
Citation: Srivastava, P.; Sondak, T.;

Sivashanmugam, K.; Kim, K.-s. A

Review of Immunomodulatory

Reprogramming by Probiotics in

Combating Chronic and Acute

Diabetic Foot Ulcers (DFUs).

Pharmaceutics 2022, 14, 2436.

https://doi.org/10.3390/

pharmaceutics14112436

Academic Editors: Ana Gomes and

José Carlos Andrade

Received: 19 October 2022

Accepted: 8 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

A Review of Immunomodulatory Reprogramming by Probiotics
in Combating Chronic and Acute Diabetic Foot Ulcers (DFUs)
Prakhar Srivastava 1 , Tesalonika Sondak 1, Karthikeyan Sivashanmugam 2 and Kwang-sun Kim 1,*

1 Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University,
Busan 46241, Korea

2 School of Biosciences and Technology, High Throughput Screening Lab, Vellore Institute of Technology,
Vellore 632014, Tamil Nadu, India

* Correspondence: kwangsun.kim@pusan.ac.kr; Tel.: +82-51-510-2241

Abstract: Diabetic foot ulcers (DFUs) are characterized by a lack of angiogenesis and distal limb
diabetic neuropathy. This makes it possible for opportunistic pathogens to protect the biofilm-
encased micro-communities, causing a delay in wound healing. The acute and chronic phases of
DFU-associated infections are distinguished by the differential expression of innate proinflammatory
cytokines and tumor necrosis factors (TNF-α and -β). Efforts are being made to reduce the microbial
bioburden of wounds by using therapies such as debridement, hyperbaric oxygen therapy, shock
wave therapy, and empirical antibiotic treatment. However, the constant evolution of pathogens
limits the effectiveness of these therapies. In the wound-healing process, continuous homeostasis
and remodeling processes by commensal microbes undoubtedly provide a protective barrier against
diverse pathogens. Among commensal microbes, probiotics are beneficial microbes that should be
administered orally or topically to regulate gut–skin interaction and to activate inflammation and
proinflammatory cytokine production. The goal of this review is to bridge the gap between the role of
probiotics in managing the innate immune response and the function of proinflammatory mediators
in diabetic wound healing. We also highlight probiotic encapsulation or nanoformulations with
prebiotics and extracellular vesicles (EVs) as innovative ways to tackle target DFUs.

Keywords: diabetic foot ulcer; biofilm; acute; chronic; cytokines; macrophages; probiotics

1. Introduction

The term “neuropathy” in diabetes is a generic term that refers to the loss of sensation
and steadiness of the distal limb. The loss of sensation affects peripheral blood movement.
Therefore, dysregulating the protective sensation leads to systemic inflammatory status
of diabetic foot ulcers (DFUs) [1]. Characterizing the type of wound—which considers
various factors such as the length of the wound, the size of the ulcer, and its location—is
a crucial step in the evaluation of DFUs. These parameters primarily indicate whether the
ulcer is acute or chronic in nature [2]. From the acute to the gangrene stages, DFUs express
differently. The acute stage begins with a recurring loss of sensation and subcutaneous
hemorrhage of the lesion, which usually goes unnoticed and results in foot deformity. It
normally heals in three weeks, but improper wound management in the acute stage leads
to a chronic or infectious stage with inflammatory dysregulation [3].

However, due to the broad pathophysiology of DFU infection, relying on any single
therapy [4] causes local inflammation, bleeding, and a high increase in blood oxygen levels.
To overcome such limitations, therapies targeting immune cells using fibroblasts, stem
cells, grafts, monoclonal antibodies, and bioactive molecules have been recently developed.
However, these therapies have some limitations. A short half-life, the need for repeated
administration, high costs of production, short-term bioactivity, insufficient data on large
populations, limited downstream processing, renal clearance, and ineffectiveness against
polymicrobial infections are all issues that must be addressed [5].
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Gut immunological homeostasis, which is maintained by the interaction among intesti-
nal microflora, is crucial in controlling the host’s inflammatory response. The gut microbiota
influences various parts of the human body, including the brain, liver, and skin. Concern-
ing DFU infection, commensal microbes (Staphylococcus epidermidis, Propionibacterium, and
Cutibacterium species) on human skin have direct coordination with the gut microbiota
and govern chronic responses during skin–pathogen contact [6]. Among gut microbiota,
probiotics have been used to treat a variety of health issues since long ago and have also
shown promising results as immunomodulators during chronic illness [7]. Probiotics al-
ready have several advantages, including non-toxicity, user-friendliness, strong immunity,
a longer half-life, an easy route of administration, and simple downstreaming [8]. How-
ever, questions still remain about the use of probiotics as a DFU therapeutic. Constant
remodeling of probiotics through encapsulation or nanoformulation using prebiotics and
synbiotics, biogenic nanoparticles (NPs), and extracellular vesicle (EVs) originating from
probiotics can open new avenues in the field of DFU management. These strategies are
still unexplored.

In this review, we first introduce the importance of the gut–skin axis in maintaining
skin homeostasis and emphasize it as a new route for DFU therapy using probiotics. Then,
the role of probiotics in maintaining acute and chronic conditions of DFUs will be further
discussed. Further, a novel idea on how probiotics can reprogram acute and chronic
modulation during DFU infections will be introduced as a future application of probiotics.
These include cutting-edge technologies such as the encapsulation or nanoformulation of
probiotics using prebiotics and synbiotics, biogenic NPs, and EVs. Overall, our review will
provide perspectives on probiotic-mediated therapeutics against infections in acute and
chronic DFUs.

2. Method

For this review paper, we searched the databases (PubMed, Science Direct, Web of Sci-
ence, and Scopus) for articles that majorly dealt with the following keywords: “diabetic foot
ulcer”, “diabetes”, “biofilm”, “acute”, “chronic”, “pathogen”, “inflammatory cytokine”,
“cytokine”, “macrophage”, “fibroblast growth factor”, “stem cell”, “neuropeptide”, “mon-
oclonal antibody”, “ bioactive”, “gut skin axis”, “probiotic”, “symbiotic”, “extracellular
vesicle”, “postbiotic”, and “paraprobiotics”. In addition, case studies, review studies, and
retrospective studies involving randomized clinical trials relevant to diabetic foot ulcer and
its therapeutic approaches were included. Moreover, we explored the bibliographies of all
retrieved and relevant articles.

3. Diabetes: A Constant Fluctuation in Blood Glucose Levels

According to the International Diabetes Federation Atlas (IDFA), diabetes is prominent
in every part of the world. Over 537 million people suffered from diabetes around the
world in 2019, and cases are expected to increase to 700–750 million worldwide by 2045 [9].
A global survey revealed 6.7 million deaths due to diabetes in 2021 (1 every 5 s) involving
demographic locations including Africa (416,000), Europe (1.1 million), the Middle East
(796,000), Southeast Asia (747,000), and the Western Pacific (2.3 million). Diabetes in the
current scenario holds the position of being a chronic and long-term hypo/hyperglycemic
condition that can result in multiple complications such as cardiovascular disorders, neu-
ropathy, nephropathy, and retinopathy [10]. The lifestyle pattern and genetic disposition
from different demographic locations normally explain the prognosis of diabetes, but sub-
stantial research indicated that the gut microbiota, which are crucial to human physiology,
metabolism, and dysbiosis, have a direct role in type 2 diabetes mellitus (T2DM) [11].
T2DM is frequently associated with obesity; it is noteworthy that certain compositions of
gut microbiota have been linked to insulin resistance and glycemic control problems [12].
Changes in the composition of gut bacteria may contribute to the etiology of diseases such
as obesity, diabetes, and kidney disease, the prevalence of which are still rising globally [13].
These situations generally involve diabetic ketoacidosis and hyperosmolar state, which play
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a significant role in automatic and peripheral neuropathy [14]. The glycemic complications
related to diabetes involve both hypoglycemia and hyperglycemia, but hyperglycemic
DFUs account for most of the mortality and morbidity [15].

4. The Diabetic Foot Ulcer: A Long-Lasting Foot Deformity

The DFU, one of the major complications of diabetes, affects 25 to 30% of people
during their lifetime. Among them, 20% undergo lower limb amputation with an annual
mortality rate of 11% for DFUs and 22% for amputees [16]. Every 20 to 30 s, a lower
limb gets amputated, with DFUs accounting for 85–95% of the cases [17]. Patients with
high blood glucose levels exhibited severe pathological conditions such as tissue hypoxia,
leading to inadequate blood supply to the vascular endothelial cells [18]. The prognosis
involves a localized injury to the distal portion of the ankle, which goes unnoticed due
to inefficient sensory response, peripheral neuropathy, and vascular lesions. The lesion
paves the way for opportunistic pathogens that increase the chances of tissue hypoxia by
reducing the process of angiogenesis and endothelial revascularization, which in turn delay
the wound-healing process. This delay in the wound-healing process results in the chronic
stages of DFUs and the formation of gangrene [19,20]. The process from neuropathy to
gangrene follows a gradual infectious route, which leads to a high microbial bioburden [21]
and delays the wound-healing process at chronic stages due to the formation of microbial
communities known as biofilms. High blood glucose levels increase the concentration of
proteins and carbohydrates, which form the basic core for persistent infections. About 40 to
80% of diabetic patients develop recurrent infections, and between 20 to 25% develop deep
infections with osteomyelitis [22]. To select the appropriate treatment course and manage
care for DFU patients, several classification systems have been developed to elucidate the
characteristics of DFUs and the severity of infections as described below.

4.1. Evaluation and Classification of DFU Extent

The systematic evaluation of DFUs defines the constant prognosis of foot ulcers.
Health professionals determine the etiology of the foot and verify the extent of lesions that
involve acute Charcot foot or chronic ischemic foot [23]. Various classification systems have
been developed to describe ulcer characteristics and its lower limb extremities.

4.1.1. Meggitt–Wagner (MW) Classification System

Developed in the 1970s, this system comprises six ulcer grades that range from 0 to 5.
This system assesses the pro-ulcerative stage, superficial infection, subcutaneous infection,
deep ulcer in tendons, forefoot gangrene, and whole-foot gangrene (50% foot infection) [24].
This system is simple and widely accepted for predicting lower extremity amputation.
However, this system is not recommended for use in assessments of DFUs because it
does not adequately address all DFU subtypes and the spectrum of infections. The major
limitations of this system are the infection rate and tissue viability [25].

4.1.2. University of Texas (UT) Classification

This system is a modified version of the MW classification that has also been effective
in predicting lower extremity amputation. Moreover, this system overcomes all of the
shortcomings of MW, especially the depth of lesion and infection rate [26]. This system
uses four grades (0 to 3; depth) and four stages (A–D; severity of wound) to classify DFUs
by marking the presence of infection, ischemia, or both [27]. This system helps predict the
infection rate and the rate of amputation and is used in practice; however, it is ineffective
in determining the degree of neuropathy and microbial load differentiation.

4.1.3. Perfusion, Extent, Depth, Infection, and Sensation (PEDIS)

This system was developed in 2003 by International Working group of Diabetic Foot
(IWGDF) solely for determining the rate of infection. It includes four categories. The first
is uninfected or pro-ulcerative (the same as MW and UT); the second involves signs of
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infection, erythema, or colitis. The last two stages involve the severity of the infection
and its related circumstances such as moderate to severe infection and systemic toxicity
involving fever, chills, hypertension, and cardiovascular disorders [28]. It is a complex
system that does not truly define the ulcer types but has an advantage in terms of choosing
empirical antibiotic therapy against chronic infection.

4.1.4. Saint Elian Wound Score System (SEWSS)

This is an advanced version of the PEDIS system. This system uses three grades
(I to III) based on 10 factors in the following categories: location, topographic aspects,
the number of affected zones, ischemia, infection, edema, neuropathy, depth, area, and
wound-healing phase. The total score is 6 to 30 points, and the score can switch to a grade.
It is an advantageous system compared to others and can efficiently detect the outcome of
DFUs (minor amputation and wound healing), but it is time-consuming [29].

4.1.5. Site, Ischemia, Neuropathy, Bacterial Infection, Area, and Depth (SINBAD)

This is a versatile and rapid system that uses five clinical features (site of infection,
ischemia condition, neuropathy, bacterial infection, and depth), which are graded as
either present (0) or absent (1). This system is primarily used in various rural regions
where DFU occurrence is very prominent and does not require any medical setup for
evaluation. SINBAD generally provides a high degree of versatility and also helps to
differentiate between the acute and chronic conditions in the context of validating research
and consistent results [30].

5. Timeline and Stages of DFUs

The open lesion and complete vascularization take 8 to 14 days for DFU wound
closure [31], but the normal healing process depends on the stages of the foot ulcer, con-
sidering the previous classification of DFUs (Section 4.1) from the superficial wound stage
to gangrene of whole foot. A wound can be defined as an acute or chronic type. The
latter is the most infectious and non-healing condition and involves factors such as high
infection and release of proinflammatory responses. The major pathways in acute and
chronic conditions are shown in Figure 1.
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Figure 1. Acute and chronic conditions of the DFU. The acute stage includes subcutaneous aberration,
which is associated with loss of sensation at the distal part of the wound. The continuous aberration
at the wound causes blood vessel angiogenesis to fail, resulting in inflammation at the wound
site (left). The chronic stage is characterized by continuous wound damage and the movement of
proinflammatory responses. This causes skin moistening, which allows opportunistic pathogens to
form a biofilm, delaying the wound-healing mechanism during a DFU (right).
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5.1. Sensory and Motor Neuropathy

Sensory and motor neuropathy involve constant pressure and local necrosis. The high
pressure on the peripheral veins leads to constant injuries that result in autonomic tissue
injury. There might be instances that can result in small areas of gangrene or ulceration [32].
Additionally, autonomic neuropathy includes thermoregulatory dysregulation that involves
excessive sweating, cracking, and edema in the foot region, which further adds to the
ulceration [33].

5.2. Subcutaneous Hemorrhage

The skin breakdown during the tissue damage leads to subcutaneous hematoma
involving deep tissue cellulitis near bones and tendons, which is normally manifested
as pain and tenderness of the epidermis and dermis [34]. The loss of sensory and motor
reflexes results in the formation of thickened skin that is generally referred to as a “callus”,
which causes constant pressure that leads to foot deformity. The formation of small lesions
near the callus region can be treated by using debridement and fitting shoes, but improper
management can subsequently lead to foot deformation and mechanical stress [35].

5.3. Foot Deformity

Various risk factors such as deep tissue necrosis and motor and sensory polyneu-
ropathy lead to diabetic neuro-osteoarthropathy, a term related to deformity in the tarsus
and metatarsus region of the foot. The classic example is Charcot foot associated with
the disorientation of bones and joints, which are further related to bone resorption and
site-specific inflammation [36]. A study conducted in a Copenhagen wound-healing center
from 1995 to 2015 showed a significant relationship between acute Charcot foot and the
prognosis of ulcer. This study highlighted the social economic impact of Charcot foot ulcers
on type I diabetic patients. Out of 173 patients, only 4% were able to perform their normal
routine jobs, while 60–65% were below the basic social economic conditions [37].

5.4. Acute Inflammatory Responses (Neutrophils and Macrophages) and Accumulation of
Extracellular Matrix (ECM)

A hyperglycemic condition always shows a low-grade inflammatory response to the
microvascular environment during DFUs. The increased diabetic stress results in high
inflammatory responses that result in the release of white blood cells (WBS) and acute
phase proteins including C-reactive proteins, fibrinogen, chemokines, and interferon-γ [38].
A high glycemic index and localized inflammation result in the production of interleukins
such as IL-6 from the macrophage. IL-6 is known for its proinflammatory activities; its
constitutive expression results in a delay in wound healing [39]. Muller et al. [40] showed
the effects on type 2 diabetic patients of an increased release of IL-6 and tumor necrosis
factor (TNF) receptors, highlighting the role of IL-6 modulation as a diagnostic marker in
the evaluation of inflammatory response during DFUs. Localized inflammation is related
to innate and proinflammatory responses during chronic conditions, including a higher
count of neutrophils, T cells, and mast cells, which represent the markers and generally
delay the wound-healing process. The high expression of neutrophils is further related
to revascularization via protease production, collagen, cathepsin, and matrix-degrading
substances such as metalloproteinase [41].

5.5. Abnormal Matrix Metalloproteinase (MMP) Expression

Matrix metalloproteinases are important factors in wound healing. The expression of
MMPs regulates the inflammatory phase and the endothelial basement for angiogenesis, but
in cases of chronic DFU, the abnormal expression of MMP-9 significantly delays the wound-
healing process [42]. The overexpression of MMP-9 upregulates the protease production,
which results in the accumulation of macrophages and neutrophils, which in turn results in
excessive collagen production that hampers the normal wound-healing process [43].
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5.6. Bacterial Invasion and Persistent Infection

The overall prognosis of a DFU lies in the management of foot ulcers, but the bottom
line of the management depends on the severity of the DFU. Inadequate management
during sensory and motor neuropathy and constant friction of the foot leads to the moist-
ening of the foot region that involves the movement of opportunistic pathogens. A total
of 80% of traumatic wounds lead to amputation; the remaining 20% lead to recurrent
bacterial infection [44]. Inflammation and persistent infection, which are the major causes
of amputation, involve constant chemotaxis movement of T and B cells during infection.
Infection is the only factor in DFUs that involves both the acute and chronic stages of DFUs;
i.e., ischemia, callus formation, and hyperproduction of the proinflammation cytokine [45].

6. Microbial Bioburden in DFUs

The microbial spectra in DFUs are often related to the moistness and breaking of
the cutaneous region of the wound, which in due course adversely affect the normal
healing of the wound [46]. Normally, the onset of foot infections involves superficial or
subcutaneous categories, but these infections can spread to the tendons, joints, and bones,
causing severe osteomyelitis [47]. The microbial diversification varies according to the
extent of the DFU infection. According to the guidelines of the Infectious Disease Soci-
ety of America (IDSA), superficial infections generally involve aerobic microorganisms
such as Staphylococcus, Micrococcus, Corynebacterium, Pseudomonas, and Klebsiella spp. [45].
A deep tissue or osteomyelitis condition involves the presence of some facultative anaerobic
and strictly anaerobic microorganisms including Peptostreptococcus spp., Bacteroides spp.,
Prevotella, Fusobacterium, and Pseudomonas spp. [48]. The heterogeneous nature of wounds
involves polymicrobial interaction, which corresponds to the high microbial load during
chronic infection [49]. However, Gram-negative bacteria have a prevailing existence in the
wound microbiome compared to Gram-positive bacteria. The various microbial commu-
nities coexisting in DFUs play different roles and are therefore essential in the multiple
stages of DFUs. Chronic wounds often involve various small molecules or autoinducers
that generally act as biomarkers in metagenomic studies of wounds [50]. Polymicrobial
infections often involve cell-to-cell communication via these autoinducers, which enables
the production of virulence factors such as the protease, elastase, rhamnolipid, and ex-
tracellular polysaccharide matrix (EPS) [51]. The synergistic adaptation of microbes to
the wound site includes embedded micro-communities in a polymeric matrix known as
a biofilm. The term biofilm is often related to the chronicity of a wound; i.e., the higher the
microbial load, the more compact the structure of the biofilm will be [52]. The presence
of a biofilm in DFU cases involves 60 to 80% of chronic cases and 8 to 10% of acute cases.
These micro-communities strongly limit the entry of antimicrobial agents to the site of
infection, resulting in prolonged hospitalization [53]. Aerobic microbes such as Pseudomonas
and Staphylococcus are generally frequently isolated from chronic infection sites. These
microbes also produce strong biofilms in the polymicrobial load that influence the presence
of other pathogens [54]. A study conducted on Pseudomonas and Staphylococcus biofilms
showed the production of virulence factors such as exopolysaccharide (EPS), showcasing
the prolonged chronic nature of the wound. The increased microbial burden also showed
the accumulation of inflammatory responses that affected the normal healing process [55].
The persistent infection response involves the movement of innate immune cells such as
neutrophils, macrophages, and leukocytes. This ultimately increases the reactive oxygen
species (ROS) production and release of proinflammatory markers at the site of infection,
leading to a non-healing situation of the ulcer [56].

7. Innate Immune and Proinflammatory Mediators in Non-Healing DFUs

Chronic diabetic wounds have four distinct phases of healing: (i) the inflammatory
response, (ii) the proliferative stage, (iii) migration, and (iv) revascularization [57]. In acute
conditions, motor and sensory neuropathy are generally addressed by proper management
and wound assessment, which involve evaluation of subcutaneous hemorrhage and de-
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formity. The chronic condition involves immune outburst at the site of infection and an
increased expression of innate immune cells such as mast cells, lymphocytes, neutrophils,
macrophages, C-reactive proteins, proinflammatory cytokines, and ROS, which cause
a delay in re-epithelization and angiogenesis [58].

7.1. Innate Immune Cells

Innate immune cells including neutrophils and macrophages are primary cells in-
volved in the wound-healing process and early vascularization of a wound [59]. However,
during a non-healing diabetic wound, there is a slow chemotaxis movement of cells that
results in decreased adherence and proliferation, leading to an inadequate phagocytic
elimination [60]. Apart from neutrophils, macrophages have also shown an impaired
role during the wound-healing process. Aberrant stimulation of macrophages during
diabetic wounds involves restricted switching from M1 to M2 macrophages, resulting in
a constant outburst of IL-1β and TNF-α [61]. A study conducted on diabetes-induced mice
showed an elevated level of a proinflammatory cytokine (IL-1β) that was exhibited by
the proinflammatory responses of altered M1 and M2 macrophages at the site of infection.
This differential expression of transforming growth factors (TGFs), an insulin-like growth
factor (IGF-1), and MMP-9 highlighted the impaired response of macrophage switching in
delaying the wound-healing process [62]. Macrophages and monocytes also play important
roles in wound healing and collagen deposition during epithelization. Impaired regulation
of either of the two leads to the aberrant transition of proinflammatory cytokines, resulting
in delayed wound healing [63].

7.2. Proinflammatory Cytokines

ILs and TNF generally constitute the major classes of proinflammatory cytokines
that promote insulin resistance and impair healing. Kolumam et al. [64] showed that
IL-6, -18, -22, and -24 are highly expressed in diabetic wounds compared to non-diabetic
wounds, highlighting the differential expression of pro- and anti-inflammatory responses
during DFUs. Similarly, TNF-β is generated by monocytes and macrophages and helps
to induce T- and B-cell responses to regulate the vascularization of an endothelial cell.
During DFU dysregulation, an immunomodulatory burst (IL-1β and TNF-α) results in
an impaired insulin metabolism, altering the humoral expression (B-cell regulation) [65].
A study conducted by Trengove et al. [66] on patients from Western Australian hospitals
with chronic non-healing venous ulcers highlighted the direct relationship of an altered
innate response and altered wound healing. The bioassay showed higher expressions of
IL-1 and -6. Furthermore, levels of IL-1α, IL-β, and TNF-α showed a marked increase
in the non-healing wound. Similarly, growth factors such as epidermal growth factor
(EGF), platelet-derived growth factor (PDGF), and TGF-β1 were also altered in chronic
venous ulcers.

Apart from innate immune cells, TLRs are one set of immune cells that link innate
immunity with adaptive immunity and play a role against microbial invasion by targeting
the lipopolysaccharide layer of pathogens [67]. The significant expression of TLRs during
infection results in the production of proinflammatory responses; normally, during the heal-
ing of a wound, the expression of TLRs (TLR-2 and -4) decreases with tissue vascularization.
A study by Pukstad et al. [68] on non-healing chronic wound ulcers showed a significant
increase in the expression of TLR-2 and -4, which constitutively led to the expression
of proinflammatory markers (IL-1α, IL-1β, and MIP-1δ). Hence, reducing the levels of
anti-inflammatory cytokines (IL-8 and MIP-1α) and dysregulating TLRs can modulate the
healing procedure in chronic wound infections.

7.3. Matrix Metalloproteinase

Apart from proinflammatory cytokines, MMPs also exert inflammatory responses in
chronic diabetic wounds. In recent years, MMPs have gained a higher value in studies
related to non-healing diabetic wounds and have been linked to the impaired activity of
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IL-1β and TNF-α [69]. A study conducted on acute and chronic surgical wounds showed
a significantly higher expression of MMP-9 in chronic as compared to acute wounds.
The increased expression of MMP-9 (from 10- to 25-fold) also highlighted the reduced
expression of elastase, which was directly correlated with the delay in the endothelial
vascularization [70]. MMPs play a vital role in tissue remodeling, and their differential
expression (MMP-1, -2, -8, and -9) regulates poor wound healing [71].

7.4. Toll-Like Receptors (TLRs)

Impaired wound healing during DFUs involves the activation of TLRs, which rec-
ognize inflammatory factors such as pathogen-associated molecular patterns (PAMPs) of
bacteria during chronic DFUs [72]. PAMPs generally participate in the activation of TLR
signaling and have an important role in infection-mediated immune responses in DFUs [73].
Alteration in the microbial bioburden results in the expression of differential TLRs (TLR-1,
-2, -4, -6, and -8); these factors have also been used as inflammatory biomarkers in DFUs. A
study by Dasu et al. [74] on streptozotocin-induced mice showed increased expression of
TLR-2 and TLR-4 with a high glycemic index, highlighting the T-cell-mediated responses in
the inflammatory phase of DFUs. Creely et al. [75] also showed that the hyperglycemic state
in DFUs results in inflammation in adipose tissues that increased the expression of TLR-2
and TLR-4. This in turn increased the expression of proinflammatory cytokines (TNF-α,
IL-6, and NF-kB), impairing the normal healing process. EPS formation and the biofilm
matrix also stimulate the production of proinflammatory cytokines (TLRs and TNF-α).
A study on biofilm-producing S. aureus-induced wounds on a type 2 diabetic rat model
showed an increased outburst of TLR-2, 4, and TNF-α, supporting a direct correlation with
biofilm-mediated inflammatory responses [76]. DNA methylation also has a significant
role in altering the normal wound-healing procedure. A study by Singh et al. [77] on the
epigenetic role of TLR-2 showed a significant downregulation of TLR-2 in type 2 diabetes,
highlighting the partial methylation of the CpG islands in the chronic diabetic wound.

8. Novel Therapies Targeting Inflammatory Modulators during Non-Healing DFUs

Based on our review, we understand that the multidisciplinary approaches of dif-
ferent specialties are required to decrease wound bioburdens and the chances of lower
limb amputations. Since the management of DFU wounds varies from stage to stage [78],
providing adequate care to the foot region is important. Conventional therapies such as
debridement [79], hyperbaric oxygen therapy [80], shock wave therapy [81], offloading [82],
larval therapy [83], laser therapy [84], and empirical antibiotic treatment [85] are promising
as efficient treatments, but they are limited in terms of scope with respect to tissue vascu-
larization and the healing process of ischemic ulcers. Therefore, the cost-to-benefit ratios
are lower, and retrospective studies conducted on these therapies require more evidence
from a larger demographic area. The major advantages and disadvantages of the above
therapies are summarized in Table 1.

Table 1. Advantages and disadvantages of conventional therapies.

Therapy Advantages Disadvantages Reference

Debridement
- Release of foot pressure
- Rapid healing and wound

re-epithelization

- Local irritation and inflammation
- Bleeding and intense pain [86]

Hyperbaric oxygen therapy - Adequate blood supply
- Increased angiogenesis

- Continuous use causes O2 posing
- Lung and sinus damage

[87,88]
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Table 1. Cont.

Therapy Advantages Disadvantages Reference

Shock wave therapy - Promotes angiogenesis
- Fibroblast proliferation

- Cost-ineffective
- Inefficient in acute neuropathy

[89]

Offloading therapy
- Healing of neuropathic forefoot

and midfoot
- Release of pressure

- Lack of standardization
- No proper pressure management

[90]

Larval therapy - Lower bacterial load - Amputation
- Infection and swelling

[91]

Antibiotic treatment - Multiple actions
- Broad-spectrum effects

- Drug resistance
- ower activity against biofilm
- Hypersensitivity

[92]

During diabetic wounds, it is imperative to reduce the production of proinflammatory
cells and ROS. The delay in apoptosis results in tissue granularization and long-term
chronic inflammation, which further contributes to the poor healing of the wound site,
resulting in a loss of epithelization [93]. The previous alternatives shown in Table 1 have
limitations in being used for a longer period; therefore, some novel therapies are being
investigated that involve fibroblast growth factors, macrophage-regulating drug therapy,
stem cell therapy, neuropeptides, MMP inhibitors, monoclonal antibodies, and plant-
derived bioactive compounds.

8.1. Fibroblast Growth Factor (FGF)-Associated Therapy

Basic fibroblast growth factors (bFGFs) have a prominent role in diabetic wound
healing. They were found to activate signaling pathways of MAPK and JAK-STAT, which
affect the basic movement of fibroblasts and keratinocytes in endothelial vascularization
and collagen formation [94]. Therapies including fibroblasts have been used since the
early 1990s because fibroblasts were regarded as a prominent factor in the formation of
granular tissues during epithelization. A study on FGF and a keratinocyte-based hydrogel
against diabetic rates showed a rapid healing rate and granularization of endothelial
tissue. This study also showed that the fibroblast-associated hydrogel was effective against
proinflammatory cytokines. It decreased IL-6, TNF-α, and IL-10 production and increased
the expression of pro-healing factors such as TGF-β and collagen III after 1 to 2 weeks of
therapy [42].

8.2. Macrophage-Regulating Therapy

The role of macrophages in acute and chronic injury involves phagocytosis and the
removal of damaged cells from the site of infection. Characteristically, M1 macrophages
activate antigen-presenting cells (APCs), toll-like receptors (TLRs), and MHC-II (major
histocompatibility complex) [95]. Meanwhile, M2 macrophages produce elevated levels
of TGF-β and IL-10. M1 and M2 macrophages work in tandem in the migration and
proliferation of fibroblasts and keratinocytes to the endothelial lining [96]. However, during
impaired healing, the production of M2 macrophages is sustained, resulting in the higher
expression of IL-6 and TNF-α. Herbs such as Plectranthus amboinicus (PA), which have been
studied for their anti-inflammatory and antibacterial activities, have known activity against
proinflammatory responses and macrophage maturation [97]. A study conducted by
Lin et al. [98] on a PA-F4 extract showed homeostasis between M1 and M2 expression,
which increased collagen synthesis and fibroblast proliferation. Additionally, the expression
of proinflammatory cytokines (IL-1β and TNF-α) was reduced, which further manifested
the macrophage and monocyte chemotaxis.



Pharmaceutics 2022, 14, 2436 10 of 31

8.3. Stem Cell Therapy

Mesenchymal stem cells (MSCs) are one of the prominent cells that portray various
benefits in graft therapies such as better healing and angiogenesis properties [99]. A study
on the intradermal injection of bone-marrow-derived MSC stem cells in diabetic rats
showed an increased expression of IL-10 and M2 macrophages. We highlighted the pro-
healing efficiency of MSC-derived stem cells in initiating the wound healing of chronic
wound ulcers by directly regulating the expression of anti-inflammatory cells such as IL-10
and M2 macrophages. The MSC-derived stem cells also showed a decreased expression
of IFN-γ and TNF-α, showcasing the clearance of proinflammatory markers during the
wound-healing process [100].

8.4. Neuropeptides

Diabetic neuropathy or acute cutaneous infection has been found to correlate with
neuropeptides, which facilitate the activation of the immune system and cell prolifera-
tion. Few neuropeptides, such as calcitonin gene-related peptide (CGRP), neuropeptide
Y (NPY), neurotensin (NT), and α-melanocorticotropin-releasing hormone (α-MSH) were
found to be potential biomarkers in diabetic wound healing. These neuropeptides promote
the expression of interferon (IFN-β), TGF-β, and the macrophage inflammatory protein
(MIP-1α) [101]. A study conducted on the CGRP protein in adult epidermal keratinocytes
from breast cancer showed a marked increase in the production of proinflammatory cy-
tokines (IL-1α, IL-8, and TNF-α). This induced an increased expression of pro-nerve growth
factor (NGF) and fibroblast and keratinocyte proliferation, highlighting the direct role of
the neural system in skin homeostasis [102].

8.5. Matrix Metalloproteinase (MMP) Inhibitors

DFU infections involve the production of MMPs; these proteases are present in acute
and chronic phases of infection, but their production regulates the normal healing of the
wound. Normally, MMP-8 and -9 are the major inflammatory markers that are present in
a DFU wound. However, MMP-8 acts as a pro-healing factor, whereas MMP-9 overexpres-
sion results in delayed wound healing [103]. A study conducted on MMP-8 knocked-out
rats showed a decreased wound healing ability and lower keratinocyte movement, which
ultimately increased MMP-9 expression, showcasing increased proteinase activity. This
study also showed a lower expression of the anti-inflammatory cytokine TGF-β that was
affected by increased MMP-9 activity [104]. Recent technologies and therapies have been
developed to overcome MMP-9 overexpression. Small toxic molecules such as enantiomer
racemic ND-336 [105] and ND-332 [106] have been identified as selective inhibitors of MMP-
9 that result in the downregulation of proinflammatory cytokines. RNA-based therapies
have also been used that involved small non-coding RNAs. A study conducted by Wang
et al. [107] on microRNA (miRNA-129) showed the downregulation of MMP-9 proteinase
activity, making it a possible therapeutic agent in diabetic wound healing. This study
showed that miRNA-129 acts as a direct inhibitor of the MMP-9 regulatory protein (speci-
ficity protein-1; Sp-1), which in turn increases the fibroblast production and keratinocyte
activation in DFU healing.

8.6. Monoclonal Antibodies (mAbs)

Antibody therapy or mAb therapy against infectious agents involves the determi-
nation of epitopes on the microbial flora, resulting in toxin neutralization that limits
pathogen invasion. The use of mAbs against multiple surface proteins and polysaccharide
regions invaded by opportunistic pathogens helps to fight various bacterial pathogens
such as methicillin-resistant S. aureus (MRSA) and polymicrobial biofilm-forming mi-
crobes [108]. A recent report included the use of AZD6389 mAb ((anti-alpha toxin (AT),
anti-clumping factor, and cross-neutralizing leukotoxin) and tyrosine kinase met (C-mAb))
against Staphylococcus and Pseudomonas infection in a diabetic rat model. The study on the
AZD6389 mAb showed a decreased expression of proinflammatory cytokines (IFN-γ and
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IFN-α) and MMP-9 metalloproteinase with neutrophil elastase. This study also highlighted
a decrease in systemic inflammation and rapid wound closure [109]. Choi et al. [110]
showed that C-mAb lowers inflammatory outbursts by confirming the decreases in MMP-9
and TGF-β, resulting in fibroblast proliferation and increased vascular endothelial growth
factor (VEGF) production, which improved diabetic wound healing.

8.7. Bioactive Molecules

The role of bioactive molecules is to speed up the angiogenesis process with beneficial
endothelial vascularization, thus improving the inflammatory and antimicrobial activities
in DFU healing [111]. A polyphenol-like compound; i.e., propolis, showed increased an-
tioxidant and anti-inflammatory properties in wound healing. The topical administration
of propolis showed enhanced activity against diabetic wound closure with re-epithelization
via enhanced production of collagen and TGF-β signaling factors. On the contrary, there
was a decrease in the expression of proinflammatory cytokines (IL-6 and TNF-α) and
MMP-9 [112]. Another potent bioactive agent is naturally produced epoxy-tiglianes from
bush wood trees. Epoxy-tiglianes showed an effective degradation of bacterial biofilms by
inducing the production of antimicrobial genes (DEFB4 and DEF103A) and leukocyte sur-
vival factors (IL-1β, IL-17, CXCL-8, and CCL-20). It also induced protein-kinase-dependent
ROS generation, which resulted in enhanced fibroblast and keratinocyte production [113].

The above-mentioned therapies have shown prominent effects in both acute and
chronic conditions; however, major drawbacks such as limited cell survival, a shorter
half-life, and adverse effects (oral ulcer and high cell death) constantly exert pressure on
pharmaceutical companies to generate more sustainable therapies. Constant efforts are
being made to develop more efficient therapies against DFU infections; these involve few
readily available therapies such as Leucopatch [114] and Apligraph [115] as graft therapies
against DFU infection. However, more drugs are still required to achieve commercializa-
tion. Most of the drugs that are in clinical trials either fail or take a long time to become
commercialized; thus, the failure of most of the novel therapies is creating chaos in the
current healthcare market.

9. Everything Starts in the Gut: Gut–Skin Axis in Non-Healing Wounds

DFUs primarily involve the impaired regulation of the epidermal and endothelial layer
of the peripheral foot region. The commensal or gut microbiome constantly controls the
expression of growth factors (VEFG, EGF, and fibroblasts) and major skin remodeling factors
(inflammatory cytokines). The epidermal keratinocytes, neutrophils, and macrophages
stimulate wound healing in a coordinated manner, which ensures proper wound closure
and restoring of the skin barrier [116]. The dietary pattern of an individual modulates the
production of key regulators, which leads to homeostasis between the gut and the skin
microbiota [117]. The efficient role of the gut is directly related to the enhanced production
of innate immunity during the breakage of skin. This constant correlation between the
gut and skin microbiome governs the immune-protective response that allows positive
feedback for epithelial vascularization and angiogenesis [118] (Figure 2).
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Figure 2. Gut–skin axis in wound healing. The gut microbiota stimulates the production of short-
chain fatty acids (SCFAs) and carbohydrate metabolites that regulate the skin’s commensal bacteria.
Secondary metabolites such as SCFAs regulate anti-inflammatory properties (the production of innate
immune cells and cytokines), causing skin commensal bacteria to mediate effective antibacterial
action against skin pathogens.

9.1. Staphylococcus epidermidis and Propionibacterium spp.: Potential Skin Commensal Probiotics

A study conducted on fiber fermentation; i.e., propionic acid and butyrate in intestinal
mucosa, influenced the metabolic role of skin microbiota. For instance, Propionibacterium spp.,
which has antibacterial activity against MRSA, supported coordinated behavior between
gut and skin commensal bacteria [119]. A few other microbes such as Cutibacterium acne
and S. epidermidis have also shown a beneficial effect in regulating the gut–skin axis. These
microbes, through their bacteriocins and antimicrobial peptides, reduce skin inflammation
by inducing innate immunity and keratinocyte movement, which encourages wound heal-
ing [120]. S. epidermidis enhanced the expression of IFN-γ, IL-17, and the CD8+-associated
T-cell response, enhancing the innate barrier and inhibiting the pathogen invasion [121].
Another study found a direct correlation between the gut–skin crosstalk, supporting that
S. epidermidis is involved in fine-tuning the T-cell response via IL-1 dependent down-
stream signaling for maintaining tissue health during skin homeostasis [122]. Similar to
the Propionibacterium effect, S. epidermidis also utilizes short-fatty acid chains (SCFAs) in
demonstrating its antibacterial effect against S. aureus [123].

9.2. Lactobacillus Species: A Superior Microbiota Regulating Gut–Skin Homeostasis

Lactobacillus is generally one set of microbes that have shown benefits against many
skin infections; it is still being used as an alternative therapy against chronic infections [124].
Lactobacillus has a long-known activity against chronic infections such as burn wounds and
has been used effectively against wound infections. Burn wounds are a case of chronic infec-
tion that occasionally involves graft rejection, which leads to high inflammation involving
the secretion of proinflammatory cytokines and plasma proteins, thereby paving the way to
a high bacterial burden and chronic biofilm formation. A classic example of L. plantarum on
third-degree-burn wound patients also showed promising results in terms of parameters
such as the local allergic reaction, smoothness of the skin, and non-recovery of Lactobacillus
after 48 h of treatment. While considering burn wounds as severe skin infections, this
study also showed a differential pattern of cytokine production compared to the proinflam-
matory cytokines that were produced by Gram-negative and Gram-positive pathogens.
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The acidic pH contributed to the fibroblast migration and tissue repair, which conclu-
sively showed the cost-effective role of L. plantarum [125]. A study by Poutahidis et al. on
L. reuteri [126] showed a marked increase in the wound-healing properties via upregulation
of neuropeptide oxytocin, which has a potential role in vascularization via the gut–brain
axis. These studies on Lactobacillus highlighted the role of good gut health flora in lowering
the immunomodulatory action during wound closure.

10. Probiotics: Current Value in Host–Microbe Interactions
10.1. Probiotics: A Primitive Class of Microbes

There has been a constant debate regarding the defense mechanism of the human gut
flora because bacterial colonization is too complex when it comes to beneficial or invasive
microbes. A slight deviation in the microbiome equilibrium can cause serious detrimental
effects on human health [127]. The relationship between gut microbial dysbiosis and
diabetes is a long-standing debate that emphasizes the significant relationship between
gut microbiota and glucose resistance during T2DM. According to a recent review, some
gut microbes such as Ruminococcus, Fusobacterium, and Blautia are positively related to
T2DM, while others such as Bifidobacterium and Lactobacillus are negatively related [128].
The crosstalk among various bacterial species during medical complications have always
opened up the concept of “probiotics”, as they are the safest and most sustainable group
of microbes that modulate positive effects in the gut–brain [129], gut–skin [130], and gut–
bone [131] axes. Probiotics show a substantial positive effect on gastrointestinal metabolism
and also contribute significantly to improvements in the host immune system [132]. Human
studies have always defined probiotics as a strong modulator of the immune system
that confer protection against numerous chronic diseases [133]. Universally, the major
probiotic species are Lactobacillus and Bifidobacterium, which have numerous roles in human
metabolic pathways. A study by Lim et al. [134] showed that treatment of high-fat-induced
(HFD) hyperglycemic mice with L. sakei OK67 decreased the LPS levels in blood that was
enhanced by HFD. The treatment decreased epididymal fat and suppressed the release of
proinflammatory cytokines (TNF-α and IL-1) as well as the activation of NF-κB in the colon,
highlighting the elevated expression of colon tight junction proteins and anti-inflammatory
reactions in HFD mice. Another study on a diabetic mice model [135] showed that treatment
with L. plantarum MTCC5690 and L. fermentum MTCC5689 improved insulin sensitivity
and decreased the expression of the intestinal tight junction’s proteins (occludin and ZO-1),
which in turn elevated the circulatory levels of LPS and proinflammatory markers (TNF-α,
IL-6, and monocyte chemoattractant proteins (MCP-1)), demonstrating the antidiabetic
property of Lactobacillus.

Streptococcus, Pedi coccus, Enterococcus, Lactococcus, and yeasts such as Saccharomyces boulardii,
in addition to Lactobacillus spp., are important in regulating gut flora homeostasis [136].
Similarly, diabetes-related non-healing-wound studies have highlighted the role of com-
mensal Lactobacillus spp. in the differential expression of cellular and metabolic genes that
induced production of pro-healing cytokines (TNF-α, IL-12, and other non-inflammatory
responses) [137]. Transcriptome profiling of L. acidophilus, L. casei, and L. rhamnosus showed
the production of beneficial bacteriocins and secondary metabolites that can influence
host metabolic regulation against various diseases [138]. In the current market, probi-
otics have a high yield, stability, and low-cost substrate requirement while posing no risk
to the larger population [139]. Probiotics, as an effective immunomodulator, also hold
great value in regulating the glycemic index of type 1 diabetes mellitus (T1DM) patients.
T1DM is characterized by pancreatic beta cell damage, which results in abnormal insulin
production in the regulation of blood glucose levels [140]. Continuous administration of
L. johnsonii MH-68, Bifidobacterium animalis subsp. lactis CP-9, and L. salivarius subsp. salicinius
AP-32 to patients with T1DM for 6 months resulted in decreased fasting blood glucose
levels and HbA1c expression, as well as altered gut microbiota flora. The combination of
insulin therapy and probiotic supplements in T1DM patients reduced the production of
proinflammatory cytokines (IL-17, IL-18, and TNF-α), emphasizing the strong response
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of probiotics [141]. Another study on T2DM patients with continuous supplementation
of multistrain probiotics for 12 weeks showed a decrease in glycated hemoglobin and
improved the quality of life of the patients with a reduced body weight [142].

10.2. Basic Immunomodulatory Action of Probiotics

Probiotics have been categorized as the main factor in regulating the primary im-
mune system and acquired immunity [143]. Probiotics generally activate dendritic cells
and macrophages, which enhance the production of TGF-β, IL-4, IL-5, IL-12, and T-cell-
mediated responses against pathogens [144]. The GI tract and intestinal flora are very
specific for maintaining epithelial innate immunity. The presence of probiotics significantly
activates humoral immune responses such as B-cell mediated immunoglobulin (Ig) produc-
tion and enhances cytokine regulation. This triggers the production of anti-inflammatory
cytokines (IL-10 and -12) and chemotaxis of innate immune cells (monocyte, NK cells, and
dendritic cells), which induce immune homeostasis [145]. Probiotics also have a prominent
role against viral or bacterial infections by modulating the NK-cell-associated T-cell re-
sponse to establish antipathogenic activity [146]. A study conducted on the Gram-negative
probiotic strain E. coli Nissle 1917 showed the production of NF-kB-mediated antibacterial
peptide human β-defensin 2 (hBD-2), which promotes epithelial adhesion and activates
innate cells (leukocytes and macrophages) [147]. Another study on Bifidobacterium showed
enhanced cytokine responses and activation and maturation of dendritic cells against DSS-
induced colitis. This highlighted the production of proinflammatory cytokines (IL-1β and
TNF-α) that were further involved in CD4+ production via T-helper cells (TH), conferring
an adaptive immune response [148].

11. Probiotic Effect in Acute and Chronic Biomarkers of Non-Healing DFUs
11.1. C-Reactive Proteins (CRPs)

CRPs are basic acute-phase proteins that play a role in various diabetic complica-
tions and are associated with high proinflammatory cytokines [149] (Figure 3). Currently,
probiotic formulations that incorporate Bacillus coagulans (probiotic honey) [150] have
a beneficial effect in reducing the CRP level in blood serum. Clinical trials have shown
promising results of probiotics in reducing diabetic-related inflammation. For instance,
we considered randomized trials on 523 participants with type 2 diabetes in which the
participants were fed daily with probiotic yogurt from 2 to 12 weeks. Their inflamma-
tory markers (CRPs, TNF-α, and IL-6) were monitored and significant decreases in the
CRP level and IL-6 were found, suggesting the beneficial role of probiotics in lowering
the acute phase proteins [151]. Similarly, another study conducted on patients suffer-
ing from diabetic nephropathy showed an increased production of creatinine and CRPs.
These patients, who were supplemented with probiotic Lactobacillus and Bifidobacterium for
12 weeks, showed a significant reduction in the levels of CRPs, creatine, and IL-10, which
highlighted the beneficial effects of probiotic supplements in reducing acute inflammation
during diabetes [152].

11.2. Procalcitonin

Procalcitonin is a hormonal peptide precursor of calcitonin that shows a higher expres-
sion during the acute phase of DFUs. The level of procalcitonin rises with the increased
production of proinflammatory stimuli. Generally, these peptides are associated with
bacterial infections and are used as a biomarker during sepsis conditions [153]. Studies
conducted on hospital-acquired DFU infections have shown an increased production of
procalcitonin biomarkers. The increased biomarker level highlighted other inflammatory
markers (IL-3, IL-6, and IL-8), which showed a correlation between CRPs during DFU
infections [154]. Constant research has found an effective role of probiotics in lowering
the production of procalcitonin with a significant decrease in IL production. A study
conducted on critically ill patients with sepsis showed a high production of IL-6, protein
C, and procalcitonin as major inflammatory markers during acute infections. A constant
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supplementation of probiotics (Streptococcus, Bifidobacterium, and L. paracasei) resulted in
a drastic reduction in the serum IL-6, protein C, and procalcitonin levels after 1 week, which
also highlighted the beneficial effect of probiotics against acute-phase proteins [155].
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Figure 3. Acute (A–D) and chronic (E–H) biomarkers during DFU infections. C-reactive proteins
and procalcitonin are primary proteins whose differential expression indicates the onset of DFU
infections (A,B). White blood cells (WBCs) typically express information about bacterial infections
(C). Epidermal growth factors highlight lower neutrophil expression (D), indicating decreased
re-epithelization during wound healing. Biofilm formation by opportunistic pathogens (E) and
reductions in collagen and the extracellular matrix (F) due to the decreased keratinocyte movement
(F) occur. Matrix metalloproteinase inhibits the production of anti-inflammatory cytokines, thereby
impairing wound healing (G). The overproduction of proinflammatory cytokines leads to a decrease
in macrophage-associated proteins and T-cell-mediated immune responses (H).

11.3. White Blood Cell (WBC) Count

The major risk factor apart from CRPs, procalcitonin, and serum creatine involves the
WBC count during the acute stage of diabetic foot infections. An elevated level of WBCs has
been significantly associated with DFUs and is significantly affected by elevated levels of
blood glucose [156]. The hematological and biochemical markers during diabetic-induced
osteomyelitis also include the WBC count because variation in the WBC levels estimates the
degree of a diabetic foot infection [154]. As previously described, probiotics have a major
effect in reducing the acute-phase proteins and inflammatory marker levels. A recent study
of probiotics on non-healing distal limb infections in equine species showed a significant de-
crease in the WBC count after topical administration of probiotics. This significant decrease
in inflammation was accompanied by a 50% decrease in the WBC count in the wound
area [157]. Another study conducted on healthy individuals who were supplemented with
Lactobacillus and Bifidobacterium probiotics for 6 weeks showed a decreased production
of leukocytes (WBCs) and proinflammatory cytokines (IL-6 and TNF-α), showing the
important role of probiotics in maintaining healthy intestinal homeostasis [158].

11.4. Growth Factors

The process of inflammation during diabetic neuropathy leads to an alteration in
growth factors, which leads to a decrease in the chemotaxis movement of neutrophils, thus
reducing the angiogenesis and endothelial growth regeneration and causing increased
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susceptibility to foot infections [159]. Probiotics have been shown to have a significant role
in increasing VEFF-mediated cell regeneration and a major role in enhancing keratinocyte
production. Studies conducted on L. plantarum showed low cytotoxicity and increased
production of VEGF in skin regeneration and fibroblast production, demonstrating the
prominent role of probiotics in the enhancement of growth factors [160]. Lactobacillus has
also shown effects on chemokine activation and movement; these chemokines have a major
role in angiogenesis and help in the recruitment of inflammatory cells [161].

11.5. Chronic Biofilm Formation

In contrast to acute wounds, chronic DFU wounds consist of 60% biofilm-forming cells,
clinical growth of aerobic microbes (P. aeruginosa and S. aureus), and anaerobic microbes
in the deep part of the wound; i.e., osteomyelitis, and significantly resist the entry of
antimicrobial agents, which causes a delay in wound healing [162]. Conventional therapies
for controlling biofilms are not very effective, hence alternatives are required, including
probiotics, which have been used since the early 1990s and have shown a potential role
against cutaneous skin infections. Recently, probiotic strains (Bacillus subtilis KATMIRA
and B. amyloliquefaciens) showed efficient activity against wound infections [163]. Similarly,
a study conducted on L. fermentum against potent opportunistic pathogens (Pseudomonas
and Staphylococcus) showed reductions in the biofilm-forming cells and in the production
of virulence factors (pyocyanin and pyoverdine) [164].

11.6. Extracellular Matrix (ECM)

Normal wound healing involves collagen remodeling and degradation of fibril pro-
teins by MMPs, but a DFU condition tends to overexpress the fibrils, resulting in distortions
in ECM remodeling. Fluctuations in the levels of collagen and fibrinogen in blood plasma
decreases elastin and fibronectin production in the tissue remodeling [165]. The dam-
aged host ECM results in the movement of opportunistic pathogens by lowering the ECM
binding and promoting virulence. Some probiotic species have shown an effective role in
reinitiating production of collagen I and fibronectin [166]. A study conducted on L. casei
showed its significant effects in ECM remodeling and fibronectin production by revealing
the efficient movement of fibroblasts and keratinocytes for re-epithelization [167].

11.7. Matrix Metalloproteinase (MMP)

During delays in the wound-healing process, MMP-9 plays a role in the production of
acute-phase proteins and proinflammatory cytokines. The imbalance between the ECM
formation and high levels of MMP-2 and MMP-9 in macrophages inhibits the expression of
anti-inflammatory factors such as TimP-1 and TimP-2, leading to healing dysbiosis [168].
Most studies have not shown the regulation of probiotic species in these MMP proteins
during DFUs, but some studies on sepsis showed a significant decrease in MMP when
Lactobacillus spp. was administered. A study conducted by Maghsood et al. [169] on cell-
free supernatants (CFS) of L. acidophilus and L. rhamnosus showed a decreased expression
of MMP-9 in human monocyte cells. This highlighted a significant increase in the cell-
surface expression of CD147 and TimP-1 and TimP-2, which promoted anti-inflammatory
properties. Another study on an ethanol extract from L. plantarum showed a significant
decrease in MMP-9, IL-6, and TNF-α expression in streptozotocin-induced diabetic rats. The
study showed the production of collagen fiber and extracellular matrix, showcasing wound
healing and the positive effect of Lactobacillus in lowering the inflammatory response [170].

11.8. Proinflammatory Cytokine Response

The infiltration of cytokines is the major factor related to increased inflammation
during a chronic DFU condition. The major process of healing is retarded by excessive
proinflammatory cytokine secretion, macrophage polarization, tissue destruction, loss of
angiogenesis, and bacteria-induced inflammation [171]. To overcome the immunomodu-
latory burst, probiotics have been constantly recognized as an efficient therapy. Various
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studies showed the downregulation of inflammatory pathways. For instance, L. reuteri
extracts increased the expression of the inflammatory protein MMP-1 with downregula-
tion of TGF-β signaling. This enhanced the proliferation of skin fibroblasts. In addition,
L. reuteri extracts increased the expression of P13-AKT pathways, which play a prominent
role in cell differentiation and apoptosis [172]. Another clinical study of DFU patients that
used topical administration of L. plantarum showed a remarkable difference in terms of
angiogenesis and vascular area of the wounds. In addition, the study showed M1 and M2
macrophage polarization in fibroblast proliferation and tissue remodeling [173].

12. Results

The search yielded 17 potentially relevant articles related to the role of probiotics in
modulating acute and chronic markers of DFUs, 4 of which were randomized control trials,
placebo trials, and single blinded multicenter studies. The randomized trial studies used
probiotic strains such as L. acidophilus, Bifidobacterium, L. reuteri, and Streptococcus spp. to
lower the expression of acute-phase markers such as C-reactive proteins and procalcitonin.
In a clinical trial study, L. plantarum and Bifidobacterium reduced the white blood cell (WBC)
count and proinflammatory markers, highlighting the efficacy of probiotic supplements.
One systematic meta-analysis review also highlighted the role of yogurt consumption in
lowering the acute-phase proteins by reducing the expression of IL-6, a proinflammatory
marker. The remaining 11 articles involved in vivo and in vitro observational studies. The
major probiotic studies related to acute and chronic conditions are listed in Table 2.

Table 2. Features of probiotic studies associated with acute and chronic conditions.

Author Acute/Chronic
Markers

Study
Description

Probiotic
Source

Level of Proteins or
Acute and Chronic
Marker Response

Microbial
Burden

Inflammatory
Mediators

Mousavi
et al. [151]

CRP

Systematic
meta-analysis

Probiotic
yogurt <3 mg·dL−1 NA IL-6

Mafi et al.
[152]

Randomized
placebo trial

Bifidobacterium,
L. acidophilus,
L. fermentum,
and L. reuteri

3.8 ± 1.9 (mg·L−1) NA IL-1, TNF- α,
and TGF-β

Sanaie et al.
[155] Procalcitonin Randomized

placebo trial

Bifidobacterium,
Lactobacillus,

and
Streptococcus

1.67 ± 1.27 (µg·mL−1)
~0.47 ± 0.41 (µg·mL−1)

NA IL-6 and acute
phase proteins

Stene et al.
[158] WBC Clinical trial

Bifidobacterium
infantis and
L. plantarum

109 circulating
leukocytes

NA IL-6 and IL-10

Varma et al.
[164] EPS

Observational
research
analysis

L. fermentum
2.5 and 5 µg of culture

supernatant:
antibiofilm activity

Pseudomonas
and

Staphylococcus
biofilm

NA

Lorca et al.
[166]

Extracellular
matrix,

collagen,
fibronectin

Observational
research
analysis

L. acidophilus
Improved collagen and

fibronectin binding
(4.6- to 6.3-fold)

NA NA

Chuang et al.
[170] MMP-9

Observational
research
analysis

L. plantarum Low MMP-9 NA Low levels of
IL-6 and TNF-α

Han et al.
[172]

Proinflammatory
cytokines

Observational
research
analysis

L. reuteri Mesenchymal stem cell
migration NA

Enhanced MMP
proteinase,

TGF-1

Arganaraz et al.
[173]

Innate
immune
response

Observational
research
analysis

Subcutaneous
debridement

plus
Lactobacillus

(topical)

Enhanced phagocytosis
and macrophage

maturation

Lower
bioburden

M1 and M2
macrophages

Note: NA indicates that data were not available.
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13. Novel Prospects of Probiotic-Related Therapies against DFUs

Currently, few probiotic therapies have shown an efficient response against non-
healing wound ulcers (diabetic and non-diabetic). Non-healing diabetic wounds showed
a decreased expression of vascularization due to reduced angiogenesis and insulin metabolism.
The few probiotics mentioned in Table 3 highlight the efficient response against intrinsic
mediators of non-healing diabetes-associated foot ulcers.

Table 3. Probiotic responses against DFU infections.

Source Response against DFU Markers Reference

L. rhamnosus GG lysate
Chemokine movement (CXCL2 and CXCR2) induced
re-epithelization and keratinocyte movement during
non-healing wound

[174]

Bifidobacterium bifidum, L. acidophilus, L. casei, and
L. fermentum

Decrease in total cholesterol level and high sensitivity CRPs in
DFU patients after 12 weeks of continuous supplementation
of probiotics

[175]

Genetically modified L. reuteri with a
plasmid-encoding CXCL2 chemokine

Rapid wound closure with persistent proliferation of dermal
cells and prolonged bioavailability of immune cells such
as macrophages

[176]

Ethanol extract from L. plantarum TWK10 Enhance wound-healing properties with reduced expression
of proinflammatory markers (TNF-α, IL-6, and MMP-9) [170]

Bifidobacterium lactis, L. acidophilus, L. paracasei,
and L. rhamnosus

Higher neovascular formation and reduced expression of
proinflammatory markers [177]

L. bulgaricus and L. plantarum
Decreased expression of proinflammatory markers (IL-1β and
TNF-α); increased expression of anti-inflammatory markers
(IL-10 and TGF-β)

[178]

Apart from the above-mentioned probiotic supplements (Table 2), few novel avenues
can be utilized to increase the efficiency pf probiotic strains against DFU infections. Some
of the novel prospects are highlighted below.

13.1. Probiotic Encapsulation

To attain high efficiency at the wound site, probiotics need to be biocompatible and
non-toxic. The heterogeneous nature of chronic wounds involves polymicrobial flora that
constantly trigger the immunogenic responses. The fine biocompatibility and non-toxicity
of probiotics can be maintained by using various encapsulating agents such as polymeric
substances (e.g., chitosan, alginate, and hydrogels). These agents have proven non-toxicity
and an environmentally friendly nature that could protect probiotics from a harmful
pathogenic environment [179]. A recent study conducted on probiotic encapsulation with
antibiotics in an alginate-mediated encapsulating agent showed an increased potency of the
tobramycin antibiotic in the eradication of MRSA strains [180]. Another study on delivering
probiotics found that a potent self-assembling coated system composed of tannic acid and
poloxamer showed strong intestinal adhesion, ROS production, and higher deleterious
effects against DSS-induced-colitis mice [181]. Similarly, heparin-based hydrogels also
showed a potent effect against inflammatory markers of wound healing by regulating M1
and M2 macrophage polarization [182] and reducing the expression of proinflammatory
markers (IL-1β, TNF-α, and NF-kB). These potent regenerative concepts can be applied to
the chronic DFU situation via co-administration of empirical antibiotics with a probiotic
in an enclosed shell, which will limit the effects of harmful bacteria on probiotics and will
also provide the benefit of targeted therapy against polymicrobial infection.

13.2. Prebiotics and Synbiotics: Nanoformulations

Prebiotics is a well-known concept in which the intake of dietary fiber invokes gut
microbes to produce beneficial factors, while synbiotics is a concept in which both a probi-
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otic and prebiotic are combined [183]. Both concepts involve the positive regulation of the
host microbiota in that they showed beneficial effects in regulating intestinal homeostasis.
A study with Lycium barbarum (herb)-derived polysaccharides on mice fecal microbiota
showed a significant increase in the growth of Lactobacillus and Bifidobacterium, thereby
modulating the intestinal microbial communities. Moreover, the inflammatory response
was also varied significantly by changing IL-6 and TNF-β production [184]. Synbiotic
studies involving the use of probiotic Bacillus coagulans [185] and a prebiotic grape extract
with a Lactobacillus mixture [186] showed prominently decreased inflammatory markers in
caco2 cells and decreased inflammation in diabetic patients. Non-digestible carbohydrate
pullulan used as an NP-like prebiotic supplement with L. plantarum showed increased pro-
duction of antimicrobial peptide that could eradicate Gram-negative pathogens [187]. The
potency of nanotherapies with prebiotics and synbiotics can be applied to DFU infections
because the gut microbiota play a major role in modulating skin commensal bacteria to
produce antimicrobial peptides against pathogens. Therefore, various non-digested fibers
should be screened and used as sources for nanoformulations with probiotic supplements
to modulate the production of the inflammatory response during chronic conditions.

13.3. Probiotic-Derived Biogenic Nanoparticles (NPs)

Biogenic materials involve plants, microbes, and fungi; currently, these microbes are
being used as a potent source to produce NPs. These NPs provide an edge over conventional
NP synthesis due to their lower toxicity and high durability against various medical
treatments [188]. Microbes are considered to be capable producers of NPs using elements
such as silver (Ag), selenium (Se), gold (Au), and copper (Cu), which have enhanced
therapeutic values. To this end, environmentally friendly and economic probiotics such as
L. paraplantarum and L. crustorum, L. delbrukii, and L. plantarum are extensively being used
to treat various pathological conditions (antibacterial, antioxidant, or even chronic biofilm
conditions) [189]. The use of biogenic NPs using probiotic microbes showed a beneficial
effect on chronic DFU infections because the above NPs could strongly produce ROS
that efficiently degraded cell walls, could be synergistically used with other antimicrobial
compounds to enhance immune cell activation, and could act as an anti-biofilm agent. NPs
can overcome the limits of chronic ulcer biofilm, which makes it difficult for antimicrobial
compounds to enter the wound site and results in a delay in wound healing (Figure 4).
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Figure 4. Novel approaches to target DFU prognosis. Probiotic encapsulation ensures the probiotics’
long-term stability against chronic DFUs. Dietary fiber will be used in nanofabrication with prebiotics
and probiotics for efficient probiotic regulation. Biogenic NPs boost immune activation; probiotic-
derived EVs can be used as an alternative therapeutic delivery agent.
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13.4. Probiotic-Derived Extracellular Vesicles (EVs)

Another class of nanotherapeutics involves extracellular vesicles (EVs), which are
the membrane vesicles that can carry biogenic compounds including lipids, proteins, and
nucleic acids. These vesicles have recently gained much value due to their intrinsic an-
timicrobial activity and their use as a successful delivery agent against various chronic
illnesses [190]. A study using EVs derived from Propionibacterium freundenreichii showed
enhanced immunogenic activity in HT-29 human epithelial cells. In this study, NF-kB and
IL-8 were drastically reduced as compared to the non-treated cells with EVs, which sup-
ported the anti-inflammatory response of EVs against chronic illness [191]. Other studies
of probiotic-derived EVs showed their potential role as adjuvants [192] in modulating the
proliferation of epithelial growth factors during DSS-induced colitis [193]. Based on the
above results, it is obvious that probiotic-derived vesicles have a potential role in reducing
acute and chronic inflammation, since most of the inflammatory cytokines and biomarkers
of IL-8, NF-kB, and TNF-α are also the prominent markers in DFU infections. Therefore,
EVs derived from probiotics can be utilized as a futuristic therapeutic material in the
betterment of the healing prognosis of DFU wounds.

14. Management of Acute and Chronic DFU Conditions via Probiotic Remodeling

The fundamental issue behind the global glycemic index is the lifelong risk of acquir-
ing lower-limb DFUs. The current situation is disastrous because lower limbs are either
amputated or patients suffer from emotional and physical stress as a result of exorbitant
healthcare costs. Foot deformity due to a DFU is a progressive disorder that transforms
the disorder into a life-threatening risk in due course. The ongoing quest for efficient tech-
nologies or therapies to assess DFU wounds has shown a chronicity of such wounds that
encompasses a variety of pathological problems that require effective care [194]. Loss of
sensation or persistent pressure in the limb region requires adequate foot care management
as well as effective therapies to combat the resulting issues with a non-healing wound.
The margin between the acute and chronic situations in a DFU is so narrow that even
a subcutaneous hemorrhage or simple crack in the foot might result in a chronic gangrene
situation. The complexity of DFU prognosis often requires proper medical practices such as
ulcer classification or grading. The evaluation system provides both sufficient information
to clinicians and comprehensive knowledge regarding the entire history of the foot compli-
cations of patients [195]. Sufficient data from the wound morphology provide evidence
that may be utilized when prescribing medical facilities to the patient.

Acute and chronic diseases are generally discrete phases that entail the control of
numerous parameters such as the blood serum level, biomarker presence, and inflammatory
cytokines. The acute stage is characterized by the normal degradation of growth factors,
which deregulate the vascularization process in normal healing. This causes systemic
inflammatory responses that involve macrophages and neutrophils, resulting in decreased
production of anti-inflammatory cytokines and constant tissue hypoxia in the peripheral
wound region. Normal or acute healing takes 2 to 3 months and includes cell mitosis and
tissue granularization, but constant and recurrent foot trauma results in a chronic condition
of the foot region that includes a high inflammatory response involving an innate immune
response and stimulation of proinflammatory cytokines. This makes the foot region more
susceptible to infections. The high glycemic index also causes vascular neuropathy, which
in turn causes a lack of angiogenesis, making the foot region more susceptible to persistent
infections, which due to the formation of biofilm micro-communities in later stages, slows
down the wound-healing process by more than 8 to 10 months. Out of all the factors
mentioned here, the immune response plays a vital role in a significant delay of the
wound-healing process because it is a host’s immune response that generally activates the
proinflammatory modulators that cause immunogenic bursts at the site of infection.

The dysregulated response during DFUs involves the production of acute-phase
proteins, WBCs, and other serum proteins that provide the primary signs of infection. Then,
inflammatory cytokines come into the picture that involve the significant upregulation and
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downregulation of immunoregulators. Chronic DFUs primarily involve the dysregulation
of neutrophils and macrophages, which initiates the downregulation of dendritic cells
(MCP-1 and IFN-γ) and MMP-9. The imbalance in macrophages causes a decrease in the
growth factors (VEGF and EGF) and tissue remodeling of collagen and fibronectin. This
regulates the movement of proinflammatory cytokines (IL-1, IL-1β, and TGF-α), which
increases the infection rate of the region and dysregulates the T-cells’ maturation. The
cell-mediated immunity is hampered by a decreased, restricted movement of T-regulatory
cells (Treg) and TH to the site of the infection. Constant production of chemokines and
cytokines at the site of the wound lowers the epithelial remodeling and diminishes the
vascularization property of keratinocytes, thereby rupturing the endothelial lining, which
certainly paves the way for pathogens to enter. These pathogens secrete virulence factors
that inhibit the normal healing process of the wound and involve the prognosis of tissue
necrosis and a low oxygen state at the site of infection, causing it to reach the gangrenous
state or the amputation stage.

Regarding the management of wound ulcer situations, various novel therapies that
directly target the immune responses during DFU infections, such as therapies using
fibroblasts, macrophage activation, stem cell or MMP inhibitors, and mAbs, have shown
a drastic reduction in the proinflammatory mediators but have not been efficient in terms
of longevity and static efficient responses. The major drawbacks involve a shorter half-
life, repeated administration, degradation via a proteolytic environment of the wound,
high cell death, expensiveness, hydrolysis at a low pH, limited downstream processing,
renal clearance, and a high production cost. Still, there are FDA-approved drugs that
have shown potent activity in lowering inflammatory responses, but there should be
a continuous search for more efficient and better therapies that can regulate the host
metabolism by lowering chronic malignancies. In the quest to find efficient therapies,
researchers found a constant relationship between the microbe and the host cell response.
However, a decade has passed and there have been a substantial amount of data that
showed the influence of environmental microflora on human health; several microbes have
been identified as pathogens, including basic categories such as Staphylococcus, Streptococcus,
Bacillus, Pseudomonas, Klebsiella, and other fungal bodies. There is one class that has
always had a beneficial role in host–microbe interactions; i.e., “probiotics.” The constant
regulation between the host gut microbiota and skin has shown a consistent homeostasis
relationship between the dermal and mucosal microbiota. The regulation of various
metabolites (short-chain fatty acids, exopolysaccharides, lipids, and other metabolites)
directly helps to maintain the protective microbiota in cutaneous and subcutaneous layers
against pathogenic interactions.

Probiotics have been known to provide a protective barrier against various pathogenic
species. These microbes constantly regulate the gut–skin metabolism to provide essen-
tial metabolites such as bacteriocins and anti-inflammatory molecules, which modulate
the innate immune response against DFUs. Most probiotics degrade the proinflamma-
tory chemokines (CXCL10), which have a role in stimulating inflammatory cells. Some
species have been found to regulate the epithelial lining by regulating protein kinase ac-
tivities. L. plantarum provided a maximum benefit when used in a probiotic cocktail with
Bifidobacterium because it regulated immunoglobulin activity by establishing a sustainable
relationship with the tissue repair [196]. In the current scenario, probiotic drinks have
shown numerous benefits in regulating all three primary immune metabolisms; i.e., innate,
adaptive, and acquired immunity, by constantly regulating the leukocyte, macrophage,
and neutrophil chemotaxis [197]. A delay in wound healing is a chronic condition that
is affected not only by neuropathy or vasculopathy, but also by the extent of infection.
The high bacterial density at the DFU site plays an important role in forming biofilm
communities. Constant intercommunicating signals (quorum sensing and siderophore
production) increase the chances of forming compact microbiota, which often results in
hypoxia situations and reduced blood flow, ultimately forming gangrene. These pathogens
act as natural barriers against antimicrobial compounds and evade the host’s natural im-
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mune mechanisms by eradicating the surrounding tissue, which leads to inflammation
and a delay in the wound-healing process. Therefore, these tandem roles of the host innate
response and chronic stimulation increase the chances of amputations or long-term infec-
tions. Therapies have shown effectivity to a great extent, but consistent deterioration of
therapies might complicate the treatment efficiency; therefore, probiotics or sustainable
dietary intake will not only moderately affect the glycemia index (diabetes), but also will
regulate the innate immune response by limiting other risk factors such as neuropathy,
nephropathy, or retinopathy. Because most of the inflammatory cytokines or proinflam-
matory markers have a prominent role in maintaining the gut flora metabolism in normal
wound-healing procedures, the same immunomodulators can have a detrimental effect
during chronic dysbiosis.

15. Limitations

The use of entire microbes as probiotics has beneficial effects in reducing systemic
inflammation by maintaining gut–skin–brain homeostasis. However, effectively defin-
ing the microbiome as a “probiotic” still requires an extensive number of supporting
explanations in terms of its use in a larger population and clinical outcomes. Currently,
trial-and-error-based strategies are being explored; therefore, medical interventions, more
detailed analyses, and proper clinical trials are required to generate more user-friendly data
with conclusive knowledge related to dosage values. Normally, the source of probiotics
varies from Gram-positive to Gram-negative bacteria, and environmental microbes acclima-
tize themselves according to the respective niches. Therefore, in some instances, probiotic
ingestion might allow probiotic species to reshuffle their entire genetic makeup, which
can cause detrimental effects on patients; the impact on critically immunocompromised
patients would be especially severe. Apart from this, in the era of antibiotic resistance,
parameters such as drug usage, the potentiality of drugs, and the prescription of drugs
ultimately influence the microbial flora of the human system. The major problems of
these probiotic species from friend to foe involve horizontal gene transfer mechanisms;
such mechanisms would limit the use of probiotic products. Certain examples such as
S. epidermidis and Propionibacterium spp. have shown numerous benefits in terms of the
production of secondary metabolites and fatty acids, which constantly limit the growth of
other dermal pathogens. However, a slight imbalance in the gut–skin axis may cause them
to become detrimental to the host’s microflora.

16. Conclusions
16.1. Current Progress

Prebiotics and synbiotics are important in regulating an individual’s intestinal mucosa;
products combining dietary fibers with probiotics have been shown to modulate intestinal
gut flora, which in turn can reduce the glycemic index and lipid metabolism [198]. The
commercialized probiotic product, which includes a cocktail of Lactobacillus spp. and
Bifidobacterium spp. in a capsule, provides nearly all of the benefits in modulating an
effective immune response against chronic DFU infections. A novel concept known as
“postbiotics” is currently being investigated as a replacement for probiotics. Postbiotics are
metabolic products released by probiotic organisms that have several advantages, including
a high scale-up, prolonged storage viability, and potent immunomodulatory properties.
Similarly, a concept known as “paraprobiotics”, which involves dead or inactive probiotic
cells, has demonstrated beneficial anti-inflammatory and anti-biofilm properties, as well as
an improved gut barrier function and immunomodulatory properties, suggesting their use
in reducing chronic wound infections [199]. These concepts may lead to effective gut–skin
homeostasis. However, large-scale clinical trials are required before they can be effectively
rolled out in the market.
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16.2. Future Perspectives

There is a need for metagenomic approaches to identify as many probiotics or benefi-
cial microbes as possible because such microbes have the potency to induce our intestinal
homeostasis. The DFU is a severe metabolic disorder that is combined with dysbiosis of the
neural system (motor neuropathy and vascular neuropathy); its subsequent progression
leads to a chronic situation of the wound. Probiotics generally have much potential in
regulating wounds at the acute and chronic stages. Therefore, commercially available
or newly discovered beneficial microbes can be used as resources for bioactive materials
such as biogenic molecules or EVs to be combined with DFU-efficient NPs, which can be
alternatively used with hydrogel dressings or can be used as a synergistic molecule with
antibiotics in biofilm-related DFUs. Finally, this review on probiotics represents an interest-
ing area of research in treating the acute and chronic conditions of DFUs and provides an
accurate assessment of the manner in which they regulate gut–skin homeostasis and how
current advancements in prebiotics and synbiotics can increase the potency of probiotics
against DFU infections.
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