroleum ether, ethyl acetate, methanol, water | K562 cells (human myelogenous leukemia), HeLa cells (human cervical carcinoma) MCF7 cells (human breast carcinoma) A549 cells (human non-small cell lung) | Ethyl acetate: 0.58 µg/mL (HeLa), 0.73 µg/mL (K562) Water: 0.87 µg/mL (MCF-7) Petroleum ether: 0.87 µg/mL (K562) | Ethyl acetate extract: pre-G1 apoptosis and cell growth arrest in G2/M (HeLa) | [90] | ||
Limbarda crithmoides (L.) Dumort | Aerial parts | Methanol extract, n-hexane, dichloromethane, and aqueous methanol-soluble fractions, isolated compounds | OCI-AML3 cells (acute myeloid leukaemia) | nd | 10-acetoxy-9Z-chloro-8,9-dehydrothymol: apoptosis induction | [92] | |
Brassicaceae | Cakile maritima Scop. | Aerial organs | Methanol extract, and n-hexane, ethyl acetate, and methanol | Caco2 and HeLa cells (colon and cervical carcinoma) | Hexane fraction: 12 and 126 µg/mL | nd | [96] |
Convolvulaceae | Calystegia soldanella L. | Whole plant | Methylene chloride and methanol extracts, n-hexane, 85% methanol, n-butanol and water fractions | HepG2 cells (hepatocellular carcinoma) | na | Methanol fraction: cell-cycle arrest at the G0–G1 and S phases, apoptosis induction | [100] |
Calystegia soldanella L. | Whole plant | Methanol | A549 cells (human lung cancer) Col2 cells (human colon cancer) | 8.0 µg/mL 27.4 µg/mL | nd | [101] | |
Cressa cretica L. | Shoots | Hydroalcoholic | HepG2 cells (hepatocellular carcinoma) | 2300 µg/mL | Increased BAX, decreased BCL2 | [102] | |
Cymodoceaceae | Cymodocea rotundata Ehrin. | Leaves | Silver particles produced by combining water extract and silver nitrate (AgNO3, 1 M) | MG63 cells (osteosarcoma) | 25.31 µg/mL | nd | [105] |
Cymodocea serrulata (R. Br.) Aschers. & Magnus | Leaves | Silver particles produced by combining water extract and silver nitrate (AgNO3, 1 M) | A549 cells (lung carcinoma) | 100 µg/mL | nd | [106] | |
Shoots | Hydroethanolic | HepG2 cells (hepatocellular carcinoma) | 82.92 µg/mL | nd | [107,108] | ||
Cyperaceae | Cyperus rotundus L. | Rhizomes | Methanol, ethanol, and water. | MDA-MB-231 cells (breast carcinoma) | 225 µg/mL | Apoptosis induction via upregulation of the death receptor 4 (DR4), DR5, and pro-apoptotic BAX, and downregulation of antiapoptotic BCL2 | [112] |
Fabaceae | Alhagi maurorum Medik | Aerial organs | Lupeol (isolated from a methanol extract) | MCF7, MDA-MB-231 and MCF 10A cells (breast carcinoma) | >100 µg/mL | Increased mRNA expression and level of TP53, caspase-3, and BAX genes, decrease in BCL2 gene expression | [118] |
Glycyrrhiza glabra L. | Root | Methanol | A549 cells (human lung carcinoma) HepG2 cells (human hepatocellular carcinoma) HaCaT cells (immortal human keratinocyte) | 189.1–238 µg/mL 248.5 µg/mL 158.8–241.9 µg/mL | nd | [122] | |
Root | Ethanol | HT-29 cells (colon carcinoma) | na | Downregulation of heat-shock protein 90 (HS90) gene expression | [123] | ||
Glycyrrhiza uralensis Fisch | Root | Ethanol/water (7:3, v/v) | HeLa cells (cervical carcinoma) | na | nd | [125] | |
Melilotus indicus L. | Aerial parts | Methanol | HepG2 cells (human hepatocellular carcinoma) SNU-182 cells (hepatocellular carcinoma) L-02 cells (human “normal” hepatic) | 16.60 µg/mL 13.21 µg/mL 90.9 µg/mL | Increase in the number of apoptotic cells, loss of mitochondrial membrane potential (Δψm) | [128] | |
Prosopis cineraria L. Druce | Leaves | Methanol | MCF7 cells (breast carcinoma) and HBL-100 cells (noncancerous breast) | na | nd | [209] | |
Prosopis juliflora Sw. DC. | Leaves | Methanol | Molt-4 cells (human T-cell leukemia) | 90.5, 42.5 and 20.0 μg/mL (24 h, 48 h and 72 h of incubation) | Increased number of micronuclei | [130] | |
Sesbania grandiflora L. | Leaves | Water, ethanol, and acetone | IMR32 and HT-29 cell lines (neuroblastoma and colon carcinoma) | 200 µg/mL | [137] | ||
Juncaceae | Juncus acutus L. Torr. Ex Retz. | Shoots | Diethyl ether, chloroform, methanol, and water | HepG2 cells (hepatocellular carcinoma) S17 cells (murine non-tumoral) | Ether extract: 6.2 and 34 µg/mL Juncunol: 18 µM (HepG2 cells) | Juncunol: increased number of apoptotic cells, decrease in the Δψm, cell-cycle arrest in the G0/G1 phase, no hemolytic properties | [129,130] |
Malvaceae | Thespesia populnea Sol. Ex Corrêa | Leaves | Decoction | HEP-2 cells (epidermoid carcinoma) | 120.02 µg/mL | Apoptosis induction (membrane blebbing, cell shrinkage, nuclear and cytoplasmic condensation, apoptotic bodies) | [144] |
Stem bark | Methanol | MDA-MB-231 and MCF7 cells (breast carcinoma) | 23.97 and 20.62 µg/mL | nd | [145] | ||
Myrtaceae | Eucalyptus camaldulensis Dehnh | Leaves | Ethyl acetate | MDA-MB-231 and MCF7 cells (breast carcinoma) | 26.7 and 34.4 µg/mL | nd | [148] |
Plantaginaceae | Bacopa monnieri L. Wettst | In vitro cultures (shoots) | Methanol and artificial saliva and gastric juice extracts | DU145 cells (prostate cancer) | nd | nd | [153] |
Plantago lanceolata L. | Leaves | Ethanol | MCF7, AMJ13, MDAMB and CAL51 cells (breast carcinoma) | 0.674, 0.726, 0.251 and 0.024 mg/mL | nd | [210] | |
Plantago major L. | Seeds | Silver particles produced by combining water extract and silver nitrate (AgNO3, 0.1 M) | MCF7 cells (breast carcinoma) | 12 µg/mL | nd | [159] | |
Plumbaginaceae | Limoniastrum densiflorum (Guss.) Kuntze | Shoots | Hexane, dichloromethane, ethanol, and methanol | A-549 cells (human lung adenocarcinoma DLD-1 cells (human colon carcinoma) WS-1 cells (human skin fibroblasts) | Dichloromethane extract: 85 µg/mL (DLD-1)-and 29 µg/mL (A-549) | nd | [170] |
Limoniastrum guyonianum Boiss | Gall | Water | HeLa cells (cervical carcinoma) | 170 µg/mL | DNA hypomethylation and apoptosis, cell-cycle arrest at G2/M, upregulation of p16INK4A, upregulation of UHRF1 and DNMT1 | [169] | |
Poaceae | Cynodon dactylon L. | Whole plant | Petroleum ether, dichloromethane, acetone, methanol/water (3/1) and water | MCF7 cells (breast carcinoma) | Water extract: 57.21 μg/mL; acetone extract: 38 μg/mL; petroleum ether extract: 39 μg/mL | nd | [174] |
Whole plant | Petroleum ether | HEP-2, HeLa, and MCF7 cells (laryngeal, cervical, and breast carcinoma) | 0.20, 0.62 and 1.02 mg/mL | Apoptosis induction (DNA fragmentation) | [211] | ||
Echinochloa crus-galli L. | Grains | Ethanol extract, n-hexane, chloroform, ethyl acetate, n-butanol fractions, isolated compounds | MCF7, HCT116, HeLa, and HepG2 cells (breast, colon, cervical, and liver carcinoma) | Crude extract: 12.0, 11.2, 18.9, and 14.2 μg/mL Ethyl acetate fraction: 3.8 μg/mL | nd | [175] | |
Portulacaceae | Portulaca oleracea L. | Seeds | Ethanol | HepG2 cells (hepatocellular carcinoma) | 75 µg/mL | Round cells with reduced size and adhesion | [181] |
Seeds | Oil extraction | HepG2 and A549 cells (liver and lung carcinoma) | nd | Loss of cell adhesion capacity, shrinkage, round shape | [182] | ||
Rhizoporaceae | Bruguiera gymnorhiza L. Lam | Stem bark | Methanol | HeLa cells (cervical cancer), Raji cells (lymphoma) and myeloma cells (leukemia) | 133, 504, and 384 µg/mL | Apoptosis induction (DNA fragmentation) | [187] |
Solanaceae | Lycium barbarum L. | Fruits | Water | SW480 and Caco-2 cells (colon carcinoma) | 600 and 650 µg/mL | Cell-cycle arrest at G0/G1 | [191] |
Fruits | Ethanol | A431 cells (cutaneous squamous cell carcinoma) | 873.7 µg/mL | Reduced expression of Ki67 and PCNA proteins, increased expression of caspase-3, reduction of BCL2, downregulation of LC3II, reduced the phosphorylation of ERK1/2, and upregulation of JNK. Reversion of the regulation of Beclin1, LC3II, Bcl-2, and cl-caspase-3 | [192] | ||
Fruits | Ethanol | BALB/c nude mice transplanted tumor model established by subcutaneous injection of A431 cells | nd | Increased survival rate, reduced tumor volume and weight, downregulation of Ki67 and MMP-2 | |||
Tamaricaceae | Tamarix aucheriana (Decne.) Baum | Shoots | Syringic acid isolated from a methanol extract | SW1116 and SW837 cells (colorectal carcinoma) | 0.95 and 1.2 mg/mL | Increased percentage of apoptotic cells | [199] |
Shoots | Methyl ferulate isolated from methanol extract | SW1116 and SW837 cells (colorectal carcinoma) | 1.7 and 1.9 mM | Cell-cycle arrest in the S and G2/M phases, apoptosis induction, reduction in NF-κB DNA-binding activity | [200] | ||
Tamarix gallica L. | Shoots, leaves and flowers | 80% methanol | Caco-2 cells (colon carcinoma) | na | Decreased DNA synthesis, cell-cycle arrest at G2/M phase; modification in the levels of cyclin B1, p38, Erk1/2, Chk1, and Chk2 | [202] |
Family | Species | Chemical Compounds | Chemical Structure | Class | Ref. |
---|---|---|---|---|---|
Acanthaceae | Avicennia alba Blume | Catechol borane | Organoboron | [36] | |
Neophytadiene | Terpenoid (diterpene) | [36] | |||
Hexadecanoic acid | Fatty acid (saturated) | [36] | |||
Avicennia marina (Forssk.) Vierh | Luteonin | Phenolic (flavonoid) | [203] | ||
Amaranthaceae | Artrochnemum indicum | Gallic acid | Phenolic (phenolic acid) | [51] | |
Cyanidin | Phenolic (flavonoid) | [51] | |||
Chrysoeriol | Phenolic (flavonoid) | [51] | |||
Quercetin | Phenolic (flavonoid) | [51] | |||
Catechol | Phenolic (benzenediol) | [51] | |||
Luteolin | Phenolic (flavonoid) | [51] | |||
Chenopodium ambrosioides L. | Ascaridol | Monoterpene | [65] | ||
Asteraceae | Achillea millefolium | Chlorogenic acid | Phenolic (phenolic acid) | [90] | |
p-Coumaric acid | Phenolic (phenolic acid) | [90] | |||
Rosmarinic acid | Phenolic (polyphenol) | [90] | |||
Apigenin | Phenolic (flavonoid) | [90] | |||
Glycyrrhiza sp. | Glycyrrhizin | Saponin | [120,121] | ||
Limbarda crithmoides (L.) Dumort | 10-acetoxy-8,9-epoxythymol tiglate | Thymol derivative | [92] | ||
10-acetoxy-9Z-chloro-8,9-dehydrothymol | Thymol derivative | [92] | |||
Brassicaceae | Cakile maritima Scop. | 2-hydroxy-1,8-cineole | Monoterpenoid | [96] | |
Decane | Alkane | [96] | |||
Limonene | Monoterpenoid | [96] | |||
Fabaceae | Alhagi maurorum Medik | Lupeol | Terpenoid (triterpenoid) | [118] | |
Glycyrrhiza uralensis Fisch | Isoquercitrin | (Phenolic) flavonoid | [125] | ||
4′-Demethylpodophyllotoxin glucoside | Lignan | [125] | |||
Podophyllotoxin | Lignin | [125] | |||
Juncaceae | Juncus acutus L. | Juncunol | Phenanthrene | [141] | |
Plantaginaceae | Bacopa monnieri (L.) Wettst | Bacopaside (II) | Terpenoid (isoprenoid) | [153] | |
Plantago lanceolata L. | O-Coumaric acid | Phenolic (phenolic acid) | [210] | ||
Rutin | Phenolic (flavonoid) | [210] | |||
Myricetin | Phenolic (flavonoid) | [210] | |||
Quercetin | Phenolic (flavonoid) | [210] | |||
Kaempferol | Phenolic (flavonoid) | [210] | |||
Plumbaginaceae | Limonium densiflorum (Guss.) Kuntze | trans 3-Hydroxycinnamic acid | Phenolic (phenolic acid) | [170] | |
Myricetin | Flavonoid (phenolic) | [170] | |||
Isorhamnetin | Flavonoid (phenolic) | [170] | |||
Poaceae | Cynodon dactylon L. Pers | Delphinidin-3-O-acetylglucoside | Anthocyanin | [174] | |
Echinochloa crus-galli | 5,7-Dihydroxy-3′,4′,5′-trimethoxy flavone | Phenolic (flavonoid) | [175] | ||
5,7,4′-Trihydroxy-3′,5′-dimethoxy flavone (tricin) | Phenolic (flavonoid) | [175] | |||
Portulacaceae | Portulaca oleracea L. | Portulacerebroside A | Cerebroside | [179,180] | |
Portulacanones B | Phenolic (flavonoid) | [179,180] | |||
Portulacanones C | Phenolic (flavonoid) | [179,180] | |||
Portulacanones D | Phenolic (flavonoid) | [179,180] | |||
2,2′-Dihydroxy-4′,6′-dimethoxychalcone | Phenolic (flavonoid) | [179,180] | |||
Solanaceae | Lycium barbarum L. | 4-O-Methylgrossamide | Phenolic amide | [193] | |
Grossamide | Phenolic amide | [193] | |||
Lycium barbarum L. | Scopoletin | Phenolic (coumarin) | [190] | ||
2-O-β-D-Glucopyranosyl-L-ascorbic acid | Glucoside | [190] | |||
Tamaricaceae | Tamarix aucheriana (Decne.) Baum | Syringic acid | Phenolic (phenolic acid) | [198,200] | |
Methyl ferulate | Phenolic (phenolic acid) | [198,200] |
Family | Species | Organ | Extract/Fraction | Compound Detected in the Extract | Cell lines | IC50 Values | Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|
Amaranthaceae | Chenopodium ambrosioides L. | Whole plant | Essential oil | nd | MCF7 | 18.75, 9.45 and 10.50 μg/mL at 6, 24 and 48 h | DNA fragmentation | [64] |
Suaeda fruticosa (L.) Forssk. | Leaves | Hexane | Monoterpenes (dihydrojasmone, jasmolone, terpinene-4-ol), diterpenes (pimaric acid, steviol, and momilactone B) and phenolics (quercinol, zingerone, zingerol, neovaflan) | HCT116 | 17.2 µg/mL | Cell-cycle arrest at the C0–G1 phase and apoptosis induction | [74] | |
Suaeda fruticosa (L.) Forssk. | Shoots | Dichloromethane | nd | DLD-1 HT-29 | 10 µg/mL 12 µg/mL | nd | [80] | |
Asteraceae | Achillea millefolium L. | Aerial parts | Ethyl acetate, water, and petroleum ether extracts | Ethyl acetate: p-coumaric acid, chlorogenic acid, and apigenin Water extract: rosmarinic acid | K562 cells HeLa cells MCF7 A549 cells | Ethyl acetate: 0.58 µg/mL (HeLa), 0.73 µg/mL (K562) Water: 0.87 µg/mL (MCF-7) Petroleum ether: 0.87 µg/mL (K562) | Ethyl acetate extract: preG1 apoptosis and cell growth arrest in G2/M (HeLa) | [90] |
Brassicaceae | Cakile maritima Scop. | Aerial parts | Hexane | GC-MS, decane, limonene, nonaldehyde, dodecane | CaCo2 | 12 μg/mL | nd | [96] |
Convolvulaceae | Calystegia soldanella (L.) R.Br. ex Roem. & Schult. | Whole plant | 85% aqueous methanol fraction of crude methanol extract | nd | HepG2 | <30 μg/mL | Cell-cycle arrest at the G0–G1 and S phases, apoptosis induction | [100] |
Whole plant | Methanol | nd | A549 cells (human lung cancer) Col2 cells (human colon cancer) | 8.0 µg/mL 27.4 µg/mL | nd | [101] | ||
Cymodoceae | Cymodocea rotundata EhrenbHempr. ex Aschers. | Leaves | Water | nd | MG63 | 25.31 µg/mL | nd | 105 |
Fabaceae | Melilotus indicus L. All. | Aerial parts | Methanol | nd | HepG2 SNU-182 | 16.6 µg/mL 13.21 µg/mL | Increase in the number of apoptotic cells, loss of Δψm. | [128] |
Prosopis juliflora Sw. DC. | Leaves | Methanol | nd | Molt-4 | 20.0 μg/mL after 72 h | Reduction in micronuclei or cell proliferation | [130] | |
Malvaceae | Thespesia populnea L. Sol. ex Corrêa | Bark | Chloroform fraction of methanol extract | Flavonoids, triterpenes, and tannins | MDA-MB-231 MCF7 | 23.97 µg/mL 20.62 µg/mL | nd | [145] |
Myrtaceae | Eucalyptus camaldulensis | Leaves | Methanol, ethyl acetate, n-butanol, and water | nd | MCF7 MDA-MB-231 | 26.7 µg/mL 7.9 µg/mL 4.9 µg/mL | nd | [148] |
Plantaginaceae | Plantago major L. | Seeds | Water | nd | MCF7 | 12 µg/mL | nd | [159] |
Plantago lanceolata L. | Leaves | Ethanol | Flavonoid glycosides: O-cumaric, rutin, myricetin, quercetin and kaempferol | CAL51 | 24 µg/mL | Apoptosis induction increase in the nuclei condensation | [210] | |
Poaceae | Echinochloa crus-galli (L.) P. Beauv. | Grains | 70% ethanol | nd | MCF7 HCT116 HeLa HepG2 | 12.0 μg/mL 11.2 μg/mL 18.9 μg/mL 4.2 μg/mL | nd | [175] |
Grains | 5,7,4-Trihydroxy-3,5-dimethoxy flavone (tricin) | MCF7 HCT116 HeLa HePG2 | 4.3 μg/mL 4.5 μg/mL 4.5 μg/mL 4.2 μg/mL | nd | [175] | |||
Solanaceae | Lycium barbarum L. | Stems | Ethanol | Phenolic amides | GSC-3# GSC-12# | 28 µg/mL 20 µg/mL | nd | [193] |
Family | Species | Organ | Compound | Cell Lines | IC50 Values | Mechanism | Ref. |
---|---|---|---|---|---|---|---|
Acanthaceae | Avicennia marina (Forssk.) Vierh | Fruits | 6′-O-(n-butanol) ilekudinoside B ester | GSC-18# (human glioma stem cell lines) | 6 µM | nd | [204] |
Poaceae | Echinochloa. crus-galli (L.) P. Beauv. | Grains | 5,7-dihydroxy-3′,4′,5′-trimethoxy flavone | HeLa HePG2 | 3.0 µM 3.0 µM | nd | [175] |
5,7,4-trihydroxy-3,5-dimethoxy flavone (tricin) | HCT-116 HeLa HePG2 | 10.8 µM 8.6 µM 7.2 µM | nd | ||||
Portulacaceae | Portulaca oleracea L. | Aerial organs | Portulacerebroside A | HCCLM3 | <3.5 µM | Apoptosis induction via activation of the p38 MAPK and JNK-triggered mitochondrial death pathway | [180] |
Solanaceae | Lycium barbarum L. | Stems | Grossamide | GSC-3# GSC-12# | 10.2 µM 9.3 µM | nd | [193] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nurmik, M.; Ullmann, P.; Rodriguez, F.; Haan, S.; Letellier, E. In search of definitions: Cancer-associated fibroblasts and their markers. Int. J. Cancer 2020, 146, 895–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACS 2020. American Cancer Society: Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society. 2020. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf (accessed on 3 December 2020).
- Laconi, E.; Marongiu, F.; De Gregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer 2020, 122, 943–952. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Risk Factors Collaborators. Global, Regional, and National Comparative Risk Assessment of 79 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015; Lancet: London, UK, 2016; pp. 388–1659.
- Anastasiadi, Z.; Lianos, G.D.; Ignatiadou, E.; Harissis, H.V.; Mitsis, M. Breast cancer in young women: An overview. Updat. Surg. 2017, 69, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Wadowska, K.; Bil-Lula, I.; Trembecki, Ł.; Śliwińska-Mossoń, M. Genetic markers in lung cancer diagnosis: A review. Int. J. Mol. Sci. 2020, 21, 4569. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, 191–203. [Google Scholar] [CrossRef] [Green Version]
- NCI (National Cancer Institute). Available online: https://www.cancer.net/es/national-cancer-institute-nci (accessed on 3 January 2021).
- Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidem. Glob. Health 2019, 9, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. DARU J. Pharm. Sci. 2019, 27, 491–515. [Google Scholar] [CrossRef]
- Bracci, L.; Schiavoni, G.; Sistigu, A.; Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: Implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014, 21, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014, 347, 159–166. [Google Scholar] [CrossRef]
- Bhanot, A.; Sharma, R.; Noolvi, M.N. Natural sources as potential anti-cancer agents: A review. Int. J. Phyto. 2011, 3, 9–26. [Google Scholar]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotech. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Willdenov, C.L. The Principles of Botany, and of Vegetable Physiology; University Press: Edinburgh, UK, 1805. [Google Scholar]
- Grigore, M.N. Defining halophytes: A conceptual and historical approach. In Halophytes and Climate Change: Adaptative Mechanisms and Potential Uses; Hasanuzzaman, M., Shabala, S., Fujita, M., Eds.; CABI: Wallingford, UK, 2019; pp. 3–18. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotech. 2012, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Bhowmik, P.C.; Hossain, M.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential use of halophytes to remediate saline soils. BioMed Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Arya, S.S.; Devi, S.; Ram, K.; Kumar, S.; Kumar, N.; Mann, A.; Kumar, A.; Chand, G. Halophytes: The plants of therapeutic medicine. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Springer: Singapore, 2019; pp. 271–287. [Google Scholar]
- eHALOPH–Halophytes Database© Version 3.20. The University of Sussex. 2020. Available online: https://www.sussex.ac.uk/affiliates/halophytes (accessed on 4 November 2020).
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 71–133. [Google Scholar]
- Cruz, S.; Gomes, S.E.; Borralho, P.M.; Rodrigues, C.M.P.; Gaudêncio, S.P.; Pereira, F. In Silico HCT116 Human Colon Cancer Cell-Based Models En Route to the Discovery of Lead-Like Anticancer Drugs. Biomolecules 2018, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Gonnella, M. Ethnobotany, nutritional traits, and healthy properties of some halophytes used as greens in the Mediterranean basin. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.N., Ed.; Springer: Cham, Switzerland, 2020; pp. 1–19. [Google Scholar]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/62332 (accessed on 18 October 2022).
- Xu, Z.; Chang, L. Acanthaceae. In Identification and Control of Common Weeds; Springer: Singapore, 2017; Volume 3, pp. 329–338. [Google Scholar]
- Khan, I.; Jan, S.A.; Shinwari, Z.K.; Ali, M.; Khan, Y.; Kumar, T. Ethnobotany and medicinal uses of folklore medicinal plants belonging to family Acanthaceae: An updated review. MOJ Biol. Med. 2017, 1, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Velmani, S.; Perumal, B.; Santhosh, C.; Vetrivel, C.; Maruthupandian, A. Phytochemical and traditional uses on Acanthus ilicifolius (L). J. Adv. Appl. Scient. Res. 2016, 1, 43–48. [Google Scholar] [CrossRef]
- Rajamanickam, E.; Gurudeeban, S.; Satyavani, K.; Ramathan, T. In vitro anticancer effect of Acanthus ilicifolius on hepatocellular carcinoma cells. Asian J. Biochem. 2014, 9, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Paul, T.; Ramasubbu, S. The antioxidant, anticancer and anticoagulant activities of Acanthus ilicifolius L. roots and Lumnitzera racemosa Willd. leaves, from southeast coast of India. J. Appl. Pharm. Sci. 2017, 7, 81–87. [Google Scholar] [CrossRef]
- Smitha, R.B.; Madhusoodanan, P.V.; Prakashkumar, R. Anticancer activity of Acanthus illicifolius linn. from Chettuva mangroves, Kerala, India. Int. J. Bioassays 2014, 3, 3452–3455. [Google Scholar]
- Khamwut, A.; Jevapatarakul, D.; Reamtong, O. In vitro evaluation of anti-epidermoid cancer activity of Acanthus ebracteatus protein hydrolysate and their effects on apoptosis and cellular proteins. Oncol. Lett. 2019, 18, 3128–3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatoi, H.; Samantaray, D.; Das, S.K. The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: A review. Front. Life Sci. 2016, 9, 267–291. [Google Scholar] [CrossRef] [Green Version]
- Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Kumar, R.B.; Venkateswarulu, T.C. Identification of bioactive compounds in leaf extract of Avicennia alba by GC-MS analysis and evaluation of its in-vitro anticancer potential against MCF7 and HeLa cell lines. J. King Saud. Univ. Sci. 2020, 32, 740–744. [Google Scholar] [CrossRef]
- Illian, D.N.; Hasibuan, P.A.Z.; Sumardi, S.; Nuryawan, A.; Wati, R.; Basyuni, M. Anticancer activity of polyisoprenoids from Avicennia alba Blume. in WiDr cells. Iran J. Pharm. Res. 2019, 18, 1477–1487. [Google Scholar] [CrossRef]
- Huang, C.; Lu, C.K.; Tu, M.C.; Chang, J.H.; Chen, Y.J.; Tu, Y.H.; Huang, H.C. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget 2016, 7, 35874–35893. [Google Scholar] [CrossRef] [Green Version]
- Esau, L.; Sagar, S.; Bajic, V.B.; Kaur, M. Autophagy inhibition enhances the mitochondrial-mediated apoptosis induced by mangrove (Avicennia marina) extract in human breast cancer cells. Eur. J. Med. Plants 2015, 5, 304–317. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.S.; Joseph, J.; Bhuvaneshwari, V. Antioxidant, anticancerous and cytotoxic effects of Avicennia marina. Int. J. Res. Pharm. Sci. 2018, 9, 996–1001. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/65P (accessed on 18 October 2022).
- Klak, C. Aizoaceae. Bothalia 2011, 41, 292–294. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Haroun, S.A.; El-Shehaby, O.A.; Al-hadithy, O.N. Antioxidant and antimicrobial properties of some wild Aizoaceae species growing in Egyptian desert. J. Environ. Sci. 2016, 45, 1–10. [Google Scholar]
- Seo, J.A.; Ju, J. Antioxidant and growth inhibitory activities of Mesembryanthemum crystallinum L. in HCT116 human colon cancer cells. J. Nutr. Health 2019, 52, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Chintalapani, S.; Swathi, M.S.; Narasu, M.L. Antiproliferative and apoptosis inducing potential of whole plant extracts of Sesuvium portulacastrum against different cancer cell lines. J. Appl. Pharm. Sci. 2019, 9, 38–43. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/68Z (accessed on 18 October 2022).
- Xu, Z.; Deng, M. Amaranthaceae. In Identification and Control of Common Weeds; Springer: Dordrecht, The Netherlands, 2017; pp. 245–302. [Google Scholar]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Nisar, F.; Gul, B.; Khan, M.A.; Hameed, A. Germination and recovery responses of heteromorphic seeds of two co-occurring Arthrocnemum species to salinity, temperature and light. S. Afr. J. Bot. 2019, 121, 143–151. [Google Scholar] [CrossRef]
- ElNaker, N.A.; Yousef, A.F.; Yousef, L.F. A review of Arthrocnemum (Arthrocaulon) macrostachyum chemical content and bioactivity. Phytochem. Rev. 2020, 19, 1427–1448. [Google Scholar] [CrossRef]
- Boulaaba, M.; Mkadmini, K.; Tsolmon, S.; Han, J.; Smaoui, A.; Kawada, K.; Ksouri, R.; Isoda, H.; Abdelly, C. In vitro antiproliferative effect of Arthrocnemum indicum extracts on Caco-2 cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evid.-Based Compl. Altern. Med. 2013, 2013, 529375. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, X.; Xiao, M.; Hong, Z.; Gong, Q.; Jiang, L.; Zhou, J. Discovery of chrysoeriol, a PI3K-AKT-mTOR pathway inhibitor with potent antitumor activity against human multiple myeloma cells in vitro. J. Huazhong Univ. Sci. Techol. Med. Sci. 2010, 30, 734–740. [Google Scholar] [CrossRef]
- Benzarti, M.; Ben Rejeb, K.; Debez, A.; Abdelly, C. Environmental and economical opportunities for the valorisation of the genus Atriplex: New insights. In Crop Improvement; Springer: Boston, MA, USA, 2013; pp. 441–457. [Google Scholar]
- Al-Senosy, N.K.; Abou-Eisha, A.; Ahmad, E.S. In vitro antiproliferation effect of Atriplex halimus L. crude extract on human cell lines by induction of apoptosis and G2/M phase arrest. Egypt Acad. J. Biol. Sci. C Phys. Mol. Biol. 2018, 10, 115–126. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C. Halophytic herbs of the Mediterranean basin: An alternative approach to health. Food Chem. Toxicol. 2018, 114, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazzani, A.A.; Alshatwi, A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol. 2011, 49, 3281–3286. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, F.; Foppoli, C.; Coccia, R.; Perluigi, M. Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2012, 1822, 737–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roleira, F.M.; Tavares-da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Boeing, J.S.; Barizão, É.O.; Rotta, E.M.; Volpato, H.; Nakamura, C.V.; Maldaner, L.; Visentainer, J.V. Phenolic compounds from Butia odorata (Barb. Rodr.) Noblick fruit and its antioxidant and antitumor activities. Food Anal Methods 2020, 13, 61–68. [Google Scholar] [CrossRef]
- Rha, C.S.; Jeong, H.W.; Park, S.; Lee, S.; Jung, Y.S.; Kim, D.O. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants 2019, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Kokanova-Nedialkova, Z.; Nedialkov, P.; Nikolov, S. The genus Chenopodium: Phytochemistry, ethnopharmacology and pharmacology. Pharmacogn. Rev. 2009, 3, 280. [Google Scholar]
- Choudhary, N.; Prabhu, K.S.; Prasad, S.B.; Singh, A.; Agarhari, U.C.; Suttee, A. Phytochemistry and pharmacological exploration of Chenopodium album: Current and future perspectives. Res. J. Pharm. Techol. 2020, 13, 3933–3940. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, H.; Feng, Y.; Li, H.; Zhao, Y. Petroleum ether extract of Chenopodium album L. prevents cell growth and induces apoptosis of human lung cancer cells. Exp. Ther. Med. 2016, 12, 3301–3307. [Google Scholar] [CrossRef] [Green Version]
- Jia-liang, W.; Dan-wei, M.; Ya-nan, W.; Hong, Z.; Bing, H.; Qun, L.; Zhi-yan, Z.; Jing, F. Cytotoxicity of essential oil of Chenopodium ambrosioides L. against human breast cancer MCF-7 cells. Trop. J. Pharm. Res. 2013, 12, 929–933. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, R.T.; Farias, I.V.; Grassi, L.T.; Franchi Jr, G.C.; Nowill, A.E.; Bittencourt, C.M.D.S.; Wagner, T.M.; Bella Cruz, A.; Malheiros, A. Characterization and evaluation of the cytotoxic potential of the essential oil of Chenopodium ambrosioides. Rev. Bras. Farmacogn. 2016, 26, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, J.; Zou, L.; Fu, C.; Li, P.; Zhao, G. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Inter. J. Biol. Macromol. 2017, 99, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3Biotech 2016, 6, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, P.; Kumar, V.J.; Dhayalan, D.R.; Amirtharaj, K.; Sudarmani, D.N.P. Bioprospecting of Salicornia europaea L. a marine halophyte and evaluation of its biological potential with special reference to anticancer activity. J. Pharma. Pharma. Sci. 2017, 2, 138. [Google Scholar] [CrossRef]
- Kensil, C.R. Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug. Carr. Syst. 1996, 13, 1–55. [Google Scholar]
- Yurdakok, B.; Baydan, E. Cytotoxic effects of Eryngium kotschyi and Eryngium maritimum on Hep2, HepG2, Vero and U138 MG cell lines. Pharma. Biol. 2013, 51, 1579–1585. [Google Scholar] [CrossRef]
- Yildirim, I.; Kutlu, T. Anticancer agents: Saponin and tannin. Int. J. Biol. Chem. 2015, 9, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Munir, U.; Perveen, A.; Qamarunnisa, S. Comparative pharmacognostic evaluation of some species of the genera Suaeda and Salsola leaf (Chenopodiaceae). Pak. J. Pharm. Sci. 2014, 27, 1309–1315. [Google Scholar]
- Altay, V.; Ozturk, M. The Genera Salsola and Suaeda (Amaranthaceae) and their value as fodder. In Handbook of Halophytes; From molecules to ecosystems towards biosaline agriculture; Springer: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Saleh, K.A.; Albinhassan, T.H.; Al-Ghazzawi, A.M.; Mohaya, A.; Shati, A.A.; Ayoub, H.J.; Abdallah, Q.M. Anticancer property of hexane extract of Suaeda fruticosa plant leaves against different cancer cell lines. Trop. J. Pharm. Res. 2020, 19, 129–136. [Google Scholar] [CrossRef]
- Su, P.; Veeraraghavan, V.P.; Krishna Mohan, S.; Lu, W. A ginger derivative, zingerone-a phenolic compound-induces ROS-mediated apoptosis in colon cancer cells (HCT-116). J. Biochem. Mol. Toxicol. 2019, 33, e22403. [Google Scholar] [CrossRef]
- Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Sci. World. J. 2014, 2014, 953451. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Teodósio, C.; Oliveira, C.; Oliveira, C.; Díaz-Lanza, A.; Reis, C.; Duarte, N.; Rijo, P. Naturally occurring Plectranthus-derived diterpenes with antitumoral activities. Curr. Pharm. Des. 2018, 24, 4207–4236. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Ullah, F.; Zeb, A.; Ayaz, M.; Ullah, F.; Sadiq, A. Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: Chemical characterization of chloroform fraction and identification of bioactive compounds. BMC Compl. Altern. Med. 2016, 16, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, E.; Kaushik, S.; Purwar, S.; Sharma, R.; Balapure, A.K.; Sundaram, S. Anticancer potential of steviol in MCF-7 human breast cancer cells. Pharmacogn. Mag. 2017, 13, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oueslati, S.; Ksouri, R.; Falleh, H.; Pichette, A.; Abdelly, C.; Legault, J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012, 132, 943–947. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/6KC (accessed on 18 October 2022).
- Chen, Y.; Peng, S.; Luo, Q.; Zhang, J.; Guo, Q.; Zhang, Y.; Chai, X. Chemical and pharmacological progress on polyacetylenes isolated from the family Apiaceae. Chem. Biodiv. 2015, 12, 474–502. [Google Scholar] [CrossRef]
- Wang, P.; Su, Z.; Yuan, W.; Deng, G.; Li, S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm. Crop. 2012, 3, 99–120. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Gonnella, M.; Caretto, S.; Mita, G.; Serio, F. Sea fennel (Crithmum maritimum L.): From underutilized crop to new dried product for food use. Gen. Res. Crop. Evol. 2017, 64, 205–216. [Google Scholar] [CrossRef]
- Gnocchi, D.; Cesari, G.; Calabrese, G.J.; Capone, R.; Sabbà, C.; Mazzocca, A. Inhibition of hepatocellular carcinoma growth by ethyl acetate extracts of apulian Brassica oleracea L. and Crithmum maritimum L. Plant Foods Hum. Nutr. 2020, 75, 33–40. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/622TP (accessed on 18 October 2022).
- Gao, T.; Yao, H.; Song, J.; Zhu, Y.; Liu, C.; Chen, S. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol. Biol. 2010, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Shahani, S.; Hamzekanlu, N.; Zakeri, N.; Hosseinimehr, S.J. Synergistic effect of Achillea millefolium L. combined with bleomycin on prostate cancer cell. Res. Mol. Med. 2015, 3, 12–17. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.L.; Cong, B.; Wang, S.M.; Dong, M.; Sauriol, F.; Huo, C.-H.; Shi, Q.-W.; Gu, Y.-G.; Kiyota, H. Achillinin A, a cytotoxic guaianolide from the flower of Yarrow, Achillea millefolium. Biosci. Biotechnol. Biochem. 2011, 75, 1554–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou Baker, D.H. Achillea millefolium L. ethyl acetate fraction induces apoptosis and cell cycle arrest in human cervical cancer (HeLa) cells. Ann. Agric. Sci. 2020, 65, 42–48. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adorisio, S.; Giamperi, L.; Bucchini, A.E.A.; Delfino, D.V.; Marcotullio, M.C. Bioassay-guided isolation of antiproliferative compounds from Limbarda crithmoides (L.) Dumort. Molecules 2020, 25, 1893. [Google Scholar] [CrossRef] [Green Version]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/7DN (accessed on 18 October 2022).
- Anjum, N.A.; Gill, S.S.; Ahmad, I.; Pacheco, M.; Duarte, A.C.; Umar, S.; Khan, N.A.; Pereira, M.E. The plant family Brassicaceae: An introduction. In Plant Family Brassicaceae; Springer: Dordrecht, The Netherlands, 2012; pp. 1–33. [Google Scholar]
- Arbelet-Bonnin, D.; Ben-Hamed-Louati, I.; Laurenti, P.; Abdelly, C.; Ben-Hamed, K.; Bouteau, F. Cakile maritima, a promising model for halophyte studies and a putative cash crop for saline agriculture. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2019; Volume 155, pp. 45–78. [Google Scholar] [CrossRef]
- Omer, E.; Elshamy, A.; Taher, R.; El-Kashak, W.; Shalom, J.; White, A.; Cock, I. Cakile maritima Scop. extracts inhibit CaCo2 and HeLa human carcinoma cell growth: GC-MS analysis of an anti-proliferative extract. Pharm. J. 2019, 11, 258–266. [Google Scholar] [CrossRef]
- Hafidh, R.R.; Hussein, S.Z.; MalAllah, M.Q.; Abdulamir, A.S.; Abu Bakar, F. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent. Curr. Cancer Drug Targets 2018, 18, 807–815. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/8J9 (accessed on 18 October 2022).
- Sultana, R.; Rahman, A.H.M.M. Convolvulaceae: A taxonomically and medicinally important morning glory family. Int. J. Bot. Stud. 2016, 1, 47–52. [Google Scholar]
- Lee, J.I.; Kim, I.H.; Nam, T.J. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells. Int. J. Oncol. 2017, 50, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Min, H.-Y.; Park, H.-J.; Kim, Y.; Lee, E.-J.; Hwang, H.-J.; Park, E.-J.; Lee, S.K. Cytotoxic activities of indigenous plant extracts in cultured cancer cells. Nat. Prod. Sci. 2002, 8, 170–172. [Google Scholar]
- Pouraminaei, M.; Mirzaiey, M.R.; Khoshdel, A.; Hajizadeh, M.R.; Mahmoodi, M.; Fahmidehkar, M.A. The effect of Cressa cretica hydroalcoholic extract on apoptosis and the expression of Bcl2, Bax and P53 genes in hepatoma cell line HepG2. Gene Rep. 2020, 20, 100692. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/8VQ (accessed on 18 October 2022).
- Petersen, G.; Seberg, O.; Short, F.T.; Fortes, M.D. Complete genomic congruence but non-monophyly of Cymodocea (Cymodoceaceae), a small group of seagrasses. Taxon 2014, 63, 3–8. [Google Scholar] [CrossRef]
- Abraham, J.; Saraf, S.; Mustafa, V.; Chaudhary, Y.; Sivanangam, S. Synthesis and evaluation of silver nanoparticles using Cymodocea rotundata against clinical pathogens and human osteosarcoma cell line. J. Appl. Pharm. Sci. 2017, 7, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Palaniappan, P.; Sathishkumar, G.; Sankar, R. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectroch. Acta Part A Mol. Biomol. Spec. 2015, 138, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Kalpana, C.S.; Kalaivani, P.; Vanitha, V. Phytochemical screening and effect of Cymodocea serrulata on HepG2-human hepatocellular carcinoma cell line. Inter. J. Res. Pharm. Sci. 2020, 11, 1684–1691. [Google Scholar] [CrossRef]
- Sofi, M.S.; Nabi, S.; Mohammed, C.; Sofi, S. The role of phytocompounds in cancer treatment: A current review. J. Med. Plant Stud. 2018, 6, 83–93. [Google Scholar]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/8W5 (accessed on 18 October 2022).
- Semmouri, I.; Bauters, K.; Léveillé-Bourret, É.; Starr, J.R.; Goetghebeur, P.; Larridon, I. Phylogeny and systematics of Cyperaceae, the evolution and importance of embryo morphology. Bot. Rev. 2019, 85, 1–39. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. A review on Cyperus rotundus: A potential medicinal plant. IOSR J. Pharm. 2016, 6, 32–48. [Google Scholar] [CrossRef]
- Park, S.E.; Shin, W.T.; Park, C.; Hong, S.H.; Kim, G.Y.; Kim, S.O.; Ryu, C.H.; Hong, S.H.; Choi, Y.H. Induction of apoptosis in MDA-MB-231 human breast carcinoma cells with an ethanol extract of Cyperus rotundus L. by activating caspases. Oncol. Rep. 2014, 32, 2461–2470. [Google Scholar] [CrossRef]
- Singh, N.; Pandey, B.R.; Verma, P.; Bhalla, M.; Gilca, M. Phyto-pharmacotherapeutics of Cyperus rotundus Linn. (Motha): An overview. Ind. J. Nat. Prod. Res. 2012, 3, 467–476. [Google Scholar]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/623QT (accessed on 18 October 2022).
- Ahmad, F.; Anwar, F.; Hira, S. Review on medicinal importance of Fabaceae family. Pharm. Online 2016, 3, 151–157. [Google Scholar]
- Muhammad, G.; Hussain, M.A.; Anwar, F.; Ashraf, M.; Gilani, A.H. Alhagi: A plant genus rich in bioactives for pharmaceuticals. Phyto. Res. 2015, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Laghari, A.H.; Memon, S.; Nelofar, A.; Khan, K.M.; Yasmin, A.; Syed, M.N.; Aman, A. A new flavanenol with urease-inhibition activity isolated from roots of manna plant camelthorn (Alhagi maurorum). J. Mol. Struc. 2010, 965, 65–67. [Google Scholar] [CrossRef]
- Behbahani, M. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. PLoS ONE 2014, 9, e116049. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Unequivocal glycyrrhizin isomer determination and comparative in vitro bioactivities of root extracts in four Glycyrrhiza species. J. Adv. Res. 2015, 6, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Snafi, A.E. Glycyrrhiza glabra: A phytochemical and pharmacological review. IOSR J. Pharm. 2018, 8, 1–17. [Google Scholar]
- Farooqui, A.; Khan, F.; Khan, I.; Ansari, I.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line. Biomed Pharm. 2018, 97, 752–764. [Google Scholar] [CrossRef]
- Basar, N.; Oridupa, O.A.; Ritchie, K.J.; Nahar, L.; Osman, N.M.M.; Stafford, A.; Kushiev, H.; Kan, A.; Sarker, S.D. Comparative cytotoxicity of Glycyrrhiza glabra roots from different geographical origins against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cells. Phyto. Res. 2015, 29, 944–948. [Google Scholar] [CrossRef] [Green Version]
- Nourazarian, S.M.; Nourazarian, A.; Majidinia, M.; Roshaniasl, E. Effect of root extracts of medicinal herb Glycyrrhiza glabra on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line. Asian Pac. J. Cancer Prev. 2016, 16, 8563–8566. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Peng, Y.N.; Wang, H.Z.; Fang, S.L.; Zhang, M.; Zhao, Q.; Liu, J. Inhibition of heat shock protein 90 as a novel platform for the treatment of cancer. Curr. Pharm. Des. 2019, 25, 849–855. [Google Scholar] [CrossRef]
- Fan, H.; Xuan, J.; Zhang, K.; Jiang, J. Anticancer component identification from the extract of Dysosma versipellis and Glycyrrhiza uralensis based on support vector regression and mean impact value. Anal. Methods 2018, 10, 371–380. [Google Scholar] [CrossRef]
- Wu, F.; Ma, J.; Meng, Y.; Zhang, D.; Pascal Muvunyi, B.; Luo, K.; Di, H.; Guo, W.; Wang, Y.; Feng, B.; et al. Potential DNA barcodes for Melilotus species based on five single loci and their combinations. PLoS ONE 2017, 12, e0182693. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.K.; Al-Refai, M. Chemical constituents and cytotoxic activities of the extracts of Melilotus indicus. Eur. J. Chem. 2014, 5, 503–506. [Google Scholar] [CrossRef] [Green Version]
- El-Hafeez, A.A.A.; Khalifa, H.O.; Elgawish, R.A.; Shouman, S.A.; El-Twab, M.H.A.; Kawamoto, S. Melilotus indicus extract induces apoptosis in hepatocellular carcinoma cells via a mechanism involving mitochondria-mediated pathways. Cytotechnology 2018, 70, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Henciya, S.; Seturaman, P.; James, A.R.; Tsai, Y.H.; Nikam, R.; Wu, Y.C.; Dahms, H.-U.; Chang, F.R. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). J. Food Drug Anal. 2017, 25, 187–196. [Google Scholar] [CrossRef]
- Sathiya, M.; Muthuchelian, K. Anti-tumor potential of total alkaloid extract of Prosopis juliflora DC. leaves against Molt-4 cells in vitro. Afr. J. Biotech. 2011, 10, 8881–8888. [Google Scholar] [CrossRef] [Green Version]
- Bunma, S.; Balslev, H. A review of the economic botany of Sesbania (Leguminosae). Bot. Rev. 2019, 85, 185–251. [Google Scholar] [CrossRef]
- Boddawar, G.D.; Dhawale, S.C.; Shaikh, S.S. Assessment of anti-inflammatory potential of Sesbania bispinosa Linn. leaf extracts and fractions by acute and chronic models. Alex. J. Med. 2016, 52, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, B.B.S.; Purohit, V. Sterol contents from some fabaceous medicinal plants of Rajasthan desert. Indian J. Pharm. Biol. Res. 2013, 1, 13–15. [Google Scholar] [CrossRef]
- Tamboli, S.A. Anti-inflammatory activity of Sesbania grandiflora. Ind. Drug. 1996, 33, 504–506. [Google Scholar]
- Thamboli, S.A.; Pal, S.C.; Kasture, S.B. Analgesic and antipyretic activity of flowers of Sesbania grandiflora. Ind. Drugs-Bombay 2000, 37, 95–98. [Google Scholar]
- Laladhas, K.P.; Cheriyan, V.T.; Puliappadamba, V.T.; Bava, S.V.; Unnithan, R.G.; Vijayammal, P.L.; Anto, R.J. A novel protein fraction from Sesbania grandiflora shows potential anticancer and chemopreventive efficacy, in vitro and in vivo. J. Cell Mol. Med. 2010, 14, 636–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnanikajamideen, M.; Nagalingam, M.; Vanaja, M.; Malarkodi, C.; Rajeshkumar, S. Anticancer activity of different solvent extracts of Sesbania grandiflora against neuroblastima (imr-32) and colon (ht-29) cell lines. Eur. J. Biomed. Pharm. Sci. 2015, 2, 509–517. [Google Scholar]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/BJG (accessed on 18 October 2022).
- Bús, C.; Tóth, B.; Stefkó, D.; Hohmann, J.; Vasas, A. Family Juncaceae: Promising source of biologically active natural phenanthrenes. Phytochem. Rev. 2018, 17, 833–851. [Google Scholar] [CrossRef] [Green Version]
- El-Shamy, A.I.; Abdel-Razek, A.F.; Nassar, M.I. Phytochemical review of Juncus L. genus (Fam. Juncaceae). Arab. J. Chem. 2015, 8, 614–623. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Gangadhar, K.N.; Vizetto-Duarte, C.; Wubshet, S.G.; Nyberg, N.T.; Barreira, L.; Varela, J.; Custódio, L. Maritime halophyte species from Southern Portugal as sources of bioactive molecules. Mar Drugs. 2014, 12, 2228–2244. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.J.; Vizetto-Duarte, C.; Gangadhar, K.N.; Zengin, G.; Mollica, A.; Varela, J.; Custódio, L. In vitro and in silico approaches to unveil the mechanisms underlying the cytotoxic effect of juncunol on human hepatocarcinoma cells. Pharm. Rep. 2018, 70, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/CDB (accessed on 18 October 2022).
- Lindamulage, I.K.; Soysa, P. Evaluation of anticancer properties of a decoction containing Adenanthera pavonina L. and Thespesia populnea L. BMC Compl. Altern. Med. 2016, 16, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalakrishnan, A.; Kariyil, B.J.; John, R.; Usha, P.A. Phytochemical evaluation and cytotoxic potential of chloroform soluble fraction of methanol extract of Thespesia populnea in human breast cancer cell lines. Pharm. Mag. 2019, 15, 150. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/D48 (accessed on 18 October 2022).
- Vuong, Q.V.; Chalmers, A.C.; Jyoti Bhuyan, D.; Bowyer, M.C.; Scarlett, C.J. Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chem. Biodiv. 2015, 12, 907–924. [Google Scholar] [CrossRef]
- Hrubik, J.D.; Kaišarević, S.N.; Glišić, B.D.; Jovin, E.Đ.; Mimica-Dukić, N.M.; Kovačević, R.Z. Myrtus communis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells. Zb. Matice Srp. Za Prir. Nauk. 2012, 123, 65–73. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/6262K (accessed on 18 October 2022).
- Xu, Z.; Chang, L. Plantaginaceae. In Identification and Control of Common Weeds; Springer: Singapore, 2017; pp. 339–374. [Google Scholar]
- Bora, M.S.; Sarma, K.P. Phytoremediation of heavy metals/metalloids by native herbaceous macrophytes of wetlands: Current research and perspectives. In Emerging Issues in the Water Environment during Anthropocene; Springer: Singapore, 2020; pp. 261–284. [Google Scholar]
- Smith, E.; Palethorpe, H.M.; Tomita, Y.; Pei, J.V.; Townsend, A.R.; Price, T.J.; Young, J.P.; Yool, A.J.; Hardingham, J.E. The purified extract from the medicinal plant Bacopa monnieri, bacopaside II, inhibits growth of colon cancer cells in vitro by inducing cell cycle arrest and apoptosis. Cells 2018, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koczurkiewicz, P.; Łojewski, M.; Piska, K.; Michalik, M.; Wójcik-Pszczoła, K.; Szewczyk, A.; Halaszuk, P.; Pekala, E.; Muszyńska, B. Chemopreventive and anticancer activities of Bacopa monnieri extracted from artificial digestive juices. Nat. Prod. Commun. 2017, 12, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, K.; Izawa, Y.; Onodera, D.; Tagami, M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol. Cell Biochem. 2018, 441, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomed. 2019, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Gheena, S.; Ezhilarasan, D. Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Hum. Exper. Toxicol. 2019, 38, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Aithal, M.G.; Rajeswari, N. Bacoside A induced sub-G0 arrest and early apoptosis in human glioblastoma cell line U-87 MG through notch signalling pathway. Brain Tumor Res. Treat. 2019, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, S.; Romano, A. The medicinal potential of plants from the genus Plantago (Plantaginaceae). Ind. Crop. Prod. 2016, 83, 213–226. [Google Scholar] [CrossRef]
- Poor, M.H.S.; Khatami, M.; Azizi, H.; Abazari, Y. Cytotoxic activity of biosynthesized Ag nanoparticles by Plantago major towards a human breast cancer cell line. Rend. Lincei 2017, 28, 693–699. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/627FM (accessed on 18 October 2022).
- Caperta, A.D.; Róis, A.S.; Teixeira, G.; Garcia-Caparros, P.; Flowers, T.J. Secretory structures in plants: Lessons from the Plumbaginaceae on their origin, evolution and roles in stress tolerance. Plant Cell Environ. 2020, 43, 2912–2931. [Google Scholar] [CrossRef]
- Singh, K.; Naidoo, Y.; Baijnath, H. A comprehensive review on the genus Plumbago with focus on Plumbago auriculata (Plumbaginaceae). Afr. J. Trad. Compl. Altern. Med. 2018, 15, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Crespo, M.B.; Lledó, M.D. Two new North African genera related to Limoniastrum (Plumbaginaceae). Bot. J. Linn. Soc. 2000, 132, 165–174. [Google Scholar] [CrossRef]
- Lledó, M.D.; Crespo, M.B.; Cox, A.V.; Fay, M.F.; Chase, M.W. Polyphyly of Limoniastrum (Plumbaginaceae): Evidence from DNA sequences of plastid rbcL, trnL intron and trnL-F intergene spacer. Bot. J. Linn. Soc. 2000, 132, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Ozenda, P. Flore du Sahara, 2nd ed.; CNRS: Paris, France, 1983. [Google Scholar]
- Dijkema, K.S.; Beeftink, W.G.; Doody, J.P.; Géhu, J.M.; Heydemann, B.; Rivas Martinez, S. La Végétation Halophile en Europe (Prés Salés); Council of Europe: Strasbourg, France, 1984. [Google Scholar]
- Barone, R.; Scholz, S.; Mesa, R. Limoniastrum monopetalum (L.) Boiss. (Plumbaginaceae), adición a la flora de Fuerteventura (Islas Canarias). Bot. Macarones. 1995, 21, 59–60. [Google Scholar]
- Ferrer-Gallego, P.P.; Iamonico, D.; Iberite, M.; Laguna, E.; Crespo, M.B. Lectotypification of two names in Limoniastrum (Plumbaginaceae). Taxon 2014, 63, 1342–1346. [Google Scholar] [CrossRef] [Green Version]
- Krifa, M.; Alhosin, M.; Muller, C.D.; Gies, J.P.; Chekir-Ghedira, L.; Ghedira, K.; Mely, I.; Bronner, C.; Mousli, M. Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation. J. Exp. Clin. Cancer Res. 2013, 32, 30. [Google Scholar] [CrossRef]
- Medini, F.; Bourgou, S.; Lalancette, K.; Snoussi, M.; Mkadmini, K.; Coté, I.; Abdelly, C.; Legault, J.; Ksouri, R. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. S. Afr. J. Bot. 2015, 99, 158–164. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/627FW (accessed on 18 October 2022).
- Hodkinson, T.R. Evolution and taxonomy of the grasses (Poaceae): A model family for the study of species-rich groups. Ann. Plant. Rev. Online 2018, 1, 255–294. [Google Scholar] [CrossRef]
- Ashokkumar, K.; Selvaraj, K.; Muthukrishnan, S.D. Cynodon dactylon (L.) Pers.: An updated review of its phytochemistry and pharmacology. J. Med. Plants Res. 2013, 7, 3477–3483. [Google Scholar] [CrossRef]
- Khlifi, D.; Hayouni, E.A.; Valentin, A.; Cazaux, S.; Moukarzel, B.; Hamdi, M.; Bouajila, J. LC-MS analysis, anticancer, antioxidant and antimalarial activities of Cynodon dactylon L. extracts. Ind. Crop. Prod. 2013, 45, 40–247. [Google Scholar] [CrossRef]
- El Molla, S.G.; Motaal, A.A.; El Hefnawy, H.; El Fishawy, A. Cytotoxic activity of phenolic constituents from Echinochloa crus-galli against four human cancer cell lines. Rev. Bras. Farmacogn. 2016, 26, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/627NK (accessed on 18 October 2022).
- Xu, Z.; Deng, M. Portulacaceae. In Identification and Control of Common Weeds; Springer: Dordrecht, The Netherlands, 2017; pp. 319–323. [Google Scholar]
- Syed, S.; Fatima, N.; Kabeer, G. Portulaca oleracea L.: A mini review on phytochemistry and pharmacology. Int. J. Biol. Biotechnol. 2016, 13, 637–641. [Google Scholar]
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed. Res. Int. 2015, 2015, 925631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.Y.; Qu, L.P.; Yue, X.Q.; Gu, W.; Zhang, H.; Xin, H.L. Portulacerebroside A induces apoptosis via activation of the mitochondrial death pathway in human liver cancer HCCLM3 cells. Phytochem. Lett. 2014, 7, 77–84. [Google Scholar] [CrossRef]
- Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2). Asian Pac. J. Cancer Prev. 2014, 15, 6633–6638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Portulaca oleracea seed oil exerts cytotoxic effects on human liver cancer (HepG2) and human lung cancer (A-549) cell lines. Asian Pac. J. Cancer Prev. 2015, 16, 3383–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/FPS (accessed on 18 October 2022).
- Nebula, M.; Harisankar, H.S.; Chandramohanakumar, N. Metabolites and bioactivities of Rhizophoraceae mangroves. Nat. Prod. Bioprosp. 2013, 3, 207–232. [Google Scholar] [CrossRef]
- Liao, P.C.; Hwang, S.Y.; Huang, S.; Chiang, Y.C.; Wang, J.C. Contrasting demographic patterns of Ceriops tagal (Rhizophoraceae) populations in the South China sea. Austr. J. Bot. 2011, 59, 523–532. [Google Scholar] [CrossRef]
- Urashi, C.; Teshima, K.M.; Minobe, S.; Koizumi, O.; Inomata, N. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol. Evol. 2013, 3, 2251–2261. [Google Scholar] [CrossRef]
- Warsinah, E.; Sismindari, A.; Susidarti, R.A. Antiproliferative effect and apoptosis induced in human cell lines by Brugiera gymnorhiza barks methanol extract. Indones. J. Cancer Chemoprevent. 2011, 2, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/626XM (accessed on 18 October 2022).
- Shah, V.V.; Shah, N.D.; Patrekar, P.V. Medicinal plants from Solanaceae family. Res. J. Pharm. Technol. 2013, 6, 143–151. [Google Scholar]
- Tang, W.M.; Chan, E.; Kwok, C.Y.; Lee, Y.K.; Wu, J.H.; Wan, C.W.; Chan, R.Y.K.; Yu, P.H.-F.; Chan, S.W. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology 2012, 20, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Xiao, B.; Jiang, Z.; Zhao, J.; Huang, X.; Guo, J. Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Med. Oncol. 2011, 28, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Kong, Q.; Liu, F.; Chen, J.; Sang, H. The anticancer activity of Lycium barbarum polysaccharide by inhibiting autophagy in human skin squamous cell carcinoma cells in vitro and in vivo. Int. J. Polym. Sci. 2019, 2019, 5065920. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.F.; Dai, Z.; Wang, B.; Wei, X.; Yu, H.F.; Yan, Z.R.; Zhao, X.D.; Luo, X.D. The anticancer activities phenolic amides from the stem of Lycium barbarum. Nat. Prod. Bioprospecting 2017, 7, 421–431. [Google Scholar] [CrossRef]
- Lee, Y.T.; Hsieh, Y.L.; Yeh, Y.H.; Huang, C.Y. Synthesis of phenolic amides and evaluation of their antioxidant and anti-inflammatory activity in vitro and in vivo. RSC Adv. 2015, 5, 85806–85815. [Google Scholar] [CrossRef]
- Catalogue of Life. Available online: https://www.catalogueoflife.org/data/taxon/GWM (accessed on 18 October 2022).
- Sun, L.; Yang, R.; Zhang, B.; Zhang, G.; Wu, X.; Zhang, W.; Zhang, B.; Chen, T.; Liu, G. Phylogenetic relationships among species of Tamarix (Tamaricaceae) in China. Biochem. Syst. Ecol. 2016, 69, 213–221. [Google Scholar] [CrossRef]
- Channa, F.N.; Shinwari, Z.K.; Ali, S.I. Phylogeny of Tamaricaceae using PsbA-trnH nucleotide sequences. Pak. J. Bot. 2018, 50, 983–987. [Google Scholar]
- Bahramsoltani, R.; Kalkhorani, M.; Zaidi, S.M.A.; Farzaei, M.H.; Rahimi, R. The genus Tamarix: Traditional uses, phytochemistry, and pharmacology. J. Etnophar. 2020, 246, 112245. [Google Scholar] [CrossRef]
- Abaza, M.S.; Al-Attiyah, R.A.; Bhardwaj, R.; Abbadi, G.; Koyippally, M.; Afzal, M. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells. Pharm. Biol. 2013, 51, 1110–1124. [Google Scholar] [CrossRef] [Green Version]
- Abaza, M.S.I.; Afzal, M.; Al-Attiyah, R.A.J.; Guleri, R. Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: Possible mechanism of action. BMC Comp. Altern. Med. 2016, 16, 384. [Google Scholar] [CrossRef] [Green Version]
- KalamUrfi, M.; Mujahid, M.; Badruddeen, J.; Khalid, M.; Khan, M.I.; Usmani, A. Tamarix gallica: For traditional uses, phytochemical and pharmacological potentials. J. Chem. Pharm. Res. 2016, 8, 809–814. [Google Scholar]
- Boulabaa, M.; Tsolmon, S.; Ksouri, R. Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G2/M cell cycle arrest. Cytotechnology 2013, 65, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Momtazi-borojeni, A.; Behbahani, M.; Sadeghi-Aliabadi, H. Antiproliferative activity and apoptosis induction of crude extract and fractions of Avicennia marina. Iran. J. Bas. Med. Sci. 2013, 16, 1203. [Google Scholar]
- Yang, X.W.; Dai, Z.; Wang, B.; Liu, Y.P.; Zhao, X.D.; Luo, X. Antitumor triterpenoid saponin from the fruits of Avicennia marina. Nat. Prod. Bioprospecting 2018, 8, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santhanakrishnan, D.; Perumal, R.K.; Kanth, S.V.; Rao, J.R.; Chandrasekaran, B. Antioxidant and cytotoxic effects of methanolic extract of Salicornia brachiata L. in HepG2 cells. Int. J. Res. Pharm. Sci. 2013, 4, 512–517. [Google Scholar]
- Sudarshan, S.M.; Chintalapani, S.; Narasu, M.L. Phytochemical analysis and determination of antibacterial and anticancer activities of Suaeda monoica. Asian J. Pharm. Clin. Res. 2019, 12, 91–96. [Google Scholar]
- El-Attar, M.M.; Awad, A.A.; Abdel-Tawab, F.M.; Kamel, H.A.; Ahmad, S.A.; Hassan, A.I. Assessment of cytotoxic and anticancer activity of Zygophyllum album and Suaeda palaestina extracts on human liver cancer cell lines. J. Agric. Sci. 2019, 27, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, F.; Zhao, S.; Guo, B.; Ling, P.; Han, G.; Cui, Z. Purification of an acidic polysaccharide from Suaeda salsa plant and its anti-tumor activity by activating mitochondrial pathway in MCF-7 cells. Carbohydr. Polym. 2019, 215, 99–107. [Google Scholar] [CrossRef]
- Sumathi, S.; Dharani, B.; Sivaprabha, J.; Raj, S.; Padma, P.R. In vitro growth inhibitory activity of Prosopis cineraria leaves in MCF-7 breast cancer cell line. Int. J. Res. Pharm. Sci. 2013, 4, 40–44. [Google Scholar]
- Alsaraf, K.M.; Mohammad, M.H.; Al-Shammari, A.M.; Abbas, I.S. Selective cytotoxic effect of Plantago lanceolata L. against breast cancer cells. J. Egypt Nat. Cancer Instig. 2019, 31, 10. [Google Scholar] [CrossRef]
- Venkateswarlu, G.; Rani, T.S.; Vani, M.; Vineela, P.A.J. In-vitro anticancer activity of petroleum ether extract of Cynodon dactylon. J. Pharm. Phytochem. 2015, 4, 164–168. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Custodio, L.; Garcia-Caparros, P.; Pereira, C.G.; Castelo-Branco, P. Halophyte Plants as Potential Sources of Anticancer Agents: A Comprehensive Review. Pharmaceutics 2022, 14, 2406. https://doi.org/10.3390/pharmaceutics14112406
Custodio L, Garcia-Caparros P, Pereira CG, Castelo-Branco P. Halophyte Plants as Potential Sources of Anticancer Agents: A Comprehensive Review. Pharmaceutics. 2022; 14(11):2406. https://doi.org/10.3390/pharmaceutics14112406
Chicago/Turabian StyleCustodio, Luísa, Pedro Garcia-Caparros, Catarina Guerreiro Pereira, and Pedro Castelo-Branco. 2022. "Halophyte Plants as Potential Sources of Anticancer Agents: A Comprehensive Review" Pharmaceutics 14, no. 11: 2406. https://doi.org/10.3390/pharmaceutics14112406
APA StyleCustodio, L., Garcia-Caparros, P., Pereira, C. G., & Castelo-Branco, P. (2022). Halophyte Plants as Potential Sources of Anticancer Agents: A Comprehensive Review. Pharmaceutics, 14(11), 2406. https://doi.org/10.3390/pharmaceutics14112406