In Vivo Evaluation of the Efficacy of a Nisin–Biogel as a New Approach for Canine Periodontal Disease Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nisin–Biogel Preparation
2.2. Dog Selection
2.3. Clinical Trial
2.4. Periodontal Evaluation
2.5. Dental Plaque Sample Processing
2.6. Statistical Analysis
3. Results
3.1. Periodontal Evaluation
3.2. Dental Plaque Sample Processing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niemiec, B.A. Periodontal disease. Top. Companion Anim. Med. 2008, 23, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stella, J.L.; Bauer, A.E.; Croney, C.C. A cross-sectional study to estimate prevalence of periodontal disease in a population of dogs (Canis familiaris) in commercial breeding facilities in Indiana and Illinois. PLoS ONE 2018, 13, e0191395. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Holcombe, L.J. A review of the frequency and impact of periodontal disease in dogs. J. Small Anim. Pract. 2020, 61, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Stepaniuk, K. Periodontology. In Wiggs’s Veterinary Dentistry; Lobprise, H.B., Dodd, J.R., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2019; pp. 81–108. [Google Scholar]
- Bellows, J.; Berg, M.L.; Dennis, S.; Harvey, R.; Lobprise, H.B.; Snyder, C.J.; Stone, A.E.S.; Van de Wetering, A.G. 2019 AAHA Dental care guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2019, 55, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Pavlica, Z.; Petelin, M.; Juntes, P.; Erzen, D.; Crossley, D.; Skaleric, U. Periodontal disease burden and pathologic changes in organs of dogs. J. Vet. Dent. 2008, 25, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Glickman, L.T.; Glickman, N.W.; Moore, G.E.; Goldstein, G.S.; Lewis, H.B. Evaluation of the risk of endocarditis and other cardiovascular events on the basis of the severity of periodontal disease in dogs. J. Am. Vet. Med. Assoc. 2009, 234, 486–494. [Google Scholar] [CrossRef]
- Glickman, L.T.; Glickman, N.W.; Moore, G.E.; Lund, E.M.; Lantz, G.C.; Pressler, B.M. Association between chronic azotemic kidney disease and the severity of periodontal disease in dogs. Prev. Vet. Med. 2011, 99, 193–200. [Google Scholar] [CrossRef]
- Pereira Dos Santos, J.D.; Cunha, E.; Nunes, T.; Tavares, L.; Oliveira, M. Relation between periodontal disease and systemic diseases in dogs. Res. Vet. Sci. 2019, 125, 136–140. [Google Scholar] [CrossRef]
- Cunha, E.; Trovão, T.; Pinheiro, A.; Nunes, T.; Santos, R.; Moreira Da Silva, J.; São Braz, B.; Tavares, L.; Veiga, A.S.; Oliveira, M. Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet. Res. 2018, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cunha, E.; Rebelo, S.; Carneiro, C.; Tavares, L.; Carreira, L.M.; Oliveira, M. A polymicrobial biofilm model for testing the antimicrobial potential of a nisin-biogel for canine periodontal disease control. BMC Vet. Res. 2020, 16, 469. [Google Scholar] [CrossRef]
- Shin, J.M.; Ateia, I.; Paulus, J.R.; Liu, H.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front. Microbiol. 2015, 6, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, E.; Freitas, F.B.; São Braz, B.; Moreira Da Silva, J.; Tavares, L.; Veiga, A.S.; Oliveira, M. Polyphasic validation of a nisin-biogel to control canine periodontal disease. Antibiotics 2020, 9, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.; Gomes, D.; Macedo, H.; Barros, D.; Tibério, C.; Veiga, A.S.; Tavares, L.; Castanho, M.; Oliveira, M. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J. Med. Microbiol. 2016, 65, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, I. BSAVA Small Animal Formulary, 8th ed.; BSAVA Publications: Gloucester, UK, 2014; ISBN 9781905319657. [Google Scholar]
- Holmstrom, S.E.; Frost, P.; Eisner, E.R. Dental Records. In Veterinary Dental Techniques for the Small Animal Practitioner, 3rd ed.; Holmstrom, S.E., Frost, P., Eisner, E.R., Eds.; WB Saunders: Philadelphia, PA, USA, 2004; p. 20. [Google Scholar]
- Sitzman, C. Evaluation of a hydrophilic gingival dental sealant in beagle dogs. J. Vet. Dent. 2013, 30, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Belo, L.; Serrano, I.; Cunha, E.; Carneiro, C.; Tavares, L.; Carreira, L.M.; Oliveira, M. Skin asepsis protocols as a preventive measure of surgical site infections in dogs: Chlorhexidine-alcohol versus povidone-iodine. BMC Vet. Res. 2018, 14, 95. [Google Scholar] [CrossRef]
- Marshall, M.; Wallis, C.; Milella, L.; Colyer, A.; Tweedie, A.; Harris, S. A longitudinal assessment of periodontal disease in 52 miniature schnauzers. BMC Vet. Res. 2014, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cunha, E.; Valente, S.; Nascimento, M.; Pereira, M.; Tavares, L.; Dias, R.; Oliveira, M. Influence of the dental topical application of a nisin-biogel in the oral microbiome of dogs: A pilot study. PeerJ 2021, 9, e11626. [Google Scholar] [CrossRef]
- Murinda, S.E.; Rashid, K.A.; Roberts, R.F. In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40–transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. J. Food Prot. 2003, 66, 847–853. [Google Scholar] [CrossRef]
- Dreyer, L.; Smith, C.; Deane, S.M.; Dicks, L.M.T.; van Staden, A.D. Migration of bacteriocins across gastrointestinal epithelial and vascular endothelial cells, as determined using in vitro simulations. Sci. Rep. 2019, 9, 11481. [Google Scholar] [CrossRef] [Green Version]
- Flancman, R.; Singh, A.; Weese, J.S. Evaluation of the impact of dental prophylaxis on the oral microbiota of dogs. PLoS ONE 2018, 13, e0199676. [Google Scholar] [CrossRef]
- Howell, T.H.; Fiorellini, J.P.; Blackburn, P.; Projan, S.J.; de la Harpe, J.; Williams, R.C. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. J. Clin. Periodontol. 1993, 20, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 2013, 57, 5572–5579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, W.M.; Pitts, B.; Stewart, P.S. Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2010, 54, 2920–2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Qu, Y.; Liu, J.; Mai, S.; Gu, L. A universal adhesive incorporating antimicrobial peptide nisin: Effects on Streptococcus mutans and saliva-derived multispecies biofilms. Odontology 2020, 108, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Mouritzen, M.V.; Andrea, A.; Qvist, K.; Poulsen, S.S.; Jenssen, H. Immunomodulatory potential of Nisin A with application in wound healing. Wound Repair Regen. 2019, 27, 650–660. [Google Scholar] [CrossRef]
- Begde, D.; Bundale, S.; Mashitha, P.; Rudra, J.; Nashikkar, N.; Upadhyay, A. Immunomodulatory efficacy of nisin—A bacterial lantibiotic peptide. J. Pept. Sci. 2011, 17, 438–444. [Google Scholar] [CrossRef]
- Małaczewska, J.; Kaczorek-Łukowska, E.; Wójcik, R.; Rękawek, W.; Siwicki, A.K. In vitro immunomodulatory effect of nisin on porcine leucocytes. J. Anim. Physiol. Anim. Nutr. (Berl.) 2019, 103, 882–893. [Google Scholar] [CrossRef]
- Albuquerque, C.; Morinha, F.; Requicha, J.; Martins, T.; Dias, I.; Guedes-Pinto, H.; Bastos, E.; Viegas, C. Canine periodontitis: The dog as an important model for periodontal studies. Vet. J. 2012, 191, 299–305. [Google Scholar] [CrossRef]
- Cunha, E.; Trovão, T.; Santos, R.; Santos, J.D.; Moreira da Silva, J.; São Braz, B.; Veiga, A.S.; Tavares, L.; Oliveira, M. Canine periodontal disease and its systemic implications—A review. RPCV 2017, 112, 12–22. [Google Scholar]
- Teles, R.; Teles, F.; Frias-Lopez, J.; Paster, B.; Haffajee, A. Lessons learned and unlearned in periodontal microbiology. Periodontology 2000 2013, 62, 95–162. [Google Scholar] [CrossRef]
- Diaz, M.A.N.; Carvalho, I.; Diaz, G. Herbal Dentifrices for Children. In Emerging Trends in Oral Health Sciences and Dentistry; Virdi, M.S., Ed.; IntechOpen: London, UK, 2015; Available online: https://www.intechopen.com/chapters/48160 (accessed on 20 October 2022). [CrossRef]
- Gawor, J.; Jank, M.; Jodkowska, K.; Klim, E.; Svensson, U.K. Effects of Edible Treats Containing Ascophyllum nodosum on the Oral Health of Dogs: A Double-Blind, Randomized, Placebo-Controlled Single-Center Study. Front. Vet. Sci. 2018, 5, 168. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Ruza, D.; Cunha, E.; Tavares, L.; Oliveira, M. Diabetic foot infections: Application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms. PLoS ONE 2019, 14, e0220000. [Google Scholar] [CrossRef] [PubMed]
Animal’s Weight | Volume of Nisin–Biogel |
---|---|
<20 kg | 2 mL |
20–40 kg | 3 mL |
>40 kg | 4 mL |
Score | Description |
---|---|
1 | No plaque on the dental surface |
2 | Thin film of plaque at gingival margin detectable with probing |
3 | Moderate amount of plaque at gingival margin, plaque is directly visible |
4 | High abundance of dental plaque accumulation in the gingival margin and/or dental surface, including interdental space |
Score | Description |
---|---|
0 | Normal gingiva; no inflammation, discoloration, or bleeding |
1 | Mild inflammation, slight color change, mild alteration of gingival surface, no bleeding upon probing |
2 | Moderate inflammation, erythema, swelling, or bleeding upon probing or when pressure applied |
3 | Severe inflammation, severe erythema and swelling, tendency toward spontaneous hemorrhage, some ulceration |
Global Gender Distribution (Female/Male) | 8 F/12 M |
Treatment group | 4 F/6 M |
Control group | 4 F/6 M |
Global age distribution (years) (mean values ± SD) | 5.25 ± 1.69 |
Treatment group (TG) | 6.1 ± 1.52 |
Control group (CG) | 4.4 ± 1.58 |
Global weight distribution (Kg) (mean values ± SD) | 23.34 ± 6.30 |
Treatment group (TG) | 25.4 ± 6.59 |
Control group (CG) | 21.35 ± 6.04 |
Animal ID | Group | Mean GI | Mean DPI | Mean Palatine PPD | Mean Vestibular PPD | Total Mean PPD | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T90 | T0 | T90 | T0 | T90 | T0 | T90 | T0 | T90 | ||
1 | TG | 1.93 | 0.45 | 3.71 | 2.21 | 1.33 | 1.06 | 1.63 | 1.08 | 1.48 | 1.07 |
3 | TG | 2.32 | 0.14 | 2.89 | 1.57 | 1.68 | 1.56 | 2.40 | 1.62 | 2.04 | 1.58 |
9 | TG | 2.33 | 0.64 | 2.76 | 1.83 | 1.25 | 1.22 | 1.35 | 1.41 | 1.30 | 1.32 |
10 | TG | 1.83 | 1.59 | 3.40 | 2.10 | 1.99 | 1.36 | 2.25 | 2.10 | 2.12 | 1.67 |
11 | TG | 2.19 | 1.64 | 3.86 | 1.79 | 1.68 | 1.42 | 1.98 | 1.65 | 1.83 | 1.54 |
12 | TG | 1.95 | 0.49 | 2.98 | 2.02 | 1.27 | 1.17 | 1.36 | 1.31 | 1.31 | 1.24 |
13 | TG | 2.17 | 0.12 | 2.67 | 1.98 | 1.28 | 1.15 | 1.29 | 1.14 | 1.29 | 1.14 |
14 | TG | 2.63 | 0.00 | 2.83 | 1.19 | 1.75 | 1.08 | 2.12 | 1.05 | 1.93 | 1.06 |
18 | CG | 2.31 | 1.29 | 2.98 | 1.83 | 1.41 | 1.33 | 1.41 | 1.29 | 1.41 | 1.31 |
19 | CG | 2.79 | 0.71 | 3.38 | 2.14 | 1.15 | 1.10 | 1.15 | 1.17 | 1.15 | 1.14 |
20 | CG | 2.33 | 1.19 | 3.19 | 2.21 | 1.31 | 1.27 | 1.30 | 1.18 | 1.31 | 1.23 |
22 | TG | 2.21 | 0.71 | 3.24 | 1.26 | 1.45 | 1.17 | 1.57 | 1.29 | 1.51 | 1.23 |
23 | TG | 2.41 | 1.50 | 3.02 | 2.14 | 1.76 | 1.21 | 2.44 | 1.34 | 2.10 | 1.27 |
27 | CG | 1.38 | 0.10 | 2.14 | 1.21 | 1.13 | 1.14 | 1.06 | 1.07 | 1.09 | 1.11 |
28 | CG | 2.19 | 0.43 | 3.14 | 1.85 | 1.06 | 1.12 | 1.10 | 1.14 | 1.08 | 1.13 |
31 | CG | 2.05 | 0.10 | 2.88 | 1.36 | 1.21 | 1.15 | 1.20 | 1.07 | 1.20 | 1.11 |
33 | CG | 1.95 | 0.21 | 2.31 | 1.57 | 1.28 | 1.35 | 1.25 | 1.29 | 1.26 | 1.29 |
34 | CG | 2.33 | 1.18 | 3.36 | 2.10 | 2.17 | 2.20 | 2.44 | 1.87 | 2.31 | 2.03 |
35 | CG | 1.26 | 1.40 | 2.93 | 1.90 | 1.29 | 1.24 | 1.42 | 2.01 | 1.35 | 1.62 |
37 | CG | 2.24 | 0.12 | 2.68 | 1.57 | 1.04 | 1.22 | 1.20 | 1.25 | 1.12 | 1.23 |
Mean ± SD | 2.14 ± 0.61 | 0.7 ± 0.85 | 3.02 ± 0.97 | 1.82 ± 0.83 | 1.43 ± 0.72 | 1.27 ± 0.52 | 1.59 ± 0.97 | 1.36 ± 0.66 | 1.51 ± 0.86 | 1.32 ± 0.59 | |
Mean T ± SD | 2.16 ± 0.53 | 0.63 ± 0.81 | 3.14 ± 1 | 1.84 ± 0.83 * | 1.53 ± 0.79 | 1.25 ± 0.51 | 1.79 ±1.08 | 1.41 ± 0.69 | 1.66 ± 0.96 | 1.33 ± 0.61 * | |
Mean C ± SD | 2.12 ± 0.65 | 0.74 ± 0.86 | 2.94 ± 0.94 | 1.8 ± 0.82 | 1.36 ± 0.67 | 1.29 ± 0.53 | 1.46 ± 0.86 | 1.32 ± 0.63 | 1.41 ± 0.77 | 1.31 ± 0.58 |
Animal ID | Group | Dental Plaque Coverage (%) | |
---|---|---|---|
30 Days | 60 Days | ||
1 | TG | 16.73 | 17.73 |
3 | TG | 16.82 | 22.52 |
9 | TG | 27.83 | 28.31 |
10 | TG | 26.87 | 32.91 |
11 | TG | 22.74 | 32.31 |
12 | TG | 24.54 | 36.99 |
13 | TG | 32.92 | 45.44 |
14 | TG | 13.65 | 28.17 |
18 | CG | 53.25 | 44.83 |
19 | CG | 62.16 | 77.03 |
20 | CG | 61.36 | 78.15 |
22 | TG | 38.74 | 39.68 |
23 | TG | 18.74 | 46.76 |
27 | CG | 16.88 | 22.65 |
28 | CG | 44.11 | 43.94 |
31 | CG | 40.29 | 36.79 |
33 | CG | 33.95 | 57.85 |
34 | CG | 48.11 | 64.12 |
35 | CG | 29.02 | 35.22 |
37 | CG | 34.63 | 55.53 |
Mean ± SD | 33.38 ± 14.73 | 42.35 ± 17.02 | |
Mean T ± SD | 24.58 ± 7.89 | 33.08 ± 9.39 | |
Mean C ± SD | 42.37 ± 14.41 | 51.61 ± 18.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, E.; Carreira, L.M.; Nunes, T.; Videira, M.; Tavares, L.; Veiga, A.S.; Oliveira, M. In Vivo Evaluation of the Efficacy of a Nisin–Biogel as a New Approach for Canine Periodontal Disease Control. Pharmaceutics 2022, 14, 2716. https://doi.org/10.3390/pharmaceutics14122716
Cunha E, Carreira LM, Nunes T, Videira M, Tavares L, Veiga AS, Oliveira M. In Vivo Evaluation of the Efficacy of a Nisin–Biogel as a New Approach for Canine Periodontal Disease Control. Pharmaceutics. 2022; 14(12):2716. https://doi.org/10.3390/pharmaceutics14122716
Chicago/Turabian StyleCunha, Eva, Luís Miguel Carreira, Telmo Nunes, Marta Videira, Luís Tavares, Ana Salomé Veiga, and Manuela Oliveira. 2022. "In Vivo Evaluation of the Efficacy of a Nisin–Biogel as a New Approach for Canine Periodontal Disease Control" Pharmaceutics 14, no. 12: 2716. https://doi.org/10.3390/pharmaceutics14122716
APA StyleCunha, E., Carreira, L. M., Nunes, T., Videira, M., Tavares, L., Veiga, A. S., & Oliveira, M. (2022). In Vivo Evaluation of the Efficacy of a Nisin–Biogel as a New Approach for Canine Periodontal Disease Control. Pharmaceutics, 14(12), 2716. https://doi.org/10.3390/pharmaceutics14122716