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Abstract: Salt-tolerant plants (halophytes) are widely distributed worldwide in several environments
such as coastal salt marshes, sand dunes, and inland deserts. To cope with the harsh conditions
that characterize those habitats, which include high salinity and radiation levels, such plants have
developed morphological and physiological traits, the latter including the synthesis and accumulation
of important secondary metabolites such as alkaloids and polyphenols. While essential in maintaining
plant homeostasis, these compounds are highly valued in the medical field for the treatment of several
human diseases, including cancer. Cancer is one of the most life-threatening disorders worldwide,
which accentuates the need to improve current cancer therapies and minimize potential adverse
secondary side-effects. In this context, the pharmacological evaluation of natural compounds has
attracted growing interest since nature has already provided some important anti-cancer drugs.
This review compiles, for the first time, research regarding the anticancer activity of halophytes
from different families, including, whenever possible, the bioactive molecules involved in such
therapeutical properties along with possible mechanisms of action. The introduction section provides
some pertinent information regarding cancer and a summary of the most important characteristics of
halophytes. The next section gives information regarding the in vitro and in vivo cytotoxic properties
of several halophyte species, grouped by families, including contents in bioactive metabolites and
proposed modes of action, if possible. Lastly, the conclusion presents the most relevant metabolites
and/or promising species and extracts that could be further explored in anticancer drug research.

Keywords: cancer; natural products; cytotoxic; salt-tolerant plants; antitumoral drugs

1. Introduction

Cancer is a group of diseases characterized by malignant neoplasms arising from the
abnormal and uncontrolled cell proliferation that invades and destroys the surrounding
tissue and, if not controlled, can result in death [1,2]. With an established complex link
between cancer and aging and the increased risk factors of an unhealthy lifestyle, cancer
is undoubtfully a major health problem in developed and developing countries [3–7]. It
is estimated that, by 2040, the number of new cancer cases diagnosed per year will be
higher than 27.5 million worldwide, with 16.3 million cancer deaths due to population
growth and aging [8]. Globally, lung and breast cancers are the most frequently diagnosed
and are the leading causes of cancer-related death in men and women, respectively [9].
Significant advances have been made in cancer research in the last 20 years concerning
its general biology, prevention, and treatment [10]. Currently, chemotherapy is one of the
most common cancer therapeutic approaches, although secondary effects are known and
include a negative impact on the immune system, and the effectiveness of this therapeutic
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approach can be limited by drug resistance [11,12]. Therefore, new anticancer drugs and
therapies that concomitantly minimize its harmful side-effects are still in urgent demand.

In the war against cancer, the role of natural compounds has become of crucial interest,
and the scientific community has placed great effort in identifying novel sources of antitu-
moral molecules among medicinal plants and, more recently, marine organisms [10,13]. The
pharmacological evaluation of natural compounds has rendered some important anticancer
drugs such as paclitaxel and its derivatives from the bark of the Pacific yew tree (Taxus
brevifolia Nutt, family: Taxaceae), or vincristine and vinblastine from Madagascar periwin-
kle (Catharanthus roseus (L.) G. Don, family: Apocynaceae) [14]. However, in addition to
glycophyte plants and some marine species, other organisms including halophytes contain
metabolites with potential use as anticancer drugs.

Although the definition of halophytes has yet to reach consensus, some authors define
them as plants completing their life cycle in environments with a salt concentration of
around 200 mM of sodium chloride (NaCl) (20 dS m−1) or more [15–17]. They represent
nearly 1% of the global flora diversity and inhabit different ecosystems such as beaches,
rocky shores, saltmarshes, estuaries, and inland deserts [17–19]. Such areas are character-
ized by stressful abiotic conditions, (e.g., high salinity, radiation levels, and drought), which
trigger the production and accumulation of reactive oxygen species (ROS) in the plants,
leading to cellular and tissue damage, metabolic disorders, and senescence. Halophytes are
equipped with strong antioxidant defense systems to counteract the negative effects of ROS,
including antioxidant enzymatic mechanisms and the synthesis of secondary metabolites,
such as phenolic compounds, saponins, and alkaloids [18,20]. These molecules have a
crucial protective role in the plant and exhibit relevant bioactivities, including antioxidant,
anti-inflammatory, and antitumoral, which are linked to beneficial therapeutic proper-
ties and could help explain the use of some halophytes in traditional medicine and as
food [18,21,22].

There are several studies focused on the anticancer properties of a high number of
halophytic species, but this information is scattered in the literature. Therefore, our aim
was to compile and summarize existing information regarding the anticancer activity of
halophytes, the molecules involved in such properties, and the possible mechanisms of
action (Tables 1–4). The Web of Science database and Google Scholar (as a search engine)
were consulted to retrieve the most updated articles on the topic under investigation.
The keywords “salt-tolerant plants” and “halophytes” were used alone or in combination
with, for example, “anticarcinogenic”, “antitumoral”, or “anticancer”. Only English articles
having full text were considered. The contribution was distributed according to the different
families and species, which were previously checked in the eHALOPH database [23]. The
correspondence between the name of the cell lines referred in the text and the type of
cancer can be found in Table 1, together with a list of halophyte species, organs and
extracts tested, cell lines/types of cancer assessed, and obtained half-maximal inhibitory
concentrations (IC50) values and proposed mechanisms of action, when provided by the
authors. However, at the end of the study, a summary is presented referring only to
the results obeying the criteria of cytotoxic activity for crude extracts (IC50 < 30 µg/mL;
Table 3) and isolated compounds (IC50 ≤ 10 µM; Table 4) considered relevant to proceed
for antitumoral applications, as established by the American National Cancer Institute
(NCI) [24] and the National Institutes of Health (NIH) [25], respectively.

2. Anticancer Activity of Halophytes

Halophytes are a valuable source of bioactive molecules for the prevention and treat-
ment of human chronic diseases, including cancer [26]. In this review, information is
presented by family, namely, Acanthaceae, Aizoaceae, Amaranthaceae, Apiaceae, Asteraceae,
Brassicaceae, Convolvulaceae, Cymodoceaceae, Cyperaceae, Fabaceae, Juncaceae, Malvaceae, Myr-
taceae, Plantaginaceae, Plumbaginaceae, Poaceae, Portulacaceae, Rhizophoraceae, Solanaceae, and
Tamaricaceae. Data regarding the anticancer activity of different halophyte species, including
organs and extracts tested, cell lines/types of cancer assessed, and obtained IC50 values,
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are summarized in Table 1. Table 2 contains detected molecules in the active extracts from
halophyte species with anticancer properties, while Table 3 summarizes information on
extracts/fractions of selected species that could be further explored in the search for new
drug-leads, as established by the American National Cancer Institute (NCI) [24], including
cytotoxic activity and chemical composition of the extracts (when possible), cell lines tested,
obtained IC50 values, and proposed mechanisms of action. Lastly, data related to the
cytotoxic activity of selected isolated compounds, according to the criteria of the National
Institutes of Health (NIH) [25], are presented on Table 4.

2.1. Acanthaceae Family

Acanthaceae currently comprises 192 genera and 5504 species growing in Indonesia,
Malaysia, Africa, Brazil, and Central America [27,28]. The presence of bioactive metabolites
such as alkaloids, phenols, terpenoids, tannins, quinones, cardiac glycosides, saponins,
carbohydrates, and flavonoids, highlights the medicinal relevance of this family in the
treatment of several diseases, including cancer [29]. This review focuses on the anticancer
activity of the halophytic genera Acanthus and Avicennia.

Acanthus ilicifolius L. (holly leaved acanthus) is a mangrove shrub rich in triterpenes, al-
kaloids, and flavonoids, traditionally used in Chinese and Indian medicine against asthma,
headache, and skin diseases [30]. An ethanolic leaf extract from A. ilicifolius significantly
reduced the viability of HepG2 cells in a dose-dependent manner (92% of cytotoxicity at
100 µg/mL) via apoptosis induction potentially associated with DNA damage [31] (Table 1).
A water root extract from A. ilicifolius reduced the viability of HepG2 cells, as observed
in the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay (IC50
value of 39.76 µg/mL after 48 h of incubation) [32], via apoptosis induction related to DNA
damage (Table 1). Ethanol extracts from leaves and roots of holly leaved acanthus were
also able to reduce the viability of MCF7 cells (breast carcinoma), with IC50 values of 24.22
and 29.20 µg/mL for leaf and root extracts, and of PA1 cells (ovarian carcinoma), with IC50
values of 15.74 µg/mL and 20.00 µg/mL for leaf and root, respectively (Table 1) [33]. The
chemical profile of the active extracts was not established. Acanthus ebracteatus Vahl. (holly
mangrove), is traditionally used in Thai medicine as an anticancer agent [34]. A protein
hydrolysate (<3 kDa) from the aerial parts of A. ebracteatus, reduced the viability of A431
cells, with an IC50 value of 425.9 ng protein/mL after 24 h of incubation (Table 1). Partially
purified peptides were obtained from this hydrolysate and resulted in the synergistic effects
against cell viability of A431 cells, via apoptosis induction [34].

Avicennia comprises mangroves distributed in the Indo-Western Pacific and Atlantic
eastern Pacific areas. Some Avicennia species are effective against cancer due to the presence
of different classes of molecules, including alkaloids, phenols, flavonoids, tannins, iridoid
glucosides, and terpenoids [35]. A methanol leaf extract from Avicennia alba Blume signif-
icantly reduced the viability of MCF7 and HeLa cells, evaluated by the MTT assay, with
IC50 values of 57.02 and 44.30 µg/mL, respectively, after 48 h of incubation [36] (Table 1).
After treatment with the leaf extract of A. alba both cell lines exhibited morphological
modifications, i.e., a reduction in cell size and cell detachment. The extract was analyzed
using gas chromatography–mass spectrometry (GC–MS) allowing for the identification
of 12 compounds, the most abundant ones being catechol borane (11%), neophytadiene
(17%), and hexadecanoic acid (29%) (Table 2), but their cytotoxicity toward the tested cell
lines was not established [36]. Moreover, since GC–MS mainly allows for the detection of
lipophilic molecules, one cannot exclude the possibility that hydrophilic compounds with
cytotoxic properties may be present in the methanol leaf extract but were not detected with
the chromatographic system used. A chloroform/methanol extract from leaves of A. alba
reduced the viability of WiDr cells (IC50 = 173.78 µg/mL after 24 h of incubation) using
doxorubicin as the positive control and induced cell arrest in the G0–G1 phase, resulting in
apoptosis induction [37] (Table 1).

Avicennia marina (Forssk.) Vierh, one of the most abundant and common mangrove
species, is used in traditional medicine for the treatment of different diseases, including
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rheumatism and smallpox, and it contains different molecules with therapeutic properties,
such as luteolin 7-O-methylether and chrysoeriol 7-O-glucoside [38]. An ethyl acetate
extract of leaves and stems of A. marina reduced the viability of MCF7 cells (MTT assay),
with values of cell growth inhibition of 65% and 75% after treatment for 48 h with the
extract at 100 and 200 µg/mL, respectively [39] (Table 1). When applied at the concentration
of 200 µg/mL the extract induced apoptosis in a concentration-dependent manner through
ROS production and disruption of the mitochondrial membrane potential (∆ψm); however,
no PARP-1 cleavage was detected, and a significant decrease in caspase-7 protein levels was
observed. A significant level of autophagy was also detected at the same concentration [39].
A methanol extract of the same species reduced the viability of HeLa cells in a concentration-
dependent manner (tested concentrations: 50, 100, 250, 500, and 1000 µg/mL) with an IC50
value of 107 µg/mL [40] (Table 1). The chemical profile of the extracts was not established
by the authors and, therefore, the bioactive compounds were not identified. In another
study targeting the same species [38], water, ethanol, methanol, and ethyl acetate extracts
from leaves and seeds were tested toward different human cancer cell lines, namely, breast
(AU565, MDA-MB-231, and BT483), liver (HepG2 and Huh7), and NIH3T3 cells. The ethyl
acetate extract from leaves had the highest cytotoxicity, especially toward cancer cells,
which was attributed by the authors to its highest phenol content. The ethyl acetate extract
suppressed xenograft MDA-MB-231 tumor growth in nude mice, and induced apoptosis in
cancer cells through apoptosis inhibition and inhibition of cell migration. This extract was
further fractionated by column chromatography, and resulting fractions were retested for
anticancer properties. The most active factions, F2-5, F3-2-9, and F3-2-10, had IC50 values
lower than 20 µg/mL, and they were profiled by 1H-NMR and 13C-NMR, allowing for the
identification of the flavonoids luteolin and quercetin standards, and avicennones D and
E. The antiproliferative activity of the flavonoids was confirmed [38]. Additional studies
about the anticarcinogenic activity of other halophytic species of the Acanthaceae family can
be found in Table 1.

2.2. Aizoaceae Family

Aizoaceae contains mostly succulent plants with 1910 species currently recognized,
distributed across 125 genera [41,42]. The Mesembryanthemum genus, for example, is used in
traditional medicine to treat several diseases such as hepatic conditions and diabetes, and it
contains several bioactive compounds, including flavonoids and catechins [43]. An ethanol
crude extract from leaves of Mesembryanthemum crystallinum L. (ice plant), and obtained
hexane, ethyl acetate, butanol, and water fractions were tested for their effect on the growth
of HCT116 cells [44] (Table 1). The application of the ethyl acetate and butanol fractions
resulted in a dose-dependent inhibition of cell growth (at 125, 250, and 500 µg/mL, applied
for 24 and 48 h), as observed in the MTT assay, a reduction in the levels of intracellular ROS
(at 250 and 500 µg/mL, using 2′,7′-dichlorofluorescin-diacetate), and apoptosis induction
(at 250 and 500 µg/mL, during 48 h). Treatment with the butanol fraction also resulted in
cell-cycle arrest in the G2/M phase [44]. Samples were evaluated for total phenolic content
(TPC), using the Folin–Ciocalteau (F–C) assay, and it was observed that the butanol fraction
had the highest TPC (5.4 mg gallic acid equivalent/g) [44], suggesting that phenolics may
be related to the detected cytotoxicity. However, no attempt was made by the authors to
identify the active molecules present in this sample.

The application of ethanol, methanol, acetone, hexane, and diethyl-ether extracts
from whole plants of Sesuvium portulacastrum L. (sea purslane) decreased the viability of
MDA-MB-231, IMR32, and HCT116 cell lines, as assessed by MTT after 24 h of incubation,
using doxorubicin as the standard [45]. The hexane extract had the highest cytotoxic
activity with IC50 values of 942.07, 703.40, and 407.87 µg/mL for MDA-MDB-231, IMR32,
and HCT116 cell lines (Table 1). Despite the considerably high IC50 values obtained, the
possible mechanisms of action of the extracts were evaluated using phase contrast-inverted
microscope observation and propidium iodide staining, which revealed the presence of
typical features of apoptotic cells, including nuclear condensation, cell shrinkage, and the



Pharmaceutics 2022, 14, 2406 5 of 45

presence of apoptotic bodies [45] (Table 1). No attempt was made by the authors to unravel
the chemical composition of the extracts.

2.3. Amaranthaceae Family

Amaranthaceae currently comprises 2398 species grouped in 182 genera [46], which
can be found in a wide range of habitats from arid and semiarid regions to saline en-
vironments and subtropical areas; it contains flavonoids, phenolic acids, terpenes, and
triterpene saponins, and it displays important pharmacological properties such as anticar-
cinogenic [47,48].

Arthrocnemum sp. is a small genus of succulent halophytes present in coastal marshes
of South Africa, Asia, Mediterranean, Europe, and Northern America, and it contains
several compounds such as phenols, flavonoids, and tannins with described therapeutic
properties, including antibiotic, hypoglycemic, and antitumoral [49,50]. The application of
an 80% methanol extract from shoots of Arthrocnemum indicum (Willd.) Moq. significantly
reduced the viability of Caco-2 cells, as observed by the MTT assay [50] (Table 1). Fluo-
rescence microscopy observation through DAPI (4,6-diamidino-2-phenylindole) staining
showed that cells exhibited a decline of DNA synthesis, while flow cytometry allowed for
the observation of cell-cycle arrest at the G2/M phase after 72 h of exposure to the extract at
the concentration of 100 µg/mL [51] (Table 1). The extract was profiled by liquid chromatog-
raphy/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS), and
high levels of phenolic compounds were detected such as gallic acid, cyanidin, chrysoeriol,
quercetin, catechol, syringic acid, and luteolin (Table 2), although their cytotoxicity toward
Caco-2 cells was not established [51]. However, it is known that some of the detected
compounds exhibit antitumoral properties. For example, chrysoeriol was identified as a
selective inhibitor of the PI3K–AKT–mTOR pathway and, therefore, linked with cell cycle
regulatory effects; it also reduced the proliferation of human multiple myeloma cells (RPMI
8226 and KM3, with IC50 values of 26 and 35 µmol/L at 48 h) but not of peripheral blood
mononuclear cells (PBMNCs) [52].

Several Atriplex species are halophytic [53]. An ethanol extract from leaves of Atriplex
halimus L. (sea orache) significantly reduced the viability of HepG2 cells (IC50 = 54.86 µg/mL
after 24 h of incubation) (Table 1) via apoptosis induction linked to the expression of
TP53, BCL2, and BAX genes [54] (Table 1). No information was provided by the au-
thors regarding the chemical components of such extract, but it is known that A. hal-
imus is characterized by the presence of different bioactive compounds, including sy-
ringetin derivatives and the flavonol glycosides atriplexoside A [3′-O-methylquercetin-
4′-O-β-apiofuranoside-3-O-(6′ ′-O-α-rhamnopyranosyl-β glucospyranoside) and atriplexo-
side B [3′-O-methylquercetin-4′-O-(5′ ′-O-β-xylopyranosyl-β-apiofuranoside)-3-O-(6′ ′-O-
α-rhamnopyranosyl-β-glucopyranoside)], which may be related to the detected cytotoxic
activity [55–60].

Chenopodium contains weedy herbs native to Asia, Europe, and America, rich in
phenolics, saponins, and triterpenoids, conferring them therapeutic properties such as
laxative, analgesic, and anticarcinogenic [61]. The edible species Chenopodium album L.
(lamb’s quarters) is valued in traditional medicine for its anticancer properties [62]. A
petroleum ether extract of branches and leaves from C. album reduced the viability of
A549 cells in a dose-dependent manner, showing an IC50 of 33.31 µg/mL using gemcitabine
as a positive control, which was linked to cell-cycle arrest at the G1 phase [63] (Table 1).
Essential oil from whole plants of Chenopodium ambrosioides L. (Mexican tea) decreased the
viability of MCF7 cells by inducing DNA fragmentation (IC50 values of 18.75, 9.45, and
10.50 µg/mL at 6, 24, and 48 h, respectively) when compared to the control treatment [64]
(Table 1). In another study, an essential oil of the same species also displayed a significant
cytotoxic activity toward RAJI cells, with an IC50 value of 1.0 µg/mL, which was probably
related to the high levels of ascaridole, detected using GC with flame ionization detection
(GC-FID), GC–MS, and proton nuclear magnetic resonance (1H-NMR) [65] (Tables 1 and 2).
Ascaridol is a monoterpene with a strong in vitro capacity to decrease the growth of
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different tumor cell lines and is, therefore, considered as a strong candidate for the treatment
of cancer [65]. Chenopodium quinoa Willd is a pseudocereal originated from the Andes of
South America with recognized nutritional and functional properties that rendered the
species the status of “functional food” [66]. Polysaccharides were extracted from quinoa
seeds with petroleum ether and purified by column chromatography, revealing mainly
galacturonic acid and glucose monosaccharides. This polysaccharide fraction was applied
toward cancer (SMMC 7721 and MCF7) and “normal” (L02 and MCF 10A) cell lines, for
24 and 48 h, allowing for IC50 values ranging from 53.4 to 121.4 µg/mL, without affecting
“normal” cell viability [66] (Table 1).

Salicornia species (glasswort, sea asparagus, or samphire) are edible succulent halo-
phytes highly appreciated in gourmet cuisine due to their organoleptic properties [67]. The
ethyl acetate and methanol leaf extracts from Salicornia europaea L. reduced the viability of
MCF7 cells with IC50 values of 97.9 and 117.1 µg/mL for the ethyl acetate and methanol
extracts, respectively, after 24 h of incubation [68]. A qualitative analysis of the extracts
identified tannins and saponins, which may be associated with the in vitro antitumor
capacity. Moreover, a GC–MS analysis showed the presence of 32 and 29 compounds in
corresponding ethyl acetate and methanol extracts, respectively, which were not assessed
individually against the cancer cells [68]. Tannins are phenolic compounds with a high
molecular weight, while saponins contain a steroidal or triterpenoid aglycone and one
or more sugar chains [69]. Both groups of compounds exhibit antitumoral properties; for
example, saponins generally decrease cellular proliferation by binding to cholesterol struc-
tures on cell membranes, forming pores and holes by binding to specific receptors followed
by the induction of apoptosis, while tannins can hamper cancer cell proliferation through
antioxidant processes and apoptosis induction [70,71]. However, the presented results
must be analyzed with caution, since the phytochemical analysis reported by the authors
only targets lipophilic compounds, without unraveling the possible cytotoxic molecules
present in the methanol (polar) extract.

Suaeda comprises around 80 to 100 succulent species distributed in semideserts, deserts,
and seashores. These species are usually edible and contain several bioactive components,
such as phenolics, flavonoids, and terpenoids, conferring them with bioactive properties,
including anticarcinogenic [72,73]. A hexane extract from leaves of Suaeda ruticose (L.)
Forssk. (shrubby seablight) reduced the viability of HCT116, HepG2, and MCF7 cell lines,
being more effective toward HCT116 cells (IC50 = 17.2 µg/mL) [74] (Tables 1 and 4). The
cytotoxicity of the extract was tested using the sulforodamine B (SRB) assays for 72 h using
doxorubicin as a positive control with IC50 values of approximately 0.5 µg/mL. This extract
caused cell-cycle arrest at the G0–G1 phase and induced apoptosis, especially in HCT116
cells that exhibited chromatin condensation and membrane blebbing (Table 4). The extract
was profiled using liquid chromatography coupled to electrospray ionization quadrupole
time-of-flight mass spectrometry (LC–ESI-QTOF-MS/MS) and several molecules were iden-
tified, including monoterpenes (dihydrojasmone, jasmolone, terpinene-4-ol), diterpenes
(pimaric acid, steviol, and momilactone B), and phenolics (quercinol, zingerone, zingerol,
and neovaflan) (Table 4), but its contribution to the detected cytotoxicity was not directly
established [74]. However, there are several reports on the antitumoral properties of phe-
nolic compounds [56–59]. Specifically, zingerone reduced the viability of HCT116 cells
through ROS-mediated apoptosis in colon cancer cells [75]. Monoterpenes and diterpenes
have reported cytotoxic properties [76,77]. For instance, dihydrojasmone was identified as
one of the active compounds toward HeLa and NIH/3T3 cell lines, in a methanol extract
from Rumex hastatus D. Don [78], while steviol significantly reduced the viability of MCF7
cells via apoptosis induction [79]. A dichloromethane extract from the shoots of S. fruticosa
significantly reduced the viability of A549 (IC50 = 49 µg/mL), DLD1 (IC50 = 10 µg/mL),
Caco-2 (IC50 = 140 µg/mL), and HT-29 cells (IC50 = 12 µg/mL), which was assessed using
the resazurin reduction test after 48 h of incubation (Tables 1 and 4). Nevertheless, the
bioactive compounds present in the chemical profile of the extracts were not identified [80].
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Additional studies on the anticarcinogenic activity of other halophytic species of this family
are summarized in Table 1.

2.4. Apiaceae Family

Apiaceae currently comprises 3916 species distributed across 457 genera dispersed
worldwide [81], and it is characterized by the presence of polyacetylenes displaying impor-
tant bioactivities, including anticarcinogenic [82]. In this family, there are two genera of
halophytic species, Eryngium sp. and Crithmum sp., with described cytotoxic properties
against human cancer cells.

Eryngium includes approximately 250 species present in Eurasia, North Africa, North
and South America, and Australia. Eryngium species are frequently used as ornamentals
or as a food source and are valued in traditional medicine as a diuretic, to treat diarrhea,
headaches, and digestive problems. These properties are potentially associated with the
presence of terpenoids, triterpenoids, polyacetylenes, flavonoids, and coumarins [83]. The
cytotoxic effects of aqueous extracts from shoots and roots of Eryngium maritimum L. were
assessed against human cancer lines (HepG2, HEP-2, and U138MG) and on a “normal” cell
line (Vero), using the MTT assay after 24 h of incubation [70] (Table 1). The root extracts
were overall more cytotoxic, and the IC50 values ranged from 30.3 to 50 µg/mL. However,
a strong reduction in cellular viability was also observed in the “normal” cell line, which
suggest no selectivity toward cancer cells [70] (Table 1). Although the phytochemical profile
of the extracts was not established by the authors, other reports identified several cytotoxic
molecules in E. maritimum, including saponins, which create pores and perforations on the
cellular membranes by binding to specific receptors, followed by apoptosis induction by,
for example, stimulation of the cytochrome c-caspase 9-caspase 3-pathways [70,71].

Crithmum maritimum L. (sea fennel) is traditionally used as a cooking ingredient and
in folk medicine for its stimulating and diuretic effects [84]. An ethyl acetate extract from
the whole sea fennel plant reduced the proliferation of Huh7 and HepG2 cell lines, by
interfering with the cell cycle, specifically on the shift of phases with increasing number of
cells in the G0/G1 phase after 24 h of incubation and in the G2/M phase after 48 h [85].
The extract induced an increase in necrotic and apoptotic cancer cells, assessed by cytofluo-
rimetric analysis although the values of IC50, but the chemical profile of the extract was not
assessed [85] (Table 1).

2.5. Asteraceae Family

Asteraceae currently contains 1733 genera and 35,988 species [86], including several
used as ornamentals (e.g., Calendula and Chrysanthemum) or for food (e.g., Helianthus
annuus) and medicinal (e.g., Artemisia sp. and Echinacea sp.) purposes [87]. Achillea
millefolium L. (yarrow) is an aromatic perennial herb with traditional medicinal uses such as
wound healing and anti-inflammatory activity, and it contains different classes of bioactive
compounds, including flavonoids and terpenoids [88]. A methanol extract from yarrow
shoots was applied toward prostate cancer (DU145) and “normal” skin (HFFF2) cells, at
different concentrations (20, 100, 500, 1000, and 2000 µg/mL), alone or in combination
with bleomycin, an anticancer agent. The yarrow extract was not toxic toward “normal”
cells, but had significantly enhanced cytotoxicity induced by bleomycin showing 60% and
49% survival rate at doses of 1000 and 2000 µg/mL, respectively, which may indicate
that this extract contains molecules able to improve the effectiveness of bleomycin, while
minimizing negative side-effects caused by toxicity toward “normal” cells. [88] (Table 1).
The extract was not profiled for chemical components, but there are reports of the presence
of several cytotoxic compounds in yarrow, such as achillinin A (guaianolide) and casticin
(flavonoid) [88,89]. In another work, petroleum ether, ethyl acetate, methanol, and water
extracts were prepared from aerial organs of yarrow and tested for toxicity, using the MTT
assay, on human cancer cell lines [90] (Table 1). The strongest cytotoxic effect was observed
after application of the ethyl acetate extract on HeLa (IC50 = 0.58 µg/mL) and K562 cells
(IC50 = 0.73 µg/mL), followed by the water (MCF-7, IC50 = 0.87 µg/mL) and the petroleum
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ether extract (K562, IC50 = 0.87 µg/mL) (Tables 1 and 4) [90]. The cytotoxic activity of
these extracts may be associated with its contents in phenolic acids, such as apigenin and
chlorogenic, p-coumaric, and rosmarinic acids (Table 4), which showed the capacity to block
oncogenic pathways due to the activation of caspases [91]. A methanol extract from aerial
parts of Limbarda crithmoides (L.) Dumort (commonly known as Inula crithmoides L.) was
able to decrease the viability of acute myeloid leukemia cells (OCI-AML3) when applied
at 100 and 200 µg/mL, for 24 h [92] (Table 1). This extract was submitted to a solvent–
solvent partitioning, affording n-hexane, dichloromethane, and aqueous methanol-soluble
fractions. The hexane and dichloromethane fractions exhibited a strong cytotoxicity toward
OCI-AML3 cells at concentrations of 15 or 10 µg/mL, which was ascribed to an increase in
apoptotic cells, especially in the G0/G1 phase by the mitochondria-dependent pathway.
The hexane extract was then further fractionated, leading to the isolation of two molecules,
which were identified by NMR as the thymol derivatives 10-acetoxy-8,9-epoxythymol
tiglate and 10-acetoxy-9Z-chloro-8,9-dehydrothymol, with the latter being the most active,
causing a decrease in cell viability at 1.25 µg/mL associated with apoptosis induction [92].

2.6. Brassicaceae Family

Brassicaceae is one of the largest dicotyledon family of flowering plants, including
model species and commercial crops, with 341 genera and 3921 species recognized at the
moment [93,94], but few studies have described the potential anticarcinogenic properties of
halophytes belonging to this family. One example is the annual halophyte Cakile maritima
Scop. (sea rocket), which is confined to maritime strandlines of sand and has agronomic
(oilseed and phytoremediation) and medicinal (diuretic, antiscorbutic, and purgative) prop-
erties [95]. Hexane, ethyl acetate, and methanol fractions were obtained from a methanol
extract prepared from aerial organs of sea rocket and tested for antiproliferative proper-
ties on Caco-2 and HeLa carcinoma cells [96] (Table 1). The hexane fraction significantly
reduced the viability of Caco-2 and HeLa cells, with IC50 values of 12 and 126 µg/mL after
24 h of incubation; respectively. Cisplatin was used as the positive control with values of
69 µg/mL (Caco-2) and 85 µg/mL (HeLa). The extract was profiled using GC–MS, and
the major molecules identified were, by area, 2-hydroxy-1,8-cineole, decane, and limonene,
which may contribute to the detected antiproliferative activity [96] (Table 4). For instance,
limonene has been reported with anticarcinogenic activity in HepG2 cells due to apoptosis
induction [97].

2.7. Convolvulaceae Family

Convolvulaceae currently contains 50 genera and 1952 species widely distributed in
tropical and temperate regions of the world [98,99]. Calystegia soldanella (L.) R. Br. ex Roem.
& Schult. (shore bindweed) is a perennial edible herb commonly found in coastal sand
dunes and foredunes of South Korea, East Asia, Europe, and the Pacific. Shore bindweed is
traditionally used for the treatment of, for example, rheumatic arthritis and scurvy, and
it displays relevant biological properties, including anticancer [100]. An 85% aqueous
fraction from combined methylene chloride and methanol crude extracts obtained from
whole plants of shore bindweed significantly decreased HepG2 cellular viability after 24 h
of incubation, in a concentration-dependent manner, via cell-cycle arrest at the G0–G1 and
S phases and apoptosis induction [100]. In another study, a methanol crude extract from
whole plants of the same species exhibited a potent cytotoxic activity toward A549 cells
(human lung cancer) and Col2 cells (human colon cancer), with IC50 values of 8.0 µg/mL
and 27.4 µg/mL, respectively [101]. A hydroalcoholic extract from shoots of Cressa cretica L.
decreased the viability of HepG2 cells (IC50 value = 2300 µg/mL after 72 h of incubation),
by increasing the expression of the proapoptotic protein BAX in detriment to antiapoptotic
proteins (BCL2) [102].
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2.8. Cymodoceaceae Family

This family presently contains six genera and 17 species of seagrasses [103,104]. A
water leaf extract from Cymodocea rotundata Ehrenb Hempr. ex Aschers. was supplemented
with silver nitrate (AgNO3, 1 M), to produce silver nanoparticles (AgNPs). AgNPs have
several medical applications, including coating of medical devices and wound dressings,
and they exhibit cytotoxic activity [105]. The obtained AgNPs exhibited high cytotoxicity
toward MG63 cells with an IC50 value of 25.31 µg/mL after 48 h of incubation [105]. AgNPs
were also produced by combining a water leaf extract of Cymodocea serrulata (R. Br.) Aschers.
& Magnus and AgNO3 (1 M), and they reduced the viability of A549 cells in a direct dose–
response manner (IC50 = 100 µg/mL after 24 h of incubation). The higher cytotoxicity of
the AgNPs was ascribed to the easy permeability to the cellular barriers and their high
affinity to biological macromolecules, as well as their capacity to release ROS [106]. No
attempt was made to identify the active molecules present in those samples [105,106]. A
hydroethanolic extract from shoots of the same species inhibited the proliferation of HepG2
cells (IC50 value of 82.92 µg/mL after 24 h of incubation with camptothecin as a positive
control with an IC50 value of 8 µg/mL) [107]. The extract had a high concentration of
tannins, flavonoids, and terpenoids, with described antitumoral properties [108], but no
attempt was made by the authors to identify the possible bioactive molecules [107].

2.9. Cyperaceae Family

Cyperaceae currently comprises 92 genera and 5888 species with a cosmopolitan distri-
bution [109,110]. Cyperus rotundus L. (nut grass) is a perennial halophyte species tradition-
ally used in the treatment of several pathologies, such as stomach disorders [111]. Methanol,
ethanol, and water extracts from nut grass rhizomes were tested toward MDA-MB-231
cells, for 24 h [112] (Table 1). The highest reduction in cell viability was obtained with the
ethanol extract, with an IC50 value of 225 µg/mL, through apoptosis induction via upreg-
ulation of the death receptor 4 (DR4), DR5, and proapoptotic BAX, and downregulation
of antiapoptotic survivin and BCL2 [112]. The active extract was not chemically profiled,
but it is known that the rhizomes of nut grass are rich in several bioactive molecules,
including flavonoids, tannins, and sesquiterpenes [113], with reported cytotoxic activity
against cancer cell lines.

2.10. Fabaceae Family

This family currently comprises 778 genera and 22,356 species [114] and includes five
genera of halophytic species, namely, Alhagi, Glycyrrhiza, Melilotus, Prosopis, and Sesbania,
with described anticarcinogenic properties [115].

The genus Alhagi is distributed throughout Asia, Australia, and Europe and used
traditionally for the treatment of, for example, gastroenteritis, ulcers, and rheumatoid
arthritis [116]. Alhagi maurorum Medik (camelthorn) is used for its anti-inflammatory
properties, which are ascribed to the presence of the triterpenoid lupeol [117]. In fact, lupeol
was isolated from a methanol extract of camelthorn aerial parts, and it decreased the cellular
viability of MCF7 and MDA-MB-231 cell lines, with one-fourth of IC50 values >100 µg/mL
(Table 1) [118]. The cytotoxic activity of lupeol was lower than that observed with its
epoxide form, and it was related to the increase in mRNA expression levels of apoptosis-
related genes (TP53, caspase-3 and BAX) and decrease in BCL2 gene expression [118].

Glycyrrhiza (liquorice) contains legumes endogenous to Asia and southern Europe
with reported anti-inflammatory and antiviral properties [119]. There are two Glycyrrhiza
halophytic species with anticarcinogenic activity: Glycyrrhiza glabra L. and G. uralensis Fisch.
Glycyrrhiza glabra is rich in phenolics, tannins, and especially glycyrrhizin, a triterpenoid
saponin [120]. Glycyrrhizin reduced the proliferation of HeLa cells at 320 µM after 24
and 48 h of incubation, via apoptosis, through mitochondrial depolarization. Moreover,
nuclear condensation, cell membrane lysis, and disintegration of organelles were observed
in treated cells through phase-contrast microscopy [121]. The cytotoxic potential of the
roots’ methanol extracts from G. glabra, collected in nine different areas from Italy, Turkey,
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Syria, Russia, Afghanistan, and Uzbekistan, was assessed against “normal” (HaCaT) and
cancer cell lines (A549 and HepG2) using the MTT assay, after 24 h of incubation [122].
Results disclosed variable cytotoxicity levels depending on the samples’ collection location
and season, potentially related to the influence of climatic conditions on the chemical
composition of the plants. Only one sample from Afghanistan was active toward HepG2
cells (IC50 of 248.5 µg/mL), while four extracts (from Italy, Afghanistan, and Syria) were
cytotoxic toward A549 cells (IC50 between 189.1 and 238.9 µg/mL) [122] (Table 1). How-
ever, samples were also cytotoxic toward “normal” cells (HaCat) (Table 1). An ethanol
root extract of G. glabra significantly reduced the proliferation of HT29 cells, at 200 µg/mL
after 24, 48, and 72 h of incubation as detected by the MTT assay [123]. Polymerase chain
reaction (PCR) studies revealed a downregulation of heat-shock protein 90 (HS90) gene
expression that can be related to the reduction in cellular viability, since the HSP90 prevents
tumor cells from undergoing apoptotic death; therefore, its blocking could assist active
antitumor effects [124]. A reduction in HeLa cell viability above 80% was reported after
application of an aqueous ethanol extract of G. uralensis rhizomes at the concentration
of 1.84 mg/mL, but the determination of the IC50 value was not reported [125]. Several
cytotoxic compounds were identified in that extract using UPLC–ESI-Q-TOF, including iso-
quercitrin, 4′demethylpodophyllotoxin glucoside, and podophyllotoxin, all with described
cytotoxic properties [125] (Table 2).

Melilotus contains 19 species of annual herbs widely distributed in North Africa
and Eurasia [126]. Melilotus indicus L. All. (sweet clover), the only described halophyte
within this genus, is used in traditional medicine as an analgesic, and it has reported
cytotoxic activity [127,128]. A methanol extract from the aerial parts of sweet clover
significantly decreased cell proliferation of HepG2 (IC50 = 16.60 µg/mL) and SNU-182 cells
(IC50 = 13.21 µg/mL) after 24 h of incubation, using staurosporine as a positive control
(Table 1) [127,128]. The extract was less cytotoxic toward L-02 cells (human “normal”
hepatic) (IC50 = 90.9 µg/mL) (Table 1) [127,128]. The application of the extract resulted in
an increase in the number of apoptotic cells and loss of mitochondrial membrane potential
(∆ψm) [128] (Table 1). The chemical composition of the extract was not established by
the authors.

Prosopis comprises 44 species, mainly small trees distributed in dry lands of America,
Africa, and Asia. Several Prosopis species contain anti-inflammatory, antidiabetic, and
anticancer compounds, namely, flavonoids, tannins, phenolics, and alkaloids [129]. Prosopis
juliflora Sw. DC. (mesquite) is an invasive species in India with reported ethnomedicinal
uses, for the treatment of eye and digestive disorders, to name a few [130]. Mesquite
extracts display relevant bioactivities, including anti-inflammatory, ascribed mainly to its
content in alkaloids [130]. A leaf methanol extract from Prosopis juliflora Sw. DC. (mesquite)
had cytotoxic effects on Molt-4 cells, with IC50 values of 90.5, 42.5, and 20.0 µg/mL after
24 h, 48 h, and 72 h of incubation, respectively, using mitomycin-C (6 µg/mL) as a positive
control (Table 1). The extract was less toxic toward “normal” cells (mitogen stimulated
T-lymphocyte cultures from peripheral human blood) [130]. A genotoxic assessment using
a cytokinesis-block micronucleus assay reported that the number of micronuclei showed
an increasing pattern with the application of increasing concentration of the extract [130].

The genus Sesbania comprises 60 to 85 species of herbs, shrubs, and trees distributed
mostly in the tropical and subtropical regions of Africa, Asia, Australia, and America.
Sesbania species have relevant pharmacological properties such as anti-inflammatory and
antidiabetic [131–133]. Sesbania grandiflora (Akatti) (sesbania or agathi), is a small perennial
tree with high levels of vitamins and minerals associated with anti-inflammatory, analgesic,
and antipyretic properties [134,135], and the anticancer properties of its fruit are mentioned
in the Ayurvedic literature [136]. Water, ethanol, and acetone leaf extracts of S. grandiflora
reduced the viability of IMR32 and HT29 cells with IC50 values of 200 µg/mL after 24 h of
incubation using doxorubicin as a control [137]. However, the chemical composition of the
extract was not unraveled by the authors. Additional studies regarding the anticarcinogenic
activity of other halophytes of this family are depicted in Table 1.
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2.11. Juncaceae Family

Juncaceae currently contains eight genera and 522 species [138] of herbs adapted to
salty marshes or badly drained soils and accumulate different phytoconstituents such as
flavonoids, triterpenes, steroids, and phenolic acid derivatives [139,140]. A phenanthrene,
juncunol (1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-2-ol), was identified in a diethyl
ether extract of leaves of Juncus acutus (L.) Torr. ex Retz. (spiny rush) and displayed
selective in vitro cytotoxicity toward HepG2, HeLa, and MDA-MB-468 cell lines [141].
Juncunol had an IC50 value of 18 µM in HepG2 cells after 72 h of incubation, determined
using the MTT assay, and it induced an increase in the number of apoptotic cells in a
concentration-dependent manner (IC50 value ± 25%) accompanied by a decrease in the
∆ψm [141,142]. Juncunol induced cell-cycle arrest in the G0/G1 phase, while showing no
hemolytic properties. In silico studies indicate that that compound seems to bind between
GC base pairs and, thus, may act as a DNA intercalator [142].

2.12. Malvaceae Family

This family of flowering plants currently contains 243 genera and 5461 species [143].
A leaf decoction from Thespesia populnea L. Sol. ex Corrêa (portia tree) had a high content of
total phenols and flavonoids and showed cytotoxic and antiproliferative properties toward
HEP-2 cells, as observed in the MTT (IC50 = 120.02 µg/mL after 24 h of incubation) and
SRB (IC50 = 77.06 µg/mL) assays [144]. Treated cells showed apoptotic characteristics
including membrane blebbing, cell shrinkage, nuclear and cytoplasmic condensation, and
formation of apoptotic bodies [144]. However, no attempt was made to identify the active
molecules present in this sample. The chloroform-soluble fraction of a methanol bark
extract of portia tree caused a reduction in cellular viability of MDA-MB-231 and MCF7
cells, with IC50 values of 23.97 and 20.62 µg/mL respectively, after 24 h of incubation [145].
Chemical analysis of the extract using GC–MS revealed the presence of steroids such as
cis-androsterone and fatty-acid derivatives, which display cytotoxic activity against cancer
cell lines [108,145].

2.13. Myrtaceae Family

Myrtaceae presently includes 134 genera and 6614 species [146]. Focus is given to
the genus Eucalyptus, especially Eucalyptus camaldulensis Dehnh, because is a salt-tolerant
species with reported antitumoral properties. Eucalyptus spp. are mainly cultivated for tim-
ber and paper production, but the presence of bioactive compounds, such as triterpenoids,
flavonoids, and tannins, confers E. camaldulensis with relevant bioactivities, including
antitumoral [147]. Methanol, ethyl acetate, n-butanol, and water extracts from leaves of
E. camaldulensis reduced the viability of MCF7 and MDA-MB-231 cell lines, according to
the MTT and SRB assays [148]. The ethyl acetate extract had the highest cytotoxicity with
IC50 values of 26.7 and 7.9 µg/mL for MTT and SRB in MCF7 cells, and IC50 values of
34.4 and 4.9 µg/mL for MTT and SRB in MDA-MB-231 cells after 24 h of incubation [148].
No attempt was reported by the authors to disclosure the molecules responsible for the
detected cytotoxic activity.

2.14. Plantaginaceae Family

This family currently contains 101 genera and 2165 species [149], widely distributed
worldwide but with preference for temperate zones [150]. Bacopa monnieri (L.) Wettst (water
hyssop) is a wetland macrophyte and contains bacopaside (II) (saponine), with reported
anticarcinogenic properties [151,152]. The anticarcinogenic properties of artificially digested
(artificial saliva and artificial gastric juice) methanol extracts from B. monnieri reduced the
motility (capacity of cell migration in a process of cancer development) of DU145 cells [153].
Nevertheless, the IC50 value was not determined by the authors. The extracts, analyzed by
HPLC, were rich in phenolic compounds such as chlorogenic, caffeic, and syringic acids
and bacoside A, with reported anticarcinogenic properties [154–157].
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Within the Plantaginaceae family, the Plantago genus is the largest with 275 annual and
perennial species widespread around the world, some with traditional uses as antipyretic,
anti-inflammatory, and antitumoral agents [158]. Plantago major L. (fleawort) is an important
medicinal plant due to its richness in bioactive metabolites, such as alkaloids and flavonoids,
especially luteolin-7-O-β-glucoside, with antitumoral properties [159]. Silver particles
produced by combining a water extract from P. major seeds and silver nitrate (AgNO3, 0.1 M)
significantly decreased the viability of MCF7 cells with an IC50 value of approximately
12 µg/mL after 24 h of incubation [159]. However, no attempt was made by the authors
to identify the bioactive compounds present in this extract. Information targeting other
Plantaginaceae species is summarized in Table 1.

2.15. Plumbaginaceae Family

Plumbaginaceae encompasses several species adapted to survive under saline condi-
tions and currently includes 1138 species distributed across 26 genera [160]. The genus
Plumbago contains 18 species (shrubs or perennial herbs) characterized by the presence
of flavonoids, phenols and saponins, conferring several properties including anticarcino-
genic [161,162]. The genus Limoniastrum Heist. ex Fabr. comprises the halophytic species
Limoniastrum monopetalum (L.) Boiss. (≡ Statice monopetala L.) and Limoniastrum guyoni-
anum Boiss. [163,164], thriving in coastal and saline dry areas of the Mediterranean and
northern Saharan Africa [165–168]. Limoniastrum guyonianum is traditionally used in the
treatment of gastric infections [169]. A gall aqueous extract from L. guyonianum reduced
the viability of HeLa cells with IC50 values of 170 and 140 µg/mL after 24 and 48 h of
incubation, respectively [169]. This extract was rich in flavonoids and induced DNA hy-
pomethylation and apoptosis due to its capacity to arrest cell-cycle progression in G2/M
(Table 1). Due to the high levels of polyphenolic compounds detected in the extract, the
antiproliferative and proapoptotic effects of such metabolites on HeLa cells were hypoth-
esized by the researchers [169]. In another study, hexane, dichloromethane, ethanol, and
methanol extracts from L. densiflorum (Guss.) Kuntze shoots were tested for cytotoxicity on
cancer and “normal” cell lines using the resazurin reduction assay, after 48 h of treatment
(Table 1) [170]. The dichloromethane extract was the most bioactive sample, with IC50
values of 29 and 85 µg/mL toward A-549 and DLD-1, without significantly reducing the
viability of a human skin fibroblast cell line (Table 1). The major compounds present in that
extracts were identified using RP-HPLC as trans 3-hydroxycinnamic acid, myricetin and
isorhamnetin, which may be related to the observed cytotoxic activity [170].

2.16. Poaceae Family

This grass family currently includes 11,917 species divided across 796 genera [171,172].
In this family, only two genera of halophytes are reported with anticarcinogenic properties,
namely, Cynodon and Echinochloa. The most representative Cynodon species is Cynodon
dactylon L. Pers (Bermuda grass), a weed with several medicinal properties, such as antidi-
abetic, diuretic, and purifying, as well as in vitro cytotoxic properties [173]. The in vitro
antitumoral properties of petroleum ether, dichloromethane, acetone, methanol/water
(3/1), and water extracts from Bermuda grass were appraised on a breast cancer cell line,
and cell viability was assessed by evaluating (3H)-hypoxanthine incorporation after 48 h
of incubation [174] (Table 1). The highest cytotoxicity values were observed after appli-
cation of the water, acetone, and petroleum ether extract, with IC50 values of 57.2, 38,
and 39 µg/mL (Table 1) [174]. The acetone and ether petroleum extracts were profiled
using LC–MS, allowing for the identification of several bioactive anthocyanins, namely, del-
phinidin, petunidin, malvidin, and cyanidin glucosides (delphinidin-3-O-acetylglucoside,
petunidin-3-O-caffeoylglucoside-5-O-glucoside, petunidin-3-O-coumarylglucoside-5-O-
glucoside, malvidin-3-O-monoglucoside, delphinidin-3-O-acetylglucoside-pyruvic acid,
petunidin-3-O-acetylglucoside-5-O-glucoside, and cyanidin-3,5-O-diglucoside) [174]
(Table 2). There is no information related to the specific anticancer properties of the
detected anthocyanins; however, several others, such as delphinidin, cyanidin, malvidin,
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and corresponding glycosides, exhibit antitumoral properties in different cell lines [174].
An ethanol extract (70%) from grains of Echinochloa crus-galli (L.) P. Beauv. (cockspur grass)
significantly reduced the viability of HCT-116 and HeLa cell lines, with IC50 values of
11.2 and 12.0 µg/mL, respectively [175] (Table 1). The active ethanolic crude extract was
fractionated using n-hexane, chloroform, ethyl acetate, and n-butanol, with the ethyl acetate
fraction exhibiting the lowest IC50 value (3.8 µg/mL). Fractionation of this active fraction
allowed the isolation and identification of eight phenolic compounds, which exhibited
significant cytotoxic activities toward the tested cells [175]. The most active molecules were
5,7-dihydroxy-3′,4′,5′-trimethoxy flavone and 5,7,4′ -trihydroxy-3′,5′-dimethoxy flavone
(tricin), the latter with IC50 values of 7.2, 8.6, 10.8, and 19.9 µM against HepG2, HeLa,
HCT116, and MCF7 cell lines, respectively, with similar results to the commercial anti-
cancer drug, doxorubicin [175]. Further data on the antitumoral properties of other species
of the Poaceae family can be found in Table 1.

2.17. Portulacaceae Family

This family contains one genus with presently 150 species [176] distributed worldwide,
including the edible Portulaca oleracea L. (purslane), a halophyte succulent annual plant
with important nutraceutical and antioxidant properties [177,178]. The anticarcinogenic
activity of this species can be ascribed to the presence of several compounds, such as
portulacerebroside A, portulacanones B, and 2,2′-dihydroxy-4′,6′-dimethoxychalcone [179]
(Table 2). Portulacerebroside A induced apoptosis in HCCLM3 cells via activation of the
p38 MAPK and JNK-triggered mitochondrial death pathway [180]. An ethanol extract
from purslane seeds reduced the viability (MTT assay) of HepG2 cells in a concentration-
dependent manner with IC50 values of approximately 75 µg/mL after 24 h of incubation
via apoptosis induction according to cellular morphology modification, i.e., a reduction
in cellular size and adhesion capacity (Table 1) [181]. Oil from seeds of the same species
reduced the proliferation of HepG2 and A-549 cancer cell lines, at concentrations ranging
from 250 to 1000 µg/mL as observed using the MTT and neutral red uptake assays, after 24 h
of incubation in both cancer cell lines [182]. However, the high concentrations of the extract
used (up to 1000 µg/mL) must be highlighted; even at 100 µg/mL, no reduction in cell
viability was observed (Table 1) When treated with the highest concentration, cells exhibited
morphological modifications typical of apoptotic cells, such as loss of cell adhesion capacity,
shrinkage, and round shape [182]. However, the chemical profile of the extract was not
determined by the authors.

2.18. Rhizophoraceae Family

This family includes mangroves and comprises currently 148 species and 15 gen-
era [183,184]. It has two halophytic species with reported cytotoxic properties against
human cancer cells, namely, Bruguiera gymnorhiza (L.) Lam (black mangrove) and Ceriops
tagal (Pers.) C. B. Rob. (oriental mangrove) [185,186]. A methanol extract from black man-
grove stem bark reduced the proliferation of HeLa, RAJI, and myeloma cell lines, with IC50
values of 133, 504, and 384 µg/mL after 24 h of incubation using doxorubicin as a standard
control, via apoptosis induction, since DNA fragmentation was detected by fluorescence
with double staining (ethidium bromide–acrydine orange) [187].

2.19. Solanaceae Family

Solanaceae contains 100 genera and 2925 species currently recognized [188], many of
them with a high worldwide economic importance as cultivated crops, such as Solanum
lycopersicum L. (tomato) [189]. The number of halophytic species with anticarcinogenic
activity in this family is scarce, and reports have mainly focused on Lycium barbarum L.
(Chinese wolfberry). Chinese wolfberry’s dried fruits are widely used in traditional Chinese
medicine for its anticancer properties, potentially associated with the presence of different
bioactive compounds, including polysaccharides (proteoglycans), scopoletin (phytoalexin),
and 2-O-β-D-glucopyranosyl-L-ascorbic acid (vitamin C analog) [190]. A polysaccharide-
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rich aqueous extract from Chinese wolfberry fruits reduced the proliferation of SW480 and
Caco-2 cell lines, as observed by the crystal violet and MTT assays, with IC50 values of 600
and 650 µg/mL respectively, after 4 days of incubation, with a high capacity to arrest cell-
cycle progression in the G0/G1 phase [191]. An ethanol extract from the dried fruit residue
of this species was cytotoxic toward A431 cells, with an IC50 value of 873.7 µg/mL after 24 h
of incubation, determined by water-soluble tetrazolium-8-[2-(2-methoxy-4-nitrophenyl)-3-
(4-nitrophenyl)-5-(2,4-disulfophenyl)-2Htetrazolium] monosodium salt (CCK-8) assay [192].
The same authors conducted in vivo studies in mice submitted to an intraperitoneal injec-
tion of 50 mg/kg of the crude extract, reporting a lower volume and weight of the formed
tumor and a higher survival rate of tumor-bearing nude mice [192]. Several phenolic amides
were isolated from an ethanol extract from the stem of L. barbarum and tested toward glioma
cell lines, using the MTS method [180]. 4-O-Methylgrossamide and grossamide exhibited
the highest capacity to decrease the viability of GSC-3# and GSC-12# cell lines, especially
the latter compound, with IC50 values of 6.40 and 5.85 µg/mL respectively. [193]. The
precise mechanism of action was not appraised for the isolated compounds; however,
there are reports that phenolic amides can inhibit tumor necrosis factor-alpha (TNF-α) and
nuclear factor-kappa B (NF-κB), which may be related to the detected cytotoxic effect [194].

2.20. Tamaricaceae Family

Tamaricaceae contains five genera with currently 110 species [195], widely distributed
around the world, and several are halophytic [196,197]. Tamarix plants (salt cedar) contain
several bioactive metabolites such as methylferulate and syringic acid with antineoplastic
properties [198]. Syringic acid was isolated from a methanol extract of Tamarix aucheri-
ana (Decne.) Baum aerial parts and was cytotoxic toward SW1116 and SW837 cells in a
time- (24–72 h of incubation) and dose-dependent manner, with IC50 values of 0.95 and
1.2 mg/mL, respectively [199]. Cytotoxicity was related to an increase in the percentage of
apoptotic cells, attributed to the antimitogenic effect of syringic acid [199]. Methylferulate
was isolated from the same type of extract and significantly reduced the viability of SW1116
and SW837 cells, with IC50 values of 1.7 and 1.9 mM after 24 h of incubation, respectively,
being responsible for cell-cycle arrest in the S and G2/M phases and apoptosis induction,
together with a reduction in NF-κB DNA-binding activity [200].

Tamarix gallica L. is traditionally used as an expectorant, antidiarrheal, and laxative,
potentially attributed to the presence of ellagic and gallic acids, anthocyanins, tannins,
flavonones, isoflavonones, and resveratrol in its leaves [201]. A methanol extract from
shoots, leaves, and flowers of T. gallica significantly reduced the viability of Caco-2 cells,
related to a decrease in DNA biosynthesis, as observed using fluorescence microscopy after
DAPI staining, while a reduction in the percentage of cells in the G0/G1 and S phases was
detected using flow cytometry [202].

3. Conclusions and Future Perspectives

As stated in Section 1, we included in this review paper published work, which we
considered relevant, related to the cytotoxic effects of halophytes. Such reports included
results obtained with crude extracts, fractions, and pure compounds, using in vitro and
in vivo assays, and they occasionally presented IC50 values, phytochemical profile of the
active samples, and identification of active molecules, along with proposed mechanisms of
action. There are some drawbacks of the identified reports. For example, several authors
tested considerably high concentrations of the target extracts, up to 1000 mg/mL, in some
cases. Moreover, the IC50 values were not reported in a high number of studies, which
impairs a critical evaluation of the obtained results. Additionally, several reports failed
to establish the chemical composition of the cytotoxic extracts and/or the identification
of the molecules responsible for the detected activity. Lastly, information about the effect
of the extracts on cell lines from nontumoral origin and, therefore, the selectivity of the
extracts toward cancer cells was not always provided. According to the American Na-
tional Cancer Institute NCI), only crude extracts/fractions displaying IC50 values lower
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than 30 µg/mL in the preliminary assay are considered promising and should be further
explored as sources of antitumoral compounds. Therefore, we consider that extracts from
the species and extracts included in Table 3 could be explored in detail targeting the iso-
lation of anticancer leads, namely, C. ambrosioides, S. fruticosa, A. millefolium, C. soldanella,
C. rotundata, M. indicus, T. populnea, E. camaldulensis, P. major, P. lanceolata, E. crus-galli,
and L. barbarum. Moreover, isolated compounds with IC50 values ≤10 µM are considered
promising anticancer leads. Therefore, we highlight the compounds in Table 3, namely,
6′-O-(n-butanol) ilekudinoside B ester (A. marina), 5,7-dihydroxy-3′,4′,5′-trimethoxy flavone
and tricin (E. crus-galli), Portulacerebroside A (P. oleraceae), and grossamide (L. barbarum).
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Table 1. List of halophyte species, organs and extracts tested, cell lines/types of cancer assessed, and obtained half-maximal inhibitory concentrations (IC50) values.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Acanthaceae Acanthus ebracteatus
Vahl Shoots Protein hydrolysate A431 cells (skin

carcinoma) 425.9 ng/mL [34]

Acanthus ilicifolius L. Leaves and roots Ethyl acetate

MCF7 cells (breast
carcinoma)

PA1 cells (ovarian
carcinoma)

24.22 µg/mL (leaf)
29.20 µg/mL (root);
15.74 µg/mL (leaf)
20.00 µg/mL (root)

nd [33]

Leaves Ethanol
HepG2 cells

(hepatocellular
carcinoma)

100 µg/mL Apoptosis induction (DNA damage) [31]

Roots Water
HepG2 cells

(hepatocellular
carcinoma)

39.76 µg/mL Apoptosis induction (DNA damage) [32]

Avicennia alba Blume Leaves Methanol
MCF7 and HeLa cells
(breast and cervical

carcinomas)

57.02 and
44.30 µg/mL

Reduction in cell size and
cell detachment [36]

Leaves Chloroform/methanol WiDr cells (human
colon carcinoma) 173.78 µg/mL Apoptosis induction (cell arrest in

the G0–G1 phase) [37]

Avicennia marina
(Forssk.) Vierh Leaves Methanol HeLa cells (cervical

carcinoma) 107 µg/mL nd [40]

Leaves Methanol extract
and fractions

MDA-MB-231 cells
(breast carcinoma)
HEK cells (human
embryonic kidney)

MDA-MB-231 cells:
Crude extract

250 µg/mL
Active faction

(luteonin) 28 µg/mL
(97 µM)

Luteonin: apoptosis induction
(DNA fragmentation, decreased
expression of BCL2, decreased

expression of TP53).

[203]

Fruits

Isolated compounds
from

ethanol/butanol
fractions of

ethanol extract

GSC-3# and GSC-18#
cells (human glioma

stem cell lines)

6′-O-(n-butanol)
ilekudinoside B ester:
12.21 µg/mL (14 µM)

for GSC-3# and
5.23 µg/mL (6 µM)

for GSC-18#

nd [204]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Leaves and stems Ethyl acetate
MCF-7 cells (estrogen

positive breast
cancer)

na

Apoptosis induction (ROS
production, disruption of ∆ψm),

decrease in caspase-7 protein
levels); autophagy

[39]

Leaves and seeds

Water, ethanol,
methanol, ethyl

acetate extracts, and
fractions from

the latter

AU565,
MDA-MB-231, and

BT483 cells
(breast cancer)

HepG2 and Huh7
cells (liver)

NIH3T3 cells
(nontumoral)

Fraction 2-5:
0.75 µg/mL on

AU565 cells
Fraction 3-2-9:
2.1 µg/mL on
AU565 cells

Apoptosis induction (DNA
fragmentation, cell nucleus

condensation and fragmentation,
decreased PARP and caspase-8,

increased caspase 3)

[38]

Leaves Ethyl acetate
Xenograft

MDA-MB-231 tumor
growth in nude mice

nd Suppression of tumor growth [38]

Aizoaceae Mesembryanthemum
crystallinum L. Leaves

Ethanol extract, ethyl
acetate and butanol

fractions

HCT116 cells
(colon carcinoma) na

Ethyl acetate and butanol fractions:
reduction of ROS, apoptosis
induction). Butanol fraction:

cell-cycle arrest at G2/M phase

[44]

Sesuvium
portulacastrum L. Whole plant

Methanol, acetone,
hexane, and
diethyl-ether

MDA-MB-231 cells
(breast carcinoma),

IMR-32cells
(neuroblastoma),

HCT116 cells (colon
carcinoma)

Hexane extract:
942.07, 703.40 and
407.87 µg/mL for
MDA-MDB-231,

IMR32 and
HCT116 cells

Apoptosis induction: nuclear
condensation, cell shrinkage, of

apoptotic bodies
[45]

Amaranthaceae Arthrocnemum
indicum Willd. Moq. Shoots 80% methanol Caco-2 cells

(colon carcinoma) na Decline of DNA synthesis, cell-cycle
arrest at the G2/M phase. [51]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Atriplex halimus L. Leaves Ethanol

HepG2 cells
(hepatocellular

carcinoma)
MCF-7 cells

(human breast
adenocarcinoma)

A549 cells
(lung cancer)

HepG2: 54.86 µg/mL
MCF-7: 153.6 µg/mL
A549: 101.9 µg/mL

Apoptosis induction (expression of
TP53, BCL2, and BAX genes) [54]

Chenopodium album L. Branches and
leaves Petroleum ether A549 cells

(lung carcinoma) 33.31 µg/mL Cell-cycle arrest at the G1 phase [63]

Chenopodium
ambrosioides L. Whole plant Essential oil MCF7 cells

(breast carcinoma)

18.75, 9.45 and
10.50 µg/mL after 6,

24 and 48 h of
incubation

nd [64]

Chenopodium
ambrosioides L. Leaves

Essential oil,
ethanol extract,

dichloromethane
fraction

RAJI cells
(lymphoblast)

K562 cells
(lymphoblast)

Essential oil:
1.0 g/mL;

dichloromethane
fraction: 34.0 g/mL

(RAJI cells)
Ethanol extract:

47.0 g/mL
(K562 cells)

nd [65]

Chenopodium quinoa
Willd. Seeds Polysaccharide

fraction

SMMC 7721 cells
(liver cancer)

MCF7 cells (breast
carcinoma)

L02 and MCF 10A
cells (“normal”

cell line)

121.4 µg/mL (24 h),
53.4 µg/mL (48 h)
83.5 µg/mL (24 h),
64.6 µg/mL (48 h)

nd [66]

Salicornia brachiata
Roxb Shoots Methanol

HepG2 cells
(hepatocellular

carcinoma)
267.84 µg/mL Modification of cellular morphology [205]

Salicornia europaea L. Leaves Ethyl acetate
and methanol

MCF7 cells
(breast carcinoma)

97.9 and
117.1 µg/mL nd [68]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Suaeda fruticosa (L.)
Forssk Leaves Hexane

HCT116 cells (colon
carcinoma)

HepG2 cells
(hepatocellular

carcinoma),
and MCF7 cells

(breast carcinoma)

17.2 µg/mL
33 µg/mL

28.1 µg/mL

Apoptosis induction, cell-cycle
arrest at the G0–G1 phase,
chromatin condensation,

membrane blebbing

[74]

Suaeda fruticosa (L.)
Forssk Shoots

Hexane,
dichloromethane,

methanol, and water

A549, DLD-1, Caco-2
and HT-29

cells (lung and
colon carcinoma)

Hexane extract: 49,
10, 140 and
12 µg/mL

nd [80]

Suaeda monoica
Forssk Whole plant

Ethanol, methanol,
acetone, and
diethyl ether

MDA-MB-231 cells
(breast carcinoma)

Ethanol:
172.38 µg/mL;

methanol:
148.77 µg/mL;

acetone:
185.56 µg/mL;
diethyl ether:
60.18 µg/mL

nd [206]

Suaeda palaestina
Eig Zohary Shoots Dichloromethane

A549 cells (lung
carcinoma)

HepG2 cells
(hepatocellular

carcinoma)

34.82 µg/mL
30.76 µg/mL nd [207]

Suaeda salsa L. Shoots

Acidic
polysaccharide

(molecular
weight = 53.8 kDa;

composition:
mannose, rhamnose,

glucuronic acid,
galacturonic acid,

galactose and xylose
in a molar ratio of 0.6:
8.0: 1.0: 83.6: 5.0: 7.2).

MCF7 and MCF-10A
cells (human breast

carcinoma)
na

Apoptosis induction (reduction of
∆ψm, increase in the levels of BAX,

cytochrome C, caspase-3 and
caspase-9, decrease in the level

of Bcl-2

[208]



Pharmaceutics 2022, 14, 2406 20 of 45

Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Apiaceae Crithmum
maritimum L. Whole plant Hexane, ethyl acetate,

methanol, ethanol

Huh7 and HepG2
cells (hepatocellular

carcinoma)
na

Ethyl acetate extract: cell-cycle
arrest at the G0/G1 phase after 24 h

of incubation and in the G2/M
phase after 48 h; increase in necrotic

and apoptotic cells

[85]

Eryngium
maritimum L. Shoots and roots Water

HepG2 cells (human
hepatocellular

carcinoma)
Hep2 cells (human

laryngeal epidermoid
U138-MG cells

(human glioma)
Vero cells (African

green monkey
kidney)

Shoots: 32.4 µg/mL;
roots: 35.0 µg/mL
Shoots: 50 µg/mL;
roots: 30.3 µg/mL

Shoots: 32.9 µg/mL;
roots: 16.3 µg/mL

nd [70]

Asteraceae Achillea millefolium L. Shoots
Methanol extract
combined with

bleomycin

DU145 cells (prostate
carcinoma) and

HFFF2 cells (human
non-malignant

fibroblasts)

nd nd [88]

Aerial parts
Petroleum ether,

ethyl acetate,
methanol, water

K562 cells (human
myelogenous

leukemia),
HeLa cells (human
cervical carcinoma)
MCF7 cells (human
breast carcinoma)

A549 cells (human
non-small cell lung)

Ethyl acetate:
0.58 µg/mL (HeLa),
0.73 µg/mL (K562)
Water: 0.87 µg/mL

(MCF-7)
Petroleum ether:

0.87 µg/mL (K562)

Ethyl acetate extract: pre-G1
apoptosis and cell growth arrest in

G2/M (HeLa) [90]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Limbarda crithmoides
(L.) Dumort Aerial parts

Methanol extract,
n-hexane,

dichloromethane,
and aqueous

methanol-soluble
fractions, isolated

compounds

OCI-AML3 cells
(acute myeloid

leukaemia)
nd

10-acetoxy-9Z-chloro-8,9-
dehydrothymol: apoptosis

induction
[92]

Brassicaceae Cakile maritima Scop. Aerial organs

Methanol extract,
and n-hexane, ethyl

acetate, and
methanol

Caco2 and HeLa cells
(colon and cervical

carcinoma)

Hexane fraction: 12
and 126 µg/mL nd [96]

Convolvulaceae Calystegia soldanella L. Whole plant

Methylene chloride
and methanol

extracts, n-hexane,
85% methanol,

n-butanol and water
fractions

HepG2 cells
(hepatocellular

carcinoma)
na

Methanol fraction: cell-cycle arrest
at the G0–G1 and S phases,

apoptosis induction
[100]

Calystegia soldanella L. Whole plant Methanol

A549 cells (human
lung cancer)

Col2 cells (human
colon cancer)

8.0 µg/mL
27.4 µg/mL nd [101]

Cressa cretica L. Shoots Hydroalcoholic
HepG2 cells

(hepatocellular
carcinoma)

2300 µg/mL Increased BAX, decreased BCL2 [102]

Cymodoceaceae Cymodocea rotundata
Ehrin. Leaves

Silver particles
produced by

combining water
extract and silver

nitrate (AgNO3, 1 M)

MG63 cells
(osteosarcoma) 25.31 µg/mL nd [105]

Cymodocea serrulata
(R. Br.) Aschers.

& Magnus
Leaves

Silver particles
produced by

combining water
extract and silver

nitrate (AgNO3, 1 M)

A549 cells
(lung carcinoma) 100 µg/mL nd [106]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Shoots Hydroethanolic
HepG2 cells

(hepatocellular
carcinoma)

82.92 µg/mL nd [107,108]

Cyperaceae Cyperus rotundus L. Rhizomes Methanol, ethanol,
and water.

MDA-MB-231 cells
(breast carcinoma) 225 µg/mL

Apoptosis induction via
upregulation of the death receptor 4
(DR4), DR5, and pro-apoptotic BAX,

and downregulation of
antiapoptotic BCL2

[112]

Fabaceae Alhagi maurorum
Medik Aerial organs Lupeol (isolated from

a methanol extract)

MCF7, MDA-MB-231
and MCF 10A cells
(breast carcinoma)

>100 µg/mL

Increased mRNA expression and
level of TP53, caspase-3, and BAX

genes, decrease in BCL2
gene expression

[118]

Glycyrrhiza glabra L. Root Methanol

A549 cells (human
lung carcinoma)

HepG2 cells (human
hepatocellular

carcinoma)
HaCaT cells

(immortal human
keratinocyte)

189.1–238 µg/mL
248.5 µg/mL

158.8–241.9 µg/mL
nd [122]

Root Ethanol HT-29 cells (colon
carcinoma) na Downregulation of heat-shock

protein 90 (HS90) gene expression [123]

Glycyrrhiza uralensis
Fisch Root Ethanol/water

(7:3, v/v)
HeLa cells

(cervical carcinoma) na nd [125]

Melilotus indicus L. Aerial parts Methanol

HepG2 cells (human
hepatocellular

carcinoma)
SNU-182 cells

(hepatocellular
carcinoma)

L-02 cells (human
“normal” hepatic)

16.60 µg/mL
13.21 µg/mL
90.9 µg/mL

Increase in the number of apoptotic
cells, loss of mitochondrial
membrane potential (∆ψm)

[128]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Prosopis cineraria L.
Druce Leaves Methanol

MCF7 cells (breast
carcinoma) and
HBL-100 cells
(noncancerous

breast)

na nd [209]

Prosopis juliflora
Sw. DC. Leaves Methanol Molt-4 cells (human

T-cell leukemia)

90.5, 42.5 and
20.0 µg/mL (24 h,
48 h and 72 h of

incubation)

Increased number of micronuclei [130]

Sesbania grandiflora L. Leaves Water, ethanol,
and acetone

IMR32 and HT-29 cell
lines (neuroblastoma
and colon carcinoma)

200 µg/mL [137]

Juncaceae Juncus acutus L. Torr.
Ex Retz. Shoots

Diethyl ether,
chloroform,

methanol, and water

HepG2 cells
(hepatocellular

carcinoma)
S17 cells (murine

non-tumoral)

Ether extract: 6.2 and
34 µg/mL

Juncunol: 18 µM
(HepG2 cells)

Juncunol: increased number of
apoptotic cells, decrease in the ∆ψm,
cell-cycle arrest in the G0/G1 phase,

no hemolytic properties

[129,130]

Malvaceae Thespesia populnea Sol.
Ex Corrêa Leaves Decoction

HEP-2 cells
(epidermoid
carcinoma)

120.02 µg/mL

Apoptosis induction (membrane
blebbing, cell shrinkage, nuclear
and cytoplasmic condensation,

apoptotic bodies)

[144]

Stem bark Methanol
MDA-MB-231 and

MCF7 cells
(breast carcinoma)

23.97 and
20.62 µg/mL nd [145]

Myrtaceae Eucalyptus
camaldulensis Dehnh Leaves Ethyl acetate

MDA-MB-231 and
MCF7 cells

(breast carcinoma)
26.7 and 34.4 µg/mL nd [148]

Plantaginaceae Bacopa monnieri L.
Wettst

In vitro cultures
(shoots)

Methanol and
artificial saliva and
gastric juice extracts

DU145 cells
(prostate cancer) nd nd [153]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Plantago lanceolata L. Leaves Ethanol

MCF7, AMJ13,
MDAMB and CAL51

cells (breast
carcinoma)

0.674, 0.726,
0.251 and

0.024 mg/mL
nd [210]

Plantago major L. Seeds

Silver particles
produced by

combining water
extract and silver
nitrate (AgNO3,

0.1 M)

MCF7 cells (breast
carcinoma) 12 µg/mL nd [159]

Plumbaginaceae

Limoniastrum
densiflorum (Guss.)

Kuntze
Shoots

Hexane,
dichloromethane,

ethanol, and
methanol

A-549 cells (human
lung adenocarcinoma
DLD-1 cells (human

colon carcinoma)
WS-1 cells (human

skin fibroblasts)

Dichloromethane
extract: 85 µg/mL

(DLD-1)-and
29 µg/mL (A-549)

nd [170]

Limoniastrum
guyonianum Boiss Gall Water HeLa cells

(cervical carcinoma) 170 µg/mL

DNA hypomethylation and
apoptosis, cell-cycle arrest at G2/M,

upregulation of p16INK4A,
upregulation of UHRF1

and DNMT1

[169]

Poaceae Cynodon dactylon L. Whole plant

Petroleum ether,
dichloromethane,

acetone,
methanol/water
(3/1) and water

MCF7 cells (breast
carcinoma)

Water extract:
57.21 µg/mL;

acetone extract:
38 µg/mL;

petroleum ether
extract: 39 µg/mL

nd [174]

Whole plant Petroleum ether

HEP-2, HeLa, and
MCF7 cells

(laryngeal, cervical,
and breast
carcinoma)

0.20, 0.62 and
1.02 mg/mL

Apoptosis induction
(DNA fragmentation) [211]
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Echinochloa
crus-galli L. Grains

Ethanol extract,
n-hexane, chloroform,

ethyl acetate,
n-butanol fractions,
isolated compounds

MCF7, HCT116,
HeLa, and HepG2
cells (breast, colon,
cervical, and liver

carcinoma)

Crude extract: 12.0,
11.2, 18.9, and
14.2 µg/mL

Ethyl acetate fraction:
3.8 µg/mL

nd [175]

Portulacaceae Portulaca oleracea L. Seeds Ethanol
HepG2 cells

(hepatocellular
carcinoma)

75 µg/mL Round cells with reduced size
and adhesion [181]

Seeds Oil extraction
HepG2 and A549

cells (liver and lung
carcinoma)

nd Loss of cell adhesion capacity,
shrinkage, round shape [182]

Rhizoporaceae Bruguiera gymnorhiza
L. Lam Stem bark Methanol

HeLa cells (cervical
cancer), Raji cells
(lymphoma) and

myeloma cells
(leukemia)

133, 504, and
384 µg/mL

Apoptosis induction
(DNA fragmentation) [187]

Solanaceae Lycium barbarum L. Fruits Water
SW480 and Caco-2

cells (colon
carcinoma)

600 and 650 µg/mL Cell-cycle arrest at G0/G1 [191]

Fruits Ethanol
A431 cells (cutaneous

squamous cell
carcinoma)

873.7 µg/mL

Reduced expression of Ki67 and
PCNA proteins, increased

expression of caspase-3, reduction
of BCL2, downregulation of LC3II,

reduced the phosphorylation of
ERK1/2, and upregulation of JNK.

Reversion of the regulation of
Beclin1, LC3II, Bcl-2, and

cl-caspase-3

[192]

Fruits Ethanol

BALB/c nude mice
transplanted tumor

model established by
subcutaneous

injection of A431 cells

nd
Increased survival rate, reduced

tumor volume and weight,
downregulation of Ki67 and MMP-2
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Table 1. Cont.

Family Species Organs Extract Cell Line IC50 Proposed Mechanism of Action Ref.

Tamaricaceae Tamarix aucheriana
(Decne.) Baum Shoots

Syringic acid isolated
from a methanol

extract

SW1116 and SW837
cells (colorectal

carcinoma)
0.95 and 1.2 mg/mL Increased percentage of

apoptotic cells [199]

Shoots
Methyl ferulate
isolated from

methanol extract

SW1116 and SW837
cells (colorectal

carcinoma)
1.7 and 1.9 mM

Cell-cycle arrest in the S and G2/M
phases, apoptosis induction,

reduction in NF-κB DNA-binding
activity

[200]

Tamarix gallica L. Shoots, leaves
and flowers 80% methanol Caco-2 cells (colon

carcinoma) na

Decreased DNA synthesis, cell-cycle
arrest at G2/M phase; modification

in the levels of cyclin B1, p38,
Erk1/2, Chk1, and Chk2

[202]

nd: not determined; ∆ψm: mitochondrial membrane potential, na: data not available.

Table 2. Identified molecules in active extracts from halophyte species.

Family Species Chemical Compounds Chemical Structure Class Ref.

Acanthaceae Avicennia alba Blume Catechol borane
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Family Species Chemical Compounds Chemical Structure Class Ref.
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Table 2. Cont.

Family Species Chemical Compounds Chemical Structure Class Ref.
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Table 3. Cytotoxic activity of selected halophytes species, including types of extracts, compounds, cell lines tested, obtained IC50 values, and proposed mechanisms of
action. The criterion of cytotoxic activity for the crude extracts, as established by the American National Cancer Institute (NCI), was considered as an IC50 < 30 µg/mL
upon 48 h or 72 h of incubation [24].

Family Species Organ Extract/Fraction Compound Detected in
the Extract Cell lines IC50 Values Mechanism Ref.

Amaranthaceae Chenopodium
ambrosioides L. Whole plant Essential oil nd MCF7

18.75, 9.45 and
10.50 µg/mL at 6,

24 and 48 h

DNA
fragmentation [64]

Suaeda fruticosa
(L.) Forssk. Leaves Hexane

Monoterpenes
(dihydrojasmone,

jasmolone, terpinene-4-ol),
diterpenes (pimaric acid,
steviol, and momilactone

B) and phenolics
(quercinol, zingerone,
zingerol, neovaflan)

HCT116 17.2 µg/mL

Cell-cycle arrest at
the C0–G1 phase

and apoptosis
induction

[74]

Suaeda fruticosa
(L.) Forssk. Shoots Dichloromethane nd DLD-1

HT-29
10 µg/mL
12 µg/mL nd [80]

Asteraceae Achillea
millefolium L. Aerial parts

Ethyl acetate,
water, and

petroleum ether
extracts

Ethyl acetate: p-coumaric
acid, chlorogenic acid,

and apigenin
Water extract:

rosmarinic acid

K562 cells
HeLa cells

MCF7
A549 cells

Ethyl acetate:
0.58 µg/mL

(HeLa),
0.73 µg/mL (K562)
Water: 0.87 µg/mL

(MCF-7)
Petroleum ether:

0.87 µg/mL
(K562)

Ethyl acetate
extract: preG1

apoptosis and cell
growth arrest in
G2/M (HeLa)

[90]

Brassicaceae Cakile maritima
Scop. Aerial parts Hexane GC-MS, decane, limonene,

nonaldehyde, dodecane CaCo2 12 µg/mL nd [96]

Convolvulaceae

Calystegia
soldanella (L.) R.Br.

ex Roem.
& Schult.

Whole plant

85% aqueous
methanol fraction

of crude
methanol extract

nd HepG2 <30 µg/mL

Cell-cycle arrest at
the G0–G1 and S
phases, apoptosis

induction

[100]
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Table 3. Cont.

Family Species Organ Extract/Fraction Compound Detected in
the Extract Cell lines IC50 Values Mechanism Ref.

Whole plant Methanol nd

A549 cells (human
lung cancer)

Col2 cells (human
colon cancer)

8.0 µg/mL
27.4 µg/mL nd [101]

Cymodoceae

Cymodocea
rotundata

EhrenbHempr. ex
Aschers.

Leaves Water nd MG63 25.31 µg/mL nd 105

Fabaceae Melilotus indicus
L. All. Aerial parts Methanol nd HepG2

SNU-182
16.6 µg/mL

13.21 µg/mL

Increase in the
number of

apoptotic cells,
loss of ∆ψm.

[128]

Prosopis juliflora
Sw. DC. Leaves Methanol nd Molt-4 20.0 µg/mL after

72 h

Reduction in
micronuclei or cell

proliferation
[130]

Malvaceae
Thespesia

populnea L.
Sol. ex Corrêa

Bark

Chloroform
fraction

of methanol
extract

Flavonoids, triterpenes,
and tannins

MDA-MB-231
MCF7

23.97 µg/mL
20.62 µg/mL nd [145]

Myrtaceae Eucalyptus
camaldulensis Leaves

Methanol, ethyl
acetate, n-butanol,

and water
nd MCF7

MDA-MB-231

26.7 µg/mL
7.9 µg/mL
4.9 µg/mL

nd [148]

Plantaginaceae Plantago major L. Seeds Water nd MCF7 12 µg/mL nd [159]

Plantago
lanceolata L. Leaves Ethanol

Flavonoid glycosides:
O-cumaric, rutin,

myricetin, quercetin
and kaempferol

CAL51 24 µg/mL

Apoptosis
induction increase

in the nuclei
condensation

[210]

Poaceae
Echinochloa

crus-galli (L.)
P. Beauv.

Grains 70% ethanol nd

MCF7
HCT116

HeLa
HepG2

12.0 µg/mL
11.2 µg/mL
18.9 µg/mL
4.2 µg/mL

nd [175]
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Table 3. Cont.

Family Species Organ Extract/Fraction Compound Detected in
the Extract Cell lines IC50 Values Mechanism Ref.

Grains
5,7,4-Trihydroxy-3,5-
dimethoxy flavone

(tricin)

MCF7
HCT116

HeLa
HePG2

4.3 µg/mL
4.5 µg/mL
4.5 µg/mL
4.2 µg/mL

nd [175]

Solanaceae Lycium barbarum L. Stems Ethanol Phenolic amides GSC-3#
GSC-12#

28 µg/mL
20 µg/mL nd [193]

nd: not determined; ∆ψm: mitochondrial membrane potential.

Table 4. Cytotoxic activity of selected isolated compounds from halophytes species, including cell lines tested, obtained IC50 values, and proposed mechanisms of
action. The criterion of cytotoxic activity for the isolated compounds was an IC50 value ≤10 µM, according to the National Institutes of Health (NIH) for screening
the NCI60 program [25].

Family Species Organ Compound Cell Lines IC50 Values Mechanism Ref.

Acanthaceae Avicennia marina
(Forssk.) Vierh Fruits 6′-O-(n-butanol)

ilekudinoside B ester

GSC-18# (human
glioma stem

cell lines)
6 µM nd [204]

Poaceae Echinochloa. crus-galli
(L.) P. Beauv. Grains

5,7-dihydroxy-
3′,4′,5′-trimethoxy

flavone

HeLa
HePG2

3.0 µM
3.0 µM nd [175]

5,7,4-trihydroxy-3,5-
dimethoxy flavone

(tricin)

HCT-116
HeLa

HePG2

10.8 µM
8.6 µM
7.2 µM

nd

Portulacaceae Portulaca oleracea L. Aerial
organs Portulacerebroside A HCCLM3 <3.5 µM

Apoptosis induction via
activation of the p38

MAPK and
JNK-triggered

mitochondrial death
pathway

[180]

Solanaceae Lycium barbarum L. Stems Grossamide GSC-3#
GSC-12#

10.2 µM
9.3 µM nd [193]

nd: not determined.
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