Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Niosomes and Drug-Loaded Niosomes
2.3. Small Angle X-ray Scattering
2.4. Dynamic Light Scattering (DLS) and ζ-Potential Measurements
2.5. Transmission Electron Microscopy (TEM)
2.6. Fluorometric Measurements
2.7. Drugs Entrapment Efficiency (EE%)
2.8. Physicochemical Stability
2.9. In Vitro Release Studies
2.10. Bacterial Strains
2.11. Determination of Minimum Inhibitory Concentration (MIC) of CIP-Loaded Niosomes
2.12. Effect of CIP-Loaded Niosomes on Bacterial Biofilm Production
2.13. SEM Analysis
2.14. Evaluation of Intracellular Uptake
2.15. Cytotoxicity Studies
2.16. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Empty and Loaded Niosomes
3.2. Stability Studies
3.2.1. Physical Stability of Niosomes
3.2.2. Stability of Niosomes in Artificial Urine
3.2.3. Stability Studies over Time of Free CIP and CIP-Loaded into Niosomes
3.3. CIP Release Studies
3.4. In Vitro Antibacterial Activity of CIP-Loaded Niosomes
3.5. Biofilm Production and Anti-Biofilm Activity of the Sub-MIC of Formulated Niosomes
3.6. Ultrastructural Morphology
3.7. Evaluation of Intracellular Uptake
3.8. Cytotoxicity Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Wi, Y.M.; Patel, R. Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infect. Dis. Clin. 2018, 32, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.N.; Flores-Mireles, A.L.; Pinkner, C.L.; Schreiber, H.L.; Joens, M.S.; Park, A.M.; Potretzke, A.M.; Bauman, T.M.; Pinkner, J.S.; Fitzpatrick, J.A.J.; et al. Catheterization Alters Bladder Ecology to Potentiate Staphylococcus Aureus Infection of the Urinary Tract. Proc. Natl. Acad. Sci. USA 2017, 114, E8721–E8730. [Google Scholar] [CrossRef] [Green Version]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia Coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Bashir, K.; Idrees, M.; Ullah, A.; Hassan, N.; Khan, S.; Nasir, B.; Nadeem, T.; Ahsan, H.; Khan, M.I.; et al. Phylogenetic Analysis and Antimicrobial Susceptibility Profile of Uropathogens. PLoS ONE 2022, 17, e0262952. [Google Scholar] [CrossRef]
- Urinary Tract Infections: Virus-PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357242/ (accessed on 3 October 2022).
- Lipsky, B.A.; Lipsky, B.A.; Hoey, C.T. Treatment of Bacterial Prostatitis. Clin. Infect. Dis. 2010, 50, 1641–1652. [Google Scholar] [CrossRef] [Green Version]
- Fasugba, O.; Gardner, A.; Mitchell, B.G.; Mnatzaganian, G. Ciprofloxacin Resistance in Community- and Hospital-Acquired Escherichia Coli Urinary Tract Infections: A Systematic Review and Meta-Analysis of Observational Studies. BMC Infect. Dis. 2015, 15, 545. [Google Scholar] [CrossRef] [Green Version]
- Daum, T.E.; Schaberg, D.R.; Terpenning, M.S.; Sottile, W.S.; Kauffman, C.A. Increasing Resistance of Staphylococcus Aureus to Ciprofloxacin. Antimicrob. Agents Chemother. 1990, 34, 1862–1863. [Google Scholar] [CrossRef] [Green Version]
- Soto, S.M. Importance of Biofilms in Urinary Tract Infections: New Therapeutic Approaches. Adv. Biol. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Moghassemi, S.; Hadjizadeh, A. Nano-Niosomes as Nanoscale Drug Delivery Systems: An Illustrated Review. J. Control. Release 2014, 185, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Marianecci, C.; Petralito, S.; Rinaldi, F.; Hanieh, P.N.; Carafa, M. Some Recent Advances on Liposomal and Niosomal Vesicular Carriers. J. Drug Deliv. Sci. Technol. 2016, 32, 256–269. [Google Scholar] [CrossRef]
- Sarfraz, M.; Qamar, S.; Rehman, M.U.; Tahir, M.A.; Ijaz, M.; Ahsan, A.; Asim, M.H.; Nazir, I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022, 14, 1909. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 Variant: A New Chapter in the COVID-19 Pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Ag Seleci, D.; Seleci, M.; Walter, J.G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar] [CrossRef] [Green Version]
- Akbari, V.; Abedi, D.; Pardakhty, A.; Sadeghi-Aliabadi, H. Release Studies on Ciprofloxacin Loaded Non-Ionic Surfactant Vesicles. Avicenna J. Med. Biotechnol. 2015, 7, 69. [Google Scholar]
- Kashef, M.T.; Saleh, N.M.; Assar, N.H.; Ramadan, M.A. The Antimicrobial Activity of Ciprofloxacin-Loaded Niosomes against Ciprofloxacin-Resistant and Biofilm-Forming Staphylococcus Aureus. Infect. Drug Resist. 2020, 13, 1619. [Google Scholar] [CrossRef]
- Mirzaie, A.; Peirovi, N.; Akbarzadeh, I.; Moghtaderi, M.; Heidari, F.; Yeganeh, F.E.; Noorbazargan, H.; Mirzazadeh, S.; Bakhtiari, R. Preparation and Optimization of Ciprofloxacin Encapsulated Niosomes: A New Approach for Enhanced Antibacterial Activity, Biofilm Inhibition and Reduced Antibiotic Resistance in Ciprofloxacin-Resistant Methicillin-Resistance Staphylococcus Aureus. Bioorganic Chem. 2020, 103, 104231. [Google Scholar] [CrossRef]
- Tyagi, P.; Kashyap, M.; Majima, T.; Kawamorita, N.; Yoshizawa, T.; Yoshimura, N. Intravesical Liposome Therapy for Interstitial Cystitis. Int. J. Urol. 2017, 24, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Bartelds, R.; Nematollahi, M.H.; Pols, T.; Stuart, M.C.A.; Pardakhty, A.; Asadikaram, G.; Poolman, B. Niosomes, an Alternative for Liposomal Delivery. PLoS ONE 2018, 13, e0194179. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.K.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R.L. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front. Microbiol. 2016, 7, 1878. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Seguella, L.; Gigli, S.; Hanieh, P.N.; Del Favero, E.; Cantù, L.; Pesce, M.; Sarnelli, G.; Marianecci, C.; Esposito, G.; et al. InPentasomes: An Innovative Nose-to-Brain Pentamidine Delivery Blunts MPTP Parkinsonism in Mice. J. Control. Release 2019, 294, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camara, C.I.; Bertocchi, L.; Ricci, C.; Bassi, R.; Bianchera, A.; Cantu’, L.; Bettini, R.; Del Favero, E. Hyaluronic Acid—Dexamethasone Nanoparticles for Local Adjunct Therapy of Lung Inflammation. Int. J. Mol. Sci. 2021, 22, 10480. [Google Scholar] [CrossRef]
- Doucet, M.; Cho, J.H.; Alina, G.; Bakker, J.; Bouwman, W.; Butler, P.; Campbell, K.; Gonzales, M.; Heenan, R.; Jackson, A. SasView for Small Angle Scattering Analysis. Zenodo. SasView Version 4.1.org. 2017. Available online: http://www.Sasview.org (accessed on 3 October 2022).
- Koppel, D.E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J. Chem. Phys. 1972, 57, 4814–4820. [Google Scholar] [CrossRef]
- De Vos, C.; Deriemaeker, L.; Finsy, R. Quantitative Assessment of the Conditioning of the Inversion of Quasi-Elastic and Static Light Scattering Data for Particle Size Distributions. Langmuir 1996, 2, 2630–2636. [Google Scholar] [CrossRef]
- Sennato, S.; Bordi, F.; Cametti, C.; Marianecci, C.; Carafa, M.; Cametti, M. Hybrid Niosome Complexation in the Presence of Oppositely Charged Polyions. J. Phys. Chem. B 2008, 112, 3720–3727. [Google Scholar] [CrossRef] [PubMed]
- Lentz, B.R. Membrane “Fluidity” as Detected by Diphenylhexatriene Probes. Chem. Phys. Lipids 1989, 50, 171–190. [Google Scholar] [CrossRef]
- Sciolla, F.; Truzzolillo, D.; Chauveau, E.; Trabalzini, S.; Di Marzio, L.; Carafa, M.; Marianecci, C.; Sarra, A.; Bordi, F.; Sennato, S. Influence of Drug/Lipid Interaction on the Entrapment Efficiency of Isoniazid in Liposomes for Antitubercular Therapy: A Multi-Faced Investigation. Colloids Surf. B Biointerfaces 2021, 208, 112054. [Google Scholar] [CrossRef]
- Zachariasse, K.A. Intramolecular Excimer Formation with Diarylalkanes as a Microfluidity Probe for Sodium Dodecyl Sulphate Micelles. Chem. Phys. Lett. 1978, 57, 429–432. [Google Scholar] [CrossRef]
- Gummadi, S.; Thota, D.; Varri, S.V.; Vaddi, P.; Rao, V.L.N.S. Development and Validation of UV Spectroscopic Methods for Simultaneous Estimation of Ciprofloxacin and Tinidazole in Tablet Formulation. Int. Curr. Pharm. J. 2012, 1, 317–321. [Google Scholar] [CrossRef]
- Pietrzyńska, M.; Voelkel, A. Stability of Simulated Body Fluids Such as Blood Plasma, Artificial Urine and Artificial Saliva. Microchem. J. 2017, 134, 197–201. [Google Scholar] [CrossRef]
- Stepanović, S.; Ćirković, I.; Ranin, L.; Svabić-Vlahović, M. Biofilm Formation by Salmonella spp. and Listeria Monocytogenes on Plastic Surface. Lett. Appl. Microbiol. 2004, 38, 428–432. [Google Scholar] [CrossRef]
- Lagha, M.; Bothma, J.P.; Levine, M. Mechanisms of Transcriptional Precision in Animal Development. Trends Genet. 2012, 28, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Bossù, M.; Selan, L.; Artini, M.; Relucenti, M.; Familiari, G.; Papa, R.; Vrenna, G.; Spigaglia, P.; Barbanti, F.; Salucci, A.; et al. Characterization of Scardovia Wiggsiae Biofilm by Original Scanning Electron Microscopy Protocol. Microorganisms 2020, 8, 807. [Google Scholar] [CrossRef] [PubMed]
- Relucenti, M.; Familiari, G.; Donfrancesco, O.; Taurino, M.; Li, X.; Chen, R.; Artini, M.; Papa, R.; Selan, L. Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology 2021, 10, 51. [Google Scholar] [CrossRef]
- Relucenti, M.; Miglietta, S.; Bove, G.; Donfrancesco, O.; Battaglione, E.; Familiari, P.; Barbaranelli, C.; Covelli, E.; Barbara, M.; Familiari, G. SEM BSE 3D Image Analysis of Human Incus Bone Affected by Cholesteatoma Ascribes to Osteoclasts the Bone Erosion and VpSEM DEDX Analysis Reveals New Bone Formation. Scanning 2020, 2020, 9371516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi, F.; Forte, J.; Pontecorvi, G.; Hanieh, P.N.; Carè, A.; Bellenghi, M.; Tirelli, V.; Ammendolia, M.G.; Mattia, G.; Marianecci, C.; et al. PH-Responsive Oleic Acid Based Nanocarriers: Melanoma Treatment Strategies. Int. J. Pharm. 2022, 613, 121391. [Google Scholar] [CrossRef]
- Khatib, I.; Ke, W.-R.; Cipolla, D.; Chan, H.-K. Storage Stability of Inhalable, Controlled-Release Powder Formulations of Ciprofloxacin Nanocrystal-Containing Liposomes. Int. J. Pharm. 2021, 605, 120809. [Google Scholar] [CrossRef]
- Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors Determining the Stability, Size Distribution, and Cellular Accumulation of Small, Monodisperse Chitosan Nanoparticles as Candidate Vectors for Anticancer Drug Delivery: Application to the Passive Encapsulation of [14C]-Doxorubicin. Nanotechnol. Sci. Appl. 2015, 8, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, F.; Del Favero, E.; Rondelli, V.; Pieretti, S.; Bogni, A.; Ponti, J.; Rossi, F.; Di Marzio, L.; Paolino, D.; Marianecci, C.; et al. PH-Sensitive Niosomes: Effects on Cytotoxicity and on Inflammation and Pain in Murine Models. J. Enzym. Inhib. Med. Chem. 2017, 32, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Khan, D.H.; Bashir, S.; Khan, M.I.; Figueiredo, P.; Santos, H.A.; Peltonen, L. Formulation Optimization and in Vitro Characterization of Rifampicin and Ceftriaxone Dual Drug Loaded Niosomes with High Energy Probe Sonication Technique. J. Drug Deliv. Sci. Technol. 2020, 58, 101763. [Google Scholar] [CrossRef]
- Uhljar, L.É.; Kan, S.Y.; Radacsi, N.; Koutsos, V.; Szabó-Révész, P.; Ambrus, R. In Vitro Drug Release, Permeability, and Structural Test of Ciprofloxacin-Loaded Nanofibers. Pharmaceutics 2021, 13, 556. [Google Scholar] [CrossRef] [PubMed]
- Volpe, D.A. Permeability Classification of Representative Fluoroquinolones by a Cell Culture Method. AAPS J 2004, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbarzadeh, I.; Shayan, M.; Bourbour, M.; Moghtaderi, M.; Noorbazargan, H.; Eshrati Yeganeh, F.; Saffar, S.; Tahriri, M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. Biology 2021, 10, 173. [Google Scholar] [CrossRef]
- Satish, J.; Amusa, A.S.; Gopalakrishna, P. In Vitro Activities of Fluoroquinolones Entrapped in Non-Ionic Surfactant Vesicles against Ciprofloxacin-Resistant Bacteria Strains. J. Pharm. Technol. Drug Res. 2012, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, I.; Keramati, M.; Azadi, A.; Afzali, E.; Shahbazi, R.; Chiani, M.; Norouzian, D.; Bakhshandeh, H. Optimization, Physicochemical Characterization, and Antimicrobial Activity of a Novel Simvastatin Nano-Niosomal Gel against E. Coli and S. Aureus. Chem. Phys. Lipids 2021, 234, 105019. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, P.; Rathi, B.; Verma, V.; Dhanda, R.S.; Devi, P.; Yadav, M. Targeting of Uropathogenic Escherichia Coli PapG Gene Using CRISPR-Dot Nanocomplex Reduced Virulence of UPEC. Sci. Rep. 2021, 11, 17801. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, S.; Lou, X.; Cheng, S.; Liu, X.; Zheng, W.; Zheng, Z.; Wang, H. Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiologyopen 2020, 9, e00946. [Google Scholar] [CrossRef] [Green Version]
- Barakat, H.S.; Kassem, M.A.; El-Khordagui, L.K.; Khalafallah, N.M. Vancomycin-Eluting Niosomes: A New Approach to the Inhibition of Staphylococcal Biofilm on Abiotic Surfaces. AAPS PharmSciTech 2014, 15, 1263–1274. [Google Scholar] [CrossRef]
- Manosroi, A.; Khanrin, P.; Lohcharoenkal, W.; Werner, R.G.; Götz, F.; Manosroi, W.; Manosroi, J. Transdermal Absorption Enhancement through Rat Skin of Gallidermin Loaded in Niosomes. Int. J. Pharm. 2010, 392, 304–310. [Google Scholar] [CrossRef]
- Piri-Gharaghie, T.; Jegargoshe-Shirin, N.; Saremi-Nouri, S.; Khademhosseini, S.; Hoseinnezhad-Lazarjani, E.; Mousavi, A.; Kabiri, H.; Rajaei, N.; Riahi, A.; Farhadi-Biregani, A. Effects of Imipenem-Containing Niosome Nanoparticles against High Prevalence Methicillin-Resistant Staphylococcus Epidermidis Biofilm Formed. Sci. Rep. 2022, 12, 5140. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.A.; Elbanna, T.E.; Sonbol, F.I.; Gamaleldin, N.M.; El Maghraby, G.M. Optimization of Niosomes for Enhanced Antibacterial Activity and Reduced Bacterial Resistance: In Vitro and in Vivo Evaluation. Expert Opin. Drug Deliv. 2015, 12, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Li, J.; Chen, L.; Bi, W.; Zhang, X.; Liu, H.; Zhi, X.; Zhou, T.; Cao, J. Effects of Sub-Minimum Inhibitory Concentrations of Ciprofloxacin on Biofilm Formation and Virulence Factors of Escherichia coli. Braz. J. Infect. Dis. 2019, 23, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.M.; Lamm, D.L. Antitumor Activity of Common Antibiotics against Superficial Bladder Cancer. Urology 2004, 63, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Gurtowska, N.; Kloskowski, T.; Drewa, T. Ciprofloxacin Criteria in Antimicrobial Prophylaxis and Bladder Cancer Recurrence. Med. Sci. Monit. 2010, 16, RA218-23. [Google Scholar]
Sample | Tween 85 (mM) | Span 80 (mM) | Ciprofloxacin (mg/mL) |
---|---|---|---|
A | 22.5 | 22.5 | - |
B | 22.5 | 22.5 | 2 |
Reagent | Dosage (g) |
---|---|
Urea | 25.0 |
NaCl | 9.0 |
NH4CL | 3.0 |
Creatinine | 2.0 |
Na2HPO4 | 2.5 |
KH2PO4 | 2.5 |
Na2SO3 | 3.0 |
Distilled water | Total 1.0 L |
Sample | Hydrodynamic Diameter (nm) ± SD | ζ-Potential (mV) ± SD | PDI ± SD | Ciprofloxacin (mg/mL) | Ciprofloxacin E.E. % |
---|---|---|---|---|---|
A | 113.10 ± 3.17 | −34.80 ± 1.91 | 0.20 ± 0.01 | - | - |
B | 260.41 ± 4.03 | −37.50 ± 2.12 | 0.20 ± 0.01 | 0.40 | 20 |
Sample | I1/I3 (Polarity) | IE/I3 (Microviscosity) | Anisotropy A.U. (Fluidity) |
---|---|---|---|
A | 0.96 | 1.01 | 0.22 |
B | 0.97 | 0.46 | 0.35 |
Strains | A | B | Free CIP ½ MIC | Free CIP ¼ MIC |
---|---|---|---|---|
E. coli CFT073 | 12.1 | 64.6 | 3.8 | 0.4 |
S. aureus ATCC 6538P | 26.3 | 75.0 | 9.7 | 9.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurizi, L.; Forte, J.; Ammendolia, M.G.; Hanieh, P.N.; Conte, A.L.; Relucenti, M.; Donfrancesco, O.; Ricci, C.; Rinaldi, F.; Marianecci, C.; et al. Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation. Pharmaceutics 2022, 14, 2662. https://doi.org/10.3390/pharmaceutics14122662
Maurizi L, Forte J, Ammendolia MG, Hanieh PN, Conte AL, Relucenti M, Donfrancesco O, Ricci C, Rinaldi F, Marianecci C, et al. Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation. Pharmaceutics. 2022; 14(12):2662. https://doi.org/10.3390/pharmaceutics14122662
Chicago/Turabian StyleMaurizi, Linda, Jacopo Forte, Maria Grazia Ammendolia, Patrizia Nadia Hanieh, Antonietta Lucia Conte, Michela Relucenti, Orlando Donfrancesco, Caterina Ricci, Federica Rinaldi, Carlotta Marianecci, and et al. 2022. "Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation" Pharmaceutics 14, no. 12: 2662. https://doi.org/10.3390/pharmaceutics14122662
APA StyleMaurizi, L., Forte, J., Ammendolia, M. G., Hanieh, P. N., Conte, A. L., Relucenti, M., Donfrancesco, O., Ricci, C., Rinaldi, F., Marianecci, C., Carafa, M., & Longhi, C. (2022). Effect of Ciprofloxacin-Loaded Niosomes on Escherichia coli and Staphylococcus aureus Biofilm Formation. Pharmaceutics, 14(12), 2662. https://doi.org/10.3390/pharmaceutics14122662