Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina
Abstract
:1. Introduction
2. Components and Biological Activities of Avicennia marina
2.1. Naphthalene Derivatives
2.2. Flavones
2.3. Iridoid Glucosides
2.4. Terpenoids
3. Anticancer Activity of Avicennia marina
4. Avicennia marina Formulation to Improve the Anticancer Therapeutic Effect
5. A New Field of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kerry, R.G.; Pradhan, P.; Das, G.; Gouda, S.; Swamy, M.K.; Patra, J.K. Anticancer potential of mangrove plants: Neglected plant species of the Marine ecosystem. In Anticancer Plants: Properties and Application; Springer Nature: Singapore, 2018; Volume 1, pp. 303–305. [Google Scholar]
- da Silva Pontes, A.L.; Mesquita, V.C.; de Oliveira Chaves, F.; da Silva, A.J.R.; Kaplan, M.A.C.; Fingolo, C.E. Phthalates in Avicennia schaueriana, a mangrove species, in the State Biological Reserve, Guaratiba, RJ, Brazil. Environ. Adv. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Thatoi, H.; Samantaray, D.; Das, S.K. The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: A review. Front. Life Sci. 2016, 9, 267–291. [Google Scholar] [CrossRef] [Green Version]
- Baba, S.; Chan, H.T.; Oshiro, N.; Maxwell, G.S.; Inoue, T.; Chan, E.W. Botany, uses, chemistry and bioactivities of mangrove plants IV: Avicennia marina. ISME/GLOMIS Electron. J. 2016, 14, 5–10. [Google Scholar]
- Baishya, S.; Banik, S.K.; Choudhury, M.D.; Talukdar, D.D.; Talukdar, A.D. Therapeutic potentials of littoral vegetation: An antifungal perspective. In Biotechnological Utilization of Mangrove Resources; Elsevier: Amsterdam, The Netherlands, 2020; pp. 275–292. [Google Scholar]
- ElDohaji, L.M.; Hamoda, A.M.; Hamdy, R.; Soliman, S.S. Avicennia marina a natural reservoir of phytopharmaceuticals: Curative power and platform of medicines. J. Ethnopharmacol. 2020, 263, 113179. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.E.; Grizzle, R.E.; Ward, K.M.; Alshihi, R.M. Distribution, pore-water chemistry, and stand characteristics of the mangroves of the United Arab Emirates. J. Coast. Res. 2015, 31, 957–963. [Google Scholar] [CrossRef]
- El-Tarabily, K.A.; Sham, A.; Elbadawi, A.A.; Hassan, A.H.; Alhosani, B.K.; El-Esawi, M.A.; AlKhajeh, A.S.; AbuQamar, S.F. A consortium of Rhizosphere-Competent actinobacteria exhibiting multiple plant Growth-Promoting traits improves the growth of Avicennia marina in the United Arab Emirates. Front. Mar. Sci. 2021, 8, 715123. [Google Scholar] [CrossRef]
- Spalding, M.; Parrett, C.L. Global patterns in mangrove recreation and tourism. Mar. Policy 2019, 110, 103540. [Google Scholar] [CrossRef]
- Sohaib, M.; Al-Barakah, F.; Migdadi, H.; Husain, F. Comparative study among Avicennia marina, Phragmites australis, and Moringa oleifera based ethanolic-extracts for their antimicrobial, antioxidant, and cytotoxic activities. Saudi J. Biol. Sci. 2022, 29, 111–122. [Google Scholar] [CrossRef]
- Das, S.K.; Patra, J.K.; Thatoi, H. Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. Int. Rev. Hydrobiol. 2016, 101, 3–19. [Google Scholar] [CrossRef]
- Burchett, M.; Field, C.; Pulkownik, A. Salinity, growth and root respiration in the grey mangrove, Avicennia marina. Physiol. Plant. 1984, 60, 113–118. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Ibrahim, H.A.H.; Abdel-Latif, H.H.; Zaghloul, E.H. Phytochemical composition of Avicennia marina leaf extract, its antioxidant, antimicrobial potentials and inhibitory properties on Pseudomonas fluorescens biofilm. Egypt. J. Aquat. Res. 2022, 48, 29–35. [Google Scholar] [CrossRef]
- Sun, Y.; Ouyang, J.; Deng, Z.; Li, Q.; Lin, W. Structure elucidation of five new iridoid glucosides from the leaves of Avicennia marina. Magn. Reson. Chem. 2008, 46, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Esau, L.; Sagar, S.; Bajic, V.B.; Kaur, M. Autophagy inhibition enhances the mitochondrial-mediated apoptosis induced by mangrove (Avicennia marina) extract in human breast cancer cells. Eur. J. Med. Plants 2015, 5, 304. [Google Scholar] [CrossRef] [Green Version]
- Eldohaji, L.M.; Fayed, B.; Hamoda, A.M.; Ershaid, M.; Abdin, S.; Alhamidi, T.B.; Mohammad, M.G.; Omar, H.A.; Soliman, S.S. Potential targeting of Hep3B liver cancer cells by lupeol isolated from Avicennia marina. Arch. Pharm. 2021, 354, 2100120. [Google Scholar] [CrossRef]
- Han, L.; Huang, X.; Dahse, H.-M.; Moellmann, U.; Fu, H.; Grabley, S.; Sattler, I.; Lin, W. Unusual naphthoquinone derivatives from the twigs of Avicennia marina. J. Nat. Prod. 2007, 70, 923–927. [Google Scholar] [CrossRef]
- Sharaf, M.; El-Ansari, M.; Saleh, N. New flavonoids from Avicennia marina. Fitoterapia 2000, 71, 274–277. [Google Scholar] [CrossRef]
- Jia, R.; Guo, Y.; Hou, H. Studies on the chemical constituents from leaves of Avicennia marina. Chin. J. Nat. Med. 2004, 2, 16–19. [Google Scholar]
- Feng, Y.; Li, X.M.; Duan, X.J.; Wang, B.G. Iridoid glucosides and flavones from the aerial parts of Avicennia marina. Chem. Biodivers. 2006, 3, 799–806. [Google Scholar] [CrossRef]
- Feng, Y.; LI, X.; Wang, B. Chemical constituents in aerial parts of mangrove plant Avicennia marina. Chin. Trad. Herb. Drugs 2007, 38, 1301–1303. [Google Scholar]
- König, G.; Rimpler, H. Iridoid glucosides in Avicennia marina. Phytochemistry 1985, 24, 1245–1248. [Google Scholar] [CrossRef]
- Shaker, K.H.; Elgamal, M.H.A.; Seifert, K. Iridoids from Avicennia marina. Z. Naturforsch. C 2001, 56, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, X.-M.; Duan, X.-J.; Wang, B.-G. A new acylated iridoid glucoside from Avicennia marina. Chin. Chem. Lett. 2006, 17, 1201–1204. [Google Scholar]
- Bell, K.; Duewell, H. Triterpenoids from the bark of Avicennia marina. Aust. J. Chem. 1961, 14, 662–663. [Google Scholar] [CrossRef]
- Han, L.; Huang, X.; Dahse, H.-M.; Moellmann, U.; Grabley, S.; Lin, W.; Sattler, I. New abietane diterpenoids from the mangrove Avicennia marina. Planta Med. 2008, 74, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Karami, L.; Majd, A.; Mehrabian, S.; Nabiuni, M.; Salehi, M.; Irian, S. Antimutagenic and anticancer effects of Avicennia marina leaf extract on Salmonella typhimurium TA100 bacterium and human promyelocytic leukaemia HL-60 cells. Sci. Asia 2012, 38, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-W.; Dai, Z.; Wang, B.; Liu, Y.-P.; Zhao, X.-D.; Luo, X.-D. Antitumor triterpenoid saponin from the fruits of avicennia marina. Nat. Prod. Bioprospect. 2018, 8, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Lu, C.-K.; Tu, M.-C.; Chang, J.-H.; Chen, Y.-J.; Tu, Y.-H.; Huang, H.-C. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget 2016, 7, 35874. [Google Scholar] [CrossRef] [Green Version]
- Babuselvam, M.; Abideen, S.; Gunasekaran, T.; Beula, J.M.; Dhinakarraj, M. Bioactivity of Avicennia marina and Rhizophora mucronata for the management of diabetes mellitus. Worls J. Pharm. Res. 2013, 3, 11–18. [Google Scholar]
- Mahera, S.; Ahmad, V.; Saifullah, S.; Mohammad, F.; Ambreen, K. Steroids and triterpenoids from grey mangrove Avicennia marina. Pak. J. Bot. 2011, 43, 1417–1422. [Google Scholar]
- Jain, R.; Monthakantirat, O.; Tengamnuay, P.; De-Eknamkul, W. Avicequinone C isolated from Avicennia marina exhibits 5α-reductase-type 1 inhibitory activity using an androgenic alopecia relevant cell-based assay system. Molecules 2014, 19, 6809–6821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandomani, M.Z.; Malati, E.F. Evaluation of Protective Efficacy of Avicennia marina (Forssk.) Vierh Leaves against Complete Freund’s Adjuvant-induced Arthritis in Wistar. Iran. J. Pharm. Res. 2014, 13, 945. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Eswaraiah, G.; Peele, K.A.; Krupanidhi, S.; Kumar, R.B.; Venkateswarulu, T.C. Identification of bioactive compounds in leaf extract of Avicennia alba by GC-MS analysis and evaluation of its in-vitro anticancer potential against MCF7 and HeLa cell lines. J. King Saud Univ. Sci. 2020, 32, 740–744. [Google Scholar] [CrossRef]
- Cerri, F.; Saliu, F.; Maggioni, D.; Montano, S.; Seveso, D.; Lavorano, S.; Zoia, L.; Gosetti, F.; Lasagni, M.; Orlandi, M. Cytotoxic compounds from Alcyoniidae: An overview of the last 30 years. Mar. Drugs 2022, 20, 134. [Google Scholar] [CrossRef]
- Behbahani, M.; Sadeghi-aliabadi, H. Evalution of cytotoxic effect of some extracts of Avicennia marina against MDA-MB 231 human breast cancer cell line. Pharm. Sci. 2010, 16, 229–238. [Google Scholar]
- Sukhramani, P.S.; Patel, P.M. In-vitro biological screening of Avicennia marina for Anticancer activity. Res. J. Pharmacol. Pharmacodyn. 2013, 5, 297–301. [Google Scholar]
- Prakash, S.; Piyush, M. Biological screening of Avicennia marina for anticancer activity. Der Pharma. Sin. 2013, 4, 125–130. [Google Scholar]
- Illian, D.N.; Basyuni, M.; Wati, R.; Hasibuan, P.A.Z. Polyisoprenoids from Avicennia marina and Avicennia lanata inhibit WiDr cells proliferation. Pharmacogn. Mag. 2018, 14, 513. [Google Scholar]
- Qurrohman, T.; Basyuni, M.; Hasibuan, P.A.Z. Polyisoprenoids from Avicennia marina induces on P13k, Akt1, Mammalian target of rapamycin, Egfr, and P53 Gene Expression Using Reverse Transcription-Polymerase Chain Reaction. Open Access Maced. J. Med. Sci. 2020, 8, 146–152. [Google Scholar] [CrossRef]
- Albinhassan, T.; Saleh, K.; Zouhaier, B.; Alshehri, M.; Al-Ghazzawi, A. Anticancer, anti-proliferative activity of Avicennia marina plant extracts. J. Cancer Res. Ther. 2021, 17, 879. [Google Scholar] [PubMed]
- Azhagu Madhavan, S. Evaluation of Potential and In-Vitro Antioxidant Activity of Mangrove Leaves Avicennia marina Ethanolic Extract. Int. J. Sci. Res. Chem. 2021, 6, 32–37. [Google Scholar]
- Tanjung, I.; Azizah, N.; Arsianti, A.; Anisa, A.; Audah, K.A. Evaluation of the Ethyl Acetate Extract of the Roots of Avicennia marina as Potential Anticancer Drug. In Proceedings of the 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021), Tangerang, Indonesia, 4–5 August 2021; Atlantis Press: Dordrecht, The Netherlands, 2022; pp. 75–81. [Google Scholar]
- Afshar, A.; Khoradmehr, A.; Zare, M.; Baghban, N.; Mohebbi, G.H.; Barmak, A.; Khatami, M.; Mahmudpour, M.; Daneshi, A.; Bargahi, A.; et al. Anticancer Activity of Ethanol and Ethyl Acetate Extracts of Avicennia marina Leaves on Breast, Ovarian and Cervical Cancer Cell Lines. Doctoral Dissertation, Genentech, South San Francisco, CA, USA, 2021. [Google Scholar]
- Kok-Yong, S.; Lawrence, L. Drug distribution and drug elimination. In Basic Pharmacokinetic Concepts and Some Clinical Applications; Ahmed, T.A., Ed.; IntechOpen: London, UK, 2015. [Google Scholar]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.d.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Varunkumar, K.; Anusha, C.; Saranya, T.; Ramalingam, V.; Raja, S.; Ravikumar, V. Avicennia marina engineered nanoparticles induce apoptosis in adenocarcinoma lung cancer cell line through p53 mediated signaling pathways. Process Biochem. 2020, 94, 349–358. [Google Scholar] [CrossRef]
- Tian, S.; Saravanan, K.; Mothana, R.A.; Ramachandran, G.; Rajivgandhi, G.; Manoharan, N. Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi J. Biol. Sci. 2020, 27, 3018–3024. [Google Scholar] [CrossRef]
RT (min) | Name of Compound | Area % | Molecular Formula | Molecular Weight (m/z) |
---|---|---|---|---|
4.06 | 12,15-Octadecadiynoic acid, methyl ester | 0.63 | C19H30O2 | 290 |
7.00 | Cyclohexanol,1-methyl-4-(1-methylethenyl)-acetate | 3.12 | C12H20O2 | 196 |
8.87 | Undecane | 2.36 | C11H24 | 156 |
12.82 | 2-Cyclohexan-1-one, 2-methyl-5-(1-methylethenyl) | 1.13 | C10H14O | 150 |
19.76 | Bergamotol, Z-α-trans | 4.43 | C15H24O | 220 |
21.76 | Diethyl phthalate | 2.58 | C12H14O4 | 222 |
23.15 | 2-Furanmethanol, tetrahydro- α, α,5-trimethyl-5-(4-methyl-3-cyclohexen-1-yl) | C15H26O2 | 238 | |
23.79 | 5,8,11,14-Eicosatetraenoic acid, methyl ester, (all-Z)- | 2.90 | C21H34O2 | 318 |
25.18 | 2H-Pyran-3-ol, tetrahydro-2,2,6-trimethyl-6-(4-methyl-3-cyclohexen-1-yl)-,[3S-[3 α,6 α (R*)]]- | 31.13 | C15H26O2 | 238 |
27.27 | E-8-Methyl-9-tetradecen-1-ol acetate | 0.91 | C17H32O2 | 268 |
27.74 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 5.26 | C16H22O4 | 278 |
28.01 | (E)-Tonghaosu | 1.45 | C13H12O2 | 200 |
28.94 | Pentadecanoic acid, 14-methyl-, methyl ester | 1.03 | C17H34O2 | 270 |
29.71 | Hexadecanoic acid | 2.59 | C16H32O2 | 256 |
32.15 | Ethyl (9z,12z)-9,12-octadecadienoate | 1.09 | C20H36O2 | 308 |
32.28 | 9-Octadecenoic acid (z)- | 2.05 | C18H34O2 | 282 |
32.51 | Phytol | 2.33 | C20H40O2 | 296 |
33.04 | 12-Methyl-E,E-2,13-octadecadien-1-ol | 1.93 | C19H36O | 280 |
39.81 | 1,2-Benzenedicarboxylic acid | 4.36 | C24H38O4 | 390 |
42.53 | Campesterol | 1.90 | C28H48O | 400 |
43.24 | Stigmasterol | 3.89 | C29H48O | 412 |
44.08 | α-Sitosterol | 11.58 | C29H50O | 414 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerri, F.; Giustra, M.; Anadol, Y.; Tomaino, G.; Galli, P.; Labra, M.; Campone, L.; Colombo, M. Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina. Pharmaceutics 2022, 14, 2793. https://doi.org/10.3390/pharmaceutics14122793
Cerri F, Giustra M, Anadol Y, Tomaino G, Galli P, Labra M, Campone L, Colombo M. Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina. Pharmaceutics. 2022; 14(12):2793. https://doi.org/10.3390/pharmaceutics14122793
Chicago/Turabian StyleCerri, Federico, Marco Giustra, Yaprak Anadol, Giulia Tomaino, Paolo Galli, Massimo Labra, Luca Campone, and Miriam Colombo. 2022. "Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina" Pharmaceutics 14, no. 12: 2793. https://doi.org/10.3390/pharmaceutics14122793
APA StyleCerri, F., Giustra, M., Anadol, Y., Tomaino, G., Galli, P., Labra, M., Campone, L., & Colombo, M. (2022). Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina. Pharmaceutics, 14(12), 2793. https://doi.org/10.3390/pharmaceutics14122793