Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chlorophyll Extract Obtention
Extraction Process
2.2. Emulgels Containing C. reticulata Ducke and Chlorophylls
Preparation of Emulgels
2.3. Mechanical and Rheological Analysis
2.3.1. Rheological Properties
2.3.2. Textural Properties
2.4. Temporal Monitoring of the Emulgel
2.5. Stimuli-Responsive Analysis
2.6. Performance of the EOChl on Human Skin (Ex Vivo): Permeation and Bioadhesion
2.6.1. Preparation of Human Skin
2.6.2. Bioadhesion on Human Skin
2.6.3. Permeation Studies by Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS)
2.7. Photodynamic Inactivation of Staphylococcus aureus Bacteria
2.7.1. Microorganism and Culture Conditions
2.7.2. Microbiological Analysis
2.8. Statistical Analysis
3. Results
3.1. Chlorophyll Extract Features
3.2. Macroscopic Features
3.3. Stimuli-Responsive Properties
3.4. Evaluation of Flow Properties of Emulgels
3.5. Evaluation of Viscoelastic Properties of Emulgels
3.6. Evaluation of Mechanical Properties
3.7. Temporal Monitoring of the Emulgel
3.8. Bioadhesion and Permeation in Human Skin
3.9. Antimicrobial Photodynamic Inactivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Pina Carvalho, J.; de Assis, T.M.; Simões, T.C.; Cota, G. Estimating Direct Costs of the Treatment for Mucosal Leishmaniasis in Brazil. Rev. Soc. Bras. Med. Trop. 2021, 54, e04542020. [Google Scholar] [CrossRef] [PubMed]
- da Silva Souza Campanholi, K.; Sonchini Gonçalves, R.; Bassi da Silva, J.; Said dos Santos, R.; Carla de Oliveira, M.; Barbosa de Souza Ferreira, S.; Vizioli de Castro-Hoshino, L.; Bento Balbinot, R.; Lazarin-Bidóia, D.; Luciano Baesso, M.; et al. Thermal Stimuli-Responsive Topical Platform Based on Copaiba Oil-Resin: Design and Performance upon Ex-Vivo Human Skin. J. Mol. Liq. 2022, 361, 119625. [Google Scholar] [CrossRef]
- da Silva Souza Campanholi, K.; da Silva, J.B.; Batistela, V.R.; Gonçalves, R.S.; Said dos Santos, R.; Balbinot, R.B.; Lazarin-Bidóia, D.; Bruschi, M.L.; Nakamura, T.U.; Nakamura, C.V.; et al. Design and Optimization of Stimuli-Responsive Emulsion-Filled Gel for Topical Delivery of Copaiba Oil-Resin. J. Pharm. Sci. 2022, 111, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, I.M.; Carvalho, I.P.; de Carvalho, C.E.S.; Brito, L.M.; da Silva, A.B.S.; Conde Júnior, A.M.; de Carvalho, F.A.A.; Carvalho, A.L.M. Evaluation of the in Vivo Leishmanicidal Activity of Amphotericin B Emulgel: An Alternative for the Treatment of Skin Leishmaniasis. Exp. Parasitol. 2016, 164, 49–55. [Google Scholar] [CrossRef]
- dos Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; da Veiga Junior, V.F.; Nakamura, C.V. Copaiba Oil: An Alternative to Development of New Drugs against Leishmaniasis. Evid.-Based Complement. Altern. Med. 2012, 2012, 898419. [Google Scholar] [CrossRef] [Green Version]
- Rondon, F.C.M.; Bevilaqua, C.M.L.; Accioly, M.P.; de Morais, S.M.; de Andrade-Júnior, H.F.; de Carvalho, C.A.; Lima, J.C.; Magalhães, H.C.R. In Vitro Efficacy of Coriandrum Sativum, Lippia Sidoides and Copaifera Reticulata against Leishmania Chagasi. Rev. Bras. Parasitol. Veterinária 2012, 21, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues Santana, S.; Bianchini-Pontuschka, R.; Bay Hurtado, F.; De Oliveira, C.A.; Pereira Rodrigues Melo, L.; Dos Santos, G.J. Uso Medicinal Do Óleo de Copaíba (Copaifera sp.) Por Pessoas Da Melhor Idade No Município de Presidente Médici, Rondônia, Brasil. Acta Agronómica 2014, 63, 361–366. [Google Scholar] [CrossRef]
- Kian, D.; Lancheros, C.A.C.; Assolini, J.P.; Arakawa, N.S.; Veiga-Júnior, V.F.; Nakamura, C.V.; Pinge-Filho, P.; Conchon-Costa, I.; Pavanelli, W.R.; Yamada-Ogatta, S.F.; et al. Trypanocidal Activity of Copaiba Oil and Kaurenoic Acid Does Not Depend on Macrophage Killing Machinery. Biomed. Pharmacother. 2018, 103, 1294–1301. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Oliveira, C.B.; Tonin, A.A.; Wolkmer, P.; Lopes, S.T.A.; Fighera, R.; Flores, M.M.; Oliveira, E.C.P.; Santos, R.C.V.; Boligon, A.A.; et al. Toxic Effect of Essential Oils (Copaifera spp.) in the Treatment of Mice Experimentally Infected with Trypanosoma Evansi. Biomed. Prev. Nutr. 2014, 4, 319–324. [Google Scholar] [CrossRef]
- Pfeifer Barbosa, A.L.; Wenzel-Storjohann, A.; Barbosa, J.D.; Zidorn, C.; Peifer, C.; Tasdemir, D.; Çiçek, S.S. Antimicrobial and Cytotoxic Effects of the Copaifera Reticulata Oleoresin and Its Main Diterpene Acids. J. Ethnopharmacol. 2019, 233, 94–100. [Google Scholar] [CrossRef]
- Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga Junior, V.F.; Pinto, A.C.; Nakamura, C.V. Effect of Brazilian Copaiba Oils on Leishmania Amazonensis. J. Ethnopharmacol. 2008, 120, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.D.O.; Colombo, M.; Kelmann, R.G.; Kaiser, S.; Lucca, L.G.; Teixeira, H.F.; Limberger, R.P.; Veiga, V.F.; Koester, L.S. Optimization of Copaiba Oil-Based Nanoemulsions Obtained by Different Preparation Methods. Ind. Crops Prod. 2014, 59, 154–162. [Google Scholar] [CrossRef]
- de Annunzio, S.R.; de Freitas, L.M.; Blanco, A.L.; da Costa, M.M.; Carmona-Vargas, C.C.; de Oliveira, K.T.; Fontana, C.R. Susceptibility of Enterococcus Faecalis and Propionibacterium Acnes to Antimicrobial Photodynamic Therapy. J. Photochem. Photobiol. B Biol. 2018, 178, 545–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perussi, J.R. Inativação Fotodinâmica de Microrganismos. Quim. Nova 2007, 30, 988–994. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, L.M.; Lorenzón, E.N.; Santos-Filho, N.A.; Zago, L.H.D.P.; Uliana, M.P.; de Oliveira, K.T.; Cilli, E.M.; Fontana, C.R. Antimicrobial Photodynamic Therapy Enhanced by the Peptide Aurein 1.2. Sci. Rep. 2018, 8, 4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tardivo, J.P.; Del Giglio, A.; de Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C.; Tada, D.B.; Severino, D.; de Fátima Turchiello, R.; Baptista, M.S. Methylene Blue in Photodynamic Therapy: From Basic Mechanisms to Clinical Applications. Photodiagnosis Photodyn. Ther. 2005, 2, 175–191. [Google Scholar] [CrossRef]
- Kübler, A.C. Photodynamic Therapy. Med. Laser Appl. 2005, 20, 37–45. [Google Scholar] [CrossRef]
- Quirk, B.J.; Brandal, G.; Donlon, S.; Vera, J.C.; Mang, T.S.; Foy, A.B.; Lew, S.M.; Girotti, A.W.; Jogal, S.; LaViolette, P.S.; et al. Photodynamic Therapy (PDT) for Malignant Brain Tumors—Where Do We Stand? Photodiagnosis Photodyn. Ther. 2015, 12, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; He, N.; Liu, Y.; Zhang, Z.; Zhang, X.; Han, X. Synthesis and Photophysical Properties of Novel Pyridine Fused Chlorophyll a Derivatives. Dye. Pigment. 2017, 146, 189–198. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, C.; Paulo, J.; Longo, F.; Bentes, R.; Zhang, H.; Alexandre, L. An Updated Overview on the Development of New Photosensitizers for Anticancer Photodynamic Therapy. Acta Pharm. Sin. B 2018, 8, 137–146. [Google Scholar] [CrossRef]
- Hendrich, A.B.; Wesołowska, O.; Motohashi, N.; Molnár, J.; Michalak, K. New Phenothiazine-Type Multidrug Resistance Modifiers: Anti-MDR Activity versus Membrane Perturbing Potency. Biochem. Biophys. Res. Commun. 2003, 304, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.M.-K.; Zhang, D.-M.; Xuan, N.-H.B.; Tsui, S.K.-W.; Waye, M.M.-Y.; Kong, S.-K.; Fong, W.-P.; Fung, K.-P. Photodynamic Therapy Inhibits P-Glycoprotein Mediated Multidrug Resistance via JNK Activation in Human Hepatocellular Carcinoma Using the Photosensitizer Pheophorbide A. Mol. Cancer 2009, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Souza Campanholi, K.; Jaski, J.M.; da Silva Junior, R.C.; Zanqui, A.B.; Lazarin-Bidóia, D.; da Silva, C.M.; da Silva, E.A.; Hioka, N.; Nakamura, C.V.; Cardozo-Filho, L.; et al. Photodamage on Staphylococcus Aureus by Natural Extract from Tetragonia Tetragonoides (Pall.) Kuntze: Clean Method of Extraction, Characterization and Photophysical Studies. J. Photochem. Photobiol. B Biol. 2020, 203, 111763. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, Y.; Yuan, L.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H.; Li, W. Nano-Formulations for Transdermal Drug Delivery: A Review. Chin. Chem. Lett. 2018, 29, 1713–1724. [Google Scholar] [CrossRef]
- Yotsumoto, K.; Ishii, K.; Kokubo, M.; Yasuoka, S. Improvement of the Skin Penetration of Hydrophobic Drugs by Polymeric Micelles. Int. J. Pharm. 2018, 553, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Teng, F.; Zhou, F.; Song, Z.; Meng, N.; Liu, N.; Feng, R. Y-Shaped Methoxy Poly (Ethylene Glycol)-Block-Poly (Epsilon-Caprolactone)-Based Micelles for Skin Delivery of Ketoconazole: In Vitro Study and in Vivo Evaluation. Mater. Sci. Eng. C 2017, 78, 296–304. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, H.; Wang, X.; He, S.; Zhai, G. Development and Evaluation of Ibuprofen Loaded Mixed Micelles Preparations for Topical Delivery. J. Drug Deliv. Sci. Technol. 2018, 48, 363–371. [Google Scholar] [CrossRef]
- Al Khateb, K.; Ozhmukhametova, E.K.; Mussin, M.N.; Seilkhanov, S.K.; Rakhypbekov, T.K.; Lau, W.M.; Khutoryanskiy, V.V. In Situ Gelling Systems Based on Pluronic F127/Pluronic F68 Formulations for Ocular Drug Delivery. Int. J. Pharm. 2016, 502, 70–79. [Google Scholar] [CrossRef]
- da Silva Souza Campanholi, K.; Zanqui, A.B.; Pedroso de Morais, F.A.; Jaski, J.M.; Gonçalves, R.S.; da Silva Junior, R.C.; Cardozo-Filho, L.; Caetano, W. Obtaining Phytotherapeutic Chlorophyll Extracts Using Pressurized Liquid Technology. J. Supercrit. Fluids 2022, 180, 105457. [Google Scholar] [CrossRef]
- De Souza Ferreira, S.B.; Da Silva, J.B.; Borghi-Pangoni, F.B.; Junqueira, M.V.; Bruschi, M.L. Linear Correlation between Rheological, Mechanical and Mucoadhesive Properties of Polycarbophil Polymer Blends for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2017, 68, 265–275. [Google Scholar] [CrossRef]
- Alves, M.C. Permeação Cutânea e Vaginal de Fármacos: Rotas Alternativas. 2018. Available online: https://repositorio.ufjf.br/jspui/handle/ufjf/8624. (accessed on 13 December 2022).
- Abd, E.; Yousuf, S.; Pastore, M.; Telaprolu, K.; Mohammed, Y.; Namjoshi, S.; Grice, J.; Roberts, M. Skin Models for the Testing of Transdermal Drugs. Clin. Pharmacol. Adv. Appl. 2016, 8, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, Z.; Dreiss, C.A.; Lawrence, M.J.; Heenan, R.K.; Machado, D.; Justo, G.Z.; Guterres, S.S.; Durán, N. Retinyl Palmitate Polymeric Nanocapsules as Carriers of Bioactives. J. Colloid Interface Sci. 2012, 382, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelker, M.; Müller-Goymann, C.C.; Viöl, W. Permeabilization of Human Stratum Corneum and Full-Thickness Skin Samples by a Direct Dielectric Barrier Discharge. Clin. Plasma Med. 2018, 9, 34–40. [Google Scholar] [CrossRef]
- Yamamoto, S.; Karashima, M.; Arai, Y.; Tohyama, K.; Amano, N. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin. J. Pharm. Sci. 2017, 106, 2787–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneguin, A.B.; Ferreira Cury, B.S.; dos Santos, A.M.; Franco, D.F.; Barud, H.S.; da Silva Filho, E.C. Resistant Starch/Pectin Free-Standing Films Reinforced with Nanocellulose Intended for Colonic Methotrexate Release. Carbohydr. Polym. 2017, 157, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, É.L.; Ferreira, S.B.S.; de Castro-Hoshino, L.V.; Campanholi, K.D.S.; Calori, I.R.; de Morais, F.A.P.; Kimura, E.; da Silva Junior, R.C.; Bruschi, M.L.; Sato, F.; et al. Thermoresponsive Hydrogel-Loading Aluminum Chloride Phthalocyanine as a Drug Release Platform for Topical Administration in Photodynamic Therapy. Langmuir 2021, 37, 3202–3213. [Google Scholar] [CrossRef]
- da Silva Souza Campanholi, K.; Combuca da Silva Junior, R.; Cazelatto da Silva, I.; Said dos Santos, R.; Vecchi, C.F.; Bruschi, M.L.; Soares dos Santos Pozza, M.; Vizioli de Castro-Hoshino, L.; Baesso, M.L.; Hioka, N.; et al. Stimulus-Responsive Phototherapeutic Micellar Platform of Rose Bengal B: A New Perspective for the Treatment of Wounds. J. Drug Deliv. Sci. Technol. 2021, 66, 102739. [Google Scholar] [CrossRef]
- RStudio Team. 2015 RStudio: Integrated Development for R; Version 1.1.463; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Campanholi, K.D.S.; Braga, G.; da Silva, J.B.; da Rocha, N.L.; de Francisco, L.M.B.; de Oliveira, É.L.; Bruschi, M.L.; de Castro-Hoshino, L.V.; Sato, F.; Hioka, N.; et al. Biomedical Platform Development of a Chlorophyll-Based Extract for Topic Photodynamic Therapy: Mechanical and Spectroscopic Properties. Langmuir 2018, 34, 8230–8244. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.; Souki, N.; Moraes, I.; Pinho, S. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials. Gels 2016, 2, 22. [Google Scholar] [CrossRef]
- Escobar-Chávez, J.J.; López-Cervantes, M.; Naïk, A.; Kalia, Y.N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of Thermo-Reversible Pluronic F-127 Gels in Pharmaceutical Formulations. J. Pharm. Pharm. Sci. 2006, 9, 339–358. [Google Scholar]
- Said dos Santos, R.; Bassi da Silva, J.; Rosseto, H.C.; Vecchi, C.F.; Campanholi, K.D.S.; Caetano, W.; Bruschi, M.L. Emulgels Containing Propolis and Curcumin: The Effect of Type of Vegetable Oil, Poly(Acrylic Acid) and Bioactive Agent on Physicochemical Stability, Mechanical and Rheological Properties. Gels 2021, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.N.; Farah, M.; Bretas, R.E.S.; Ricci, E.; Marchetti, J.M. Rheological Characterization of Poloxamer 407 Nimesulide Gels. Rev. Ciencias Farm. Basica e Apl. 2006, 27, 113–118. [Google Scholar]
- Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R.R. Poloxamer-Based in Situ Gelling Thermoresponsive Systems for Ocular Drug Delivery Applications. Drug Discov. Today 2019, 24, 1575–1586. [Google Scholar] [CrossRef] [PubMed]
- Gioffredi, E.; Boffito, M.; Calzone, S.; Giannitelli, S.M.; Rainer, A.; Trombetta, M.; Mozetic, P.; Chiono, V. Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications. Procedia CIRP 2016, 49, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Borghi-pangoni, F.B.; Junqueira, M.V.; Barbosa, S.; Ferreira, D.S.; Silva, L.L.; Rabello, B.R.; Caetano, W.; Diniz, A.; Bruschi, M.L. Screening and In Vitro Evaluation of Mucoadhesive Thermoresponsive System Containing Methylene Blue for Local Photodynamic Therapy of Colorectal Cancer. Pharm. Res. 2016, 33, 776–791. [Google Scholar] [CrossRef]
- Junqueira, M.V.; Borghi-Pangoni, F.B.; Ferreira, S.B.S.; Rabello, B.R.; Hioka, N.; Bruschi, M.L. Functional Polymeric Systems as Delivery Vehicles for Methylene Blue in Photodynamic Therapy. Langmuir 2016, 32, 19–27. [Google Scholar] [CrossRef]
- Gu, J.; Huang, J.; Chen, G.; Hou, L.; Zhang, J.; Zhang, X.; Yang, X.; Guan, L.; Jiang, X.; Liu, H. Multifunctional Poly(Vinyl Alcohol) Nanocomposite Organohydrogel for Flexible Strain and Temperature Sensor. ACS Appl. Mater. Interfaces 2020, 12, 40815–40827. [Google Scholar] [CrossRef]
- Jones, D.S.; Bruschi, M.L.; de Freitas, O.; Gremião, M.P.D.; Lara, E.H.G.; Andrews, G.P. Rheological, Mechanical and Mucoadhesive Properties of Thermoresponsive, Bioadhesive Binary Mixtures Composed of Poloxamer 407 and Carbopol 974P Designed as Platforms for Implantable Drug Delivery Systems for Use in the Oral Cavity. Int. J. Pharm. 2009, 372, 49–58. [Google Scholar] [CrossRef]
- de Souza Ferreira, S.B.; Slowik, K.M.; de Castro Hoshino, L.V.; Baesso, M.L.; Murdoch, C.; Colley, H.E.; Bruschi, M.L. Mucoadhesive Emulgel Systems Containing Curcumin for Oral Squamous Cell Carcinoma Treatment: From Pre-Formulation to Cytotoxicity in Tissue-Engineering Oral Mucosa. Eur. J. Pharm. Sci. 2020, 151, 105372. [Google Scholar] [CrossRef]
- da Silva, J.B.; Cook, M.T.; Bruschi, M.L. Thermoresponsive Systems Composed of Poloxamer 407 and HPMC or NaCMC: Mechanical, Rheological and Sol-Gel Transition Analysis. Carbohydr. Polym. 2020, 240, 116268. [Google Scholar] [CrossRef]
- da Silva-Junior, R.C.; Campanholi, K.D.S.; de Morais, F.A.P.; Pozza, M.S.D.S.; de Castro-Hoshino, L.V.; Baesso, M.L.; da Silva, J.B.; Bruschi, M.L.; Caetano, W. Photothermal Stimuli-Responsive Hydrogel Containing Safranine for Mastitis Treatment in Veterinary Using Phototherapy. ACS Appl. Bio Mater. 2020, 4, 581–596. [Google Scholar] [CrossRef]
- Haddow, P.J.; da Silva, M.A.; Kaldybekov, D.B.; Dreiss, C.A.; Hoffman, E.; Hutter, V.; Khutoryanskiy, V.V.; Kirton, S.B.; Mahmoudi, N.; McAuley, W.J.; et al. Polymer Architecture Effects on Poly(N,N-Diethyl Acrylamide)-b-Poly(Ethylene Glycol)-b-Poly(N,N-Diethyl Acrylamide) Thermoreversible Gels and Their Evaluation as a Healthcare Material. Macromol. Biosci. 2022, 22, 2100432. [Google Scholar] [CrossRef]
- Jones, D.S.; Woolfson, A.D.; Djokic, J. Texture Profile Analysis of Bioadhesive Polymeric Semisolids: Mechanical Characterization and Investigation of Interactions between Formulation Components. J. Appl. Polym. Sci. 1996, 61, 2229–2234. [Google Scholar] [CrossRef]
- Barbosa, S.; Ferreira, D.S.; Bassi, J.; Silva, D.; Volpato, M.; Borghi-pangoni, F.B.; Guttierres, R.; Luciano, M. The Importance of the Relationship between Mechanical Analyses and Rheometry of Mucoadhesive Thermoresponsive Polymeric Materials for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2017, 74, 142–153. [Google Scholar] [CrossRef]
- Campanholi, K.d.S.S.; da Silva Junior, R.C.; Gonçalves, R.S.; Bassi da Silva, J.; Pedroso de Morais, F.A.; Said dos Santos, R.; Vilsinski, B.H.; de Oliveira, G.L.M.; Pozza, M.S.D.S.; Bruschi, M.L.; et al. Design and Optimization of a Natural Medicine from Copaifera Reticulata Ducke for Skin Wound Care. Polymers 2022, 14, 4483. [Google Scholar] [CrossRef] [PubMed]
- Duchene, D.; Ponchel, G. Principle and Investigation of the Bioadhesion Mechanism of Solid Dosage Forms. Biomaterials 1992, 13, 709–714. [Google Scholar] [CrossRef]
- Monteiro e Silva, S.; Calixto, G.; Cajado, J.; de Carvalho, P.; Rodero, C.; Chorilli, M.; Leonardi, G. Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays. Polymers 2017, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Santos, B.; dos Santos, A.M.; Rodero, C.F.; Gremião, M.P.D.; Chorilli, M. Design, Characterization, and Biological Evaluation of Curcumin-Loaded Surfactant-Based Systems for Topical Drug Delivery. Int. J. Nanomed. 2016, 11, 4553–4562. [Google Scholar] [CrossRef] [Green Version]
- Edsman, K.; Hägerström, H. Pharmaceutical Applications of Mucoadhesion for the Non-Oral Routes. J. Pharm. Pharmacol. 2005, 57, 3–22. [Google Scholar] [CrossRef]
- Said dos Santos, R.; Vecchi, C.F.; Rosseto, H.C.; Bassi da Silva, J.; Dano, M.E.L.; de Castro-Hoshino, L.V.; Baesso, M.L.; Bruschi, M.L. Emulgels Containing Carbopol 934P and Different Vegetable Oils for Topical Propolis Delivery: Bioadhesion, Drug Release Profile, and Ex Vivo Skin Permeation Studies. AAPS PharmSciTech 2020, 21, 209. [Google Scholar] [CrossRef]
- Paparella, S. Transdermal Patches: An Unseen Risk for Harm. J. Emerg. Nurs. 2005, 31, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Ameen, D.; Michniak-Kohn, B. Transdermal Delivery of Dimethyl Fumarate for Alzheimer’s Disease: Effect of Penetration Enhancers. Int. J. Pharm. 2017, 529, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Zidan, A.S.; Kamal, N.; Alayoubi, A.; Seggel, M.; Ibrahim, S.; Rahman, Z.; Cruz, C.N.; Ashraf, M. Effect of Isopropyl Myristate on Transdermal Permeation of Testosterone From Carbopol Gel. J. Pharm. Sci. 2017, 106, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Cestelli Guidi, M.; Mirri, C.; Fratini, E.; Licursi, V.; Negri, R.; Marcelli, A.; Amendola, R. In Vivo Skin Leptin Modulation after 14 MeV Neutron Irradiation: A Molecular and FT-IR Spectroscopic Study. Anal. Bioanal. Chem. 2012, 404, 1317–1326. [Google Scholar] [CrossRef]
- Ali, S.M.; Bonnier, F.; Lambkin, H.; Flynn, K.; McDonagh, V.; Healy, C.; Lee, T.C.; Lyng, F.M.; Byrne, H.J. A Comparison of Raman, FTIR and ATR-FTIR Micro Spectroscopy for Imaging Human Skin Tissue Sections. Anal. Methods 2013, 5, 2281. [Google Scholar] [CrossRef] [Green Version]
- Norcino, L.B.; Mendes, J.F.; Natarelli, C.V.L.; Manrich, A.; Oliveira, J.E.; Mattoso, L.H.C. Pectin Films Loaded with Copaiba Oil Nanoemulsions for Potential Use as Bio-Based Active Packaging. Food Hydrocoll. 2020, 106, 105862. [Google Scholar] [CrossRef]
- Mazur, K.L.; Feuser, P.E.; Valério, A.; Poester Cordeiro, A.; de Oliveira, C.I.; Assolini, J.P.; Pavanelli, W.R.; Sayer, C.; Araújo, P.H.H. Diethyldithiocarbamate Loaded in Beeswax-Copaiba Oil Nanoparticles Obtained by Solventless Double Emulsion Technique Promote Promastigote Death in Vitro. Colloids Surfaces B Biointerfaces 2019, 176, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.C.S.; dos Santos, N.R.R.; Middea, A.; Prudencio, E.R.; Luchese, R.H.; Moreira, A.P.D.; Oliveira, R.N. In Vitro Evaluation of PVA Gels Loaded with Copaiba Oil and Duotrill®. Polímeros 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Pascoal, D.R.C.; Cabral-Albuquerque, E.C.M.; Velozo, E.S.; de Sousa, H.C.; de Melo, S.A.B.V.; Braga, M.E. Copaiba Oil-Loaded Commercial Wound Dressings Using Supercritical CO2: A Potential Alternative Topical Antileishmanial Treatment. J. Supercrit. Fluids 2017, 129, 106–115. [Google Scholar] [CrossRef]
- Mary Rosana, N.T.; JoshuaAmarnath, D.; Anandan, S.; Saritha, G. Environmental Friendly Photosensitizing Materials for Harvesting Solar Energy. J. Mater. Environ. Sci. 2015, 6, 2053–2059. [Google Scholar]
- Liu, Y.; Qin, R.; Zaat, S.A.J.; Breukink, E.; Heger, M. Antibacterial Photodynamic Therapy: Overview of a Promising Approach to Fight Antibiotic-Resistant Bacterial Infections. J. Clin. Transl. Res. 2015, 1, 140–167. [Google Scholar] [CrossRef] [PubMed]
- Esten, M.M.; Dannin, A.G. Chlorophyll Therapy and Its Relation to Pathogenic Bacteria Botanical Studies. Butl. Univ. Bot. Stud. 1950, 9, 212–217. [Google Scholar]
Composition | Formulation | |
---|---|---|
EOChl-0.5 (g) | EOChl-1.0 (g) | |
F127 | 18.0 | 18.0 |
Copaiba oil (CO) | 10.0 | 10.0 |
Carbopol | 0.25 | 0.25 |
Chlorophyll extract (Chl) | 0.5 | 1.0 |
Purified water | 71.25 | 70.75 |
Parameters | EOChl-0.5 | EOChl-1.0 | ||||
---|---|---|---|---|---|---|
5 °C | 25 °C | 37 °C | 5 °C | 25 °C | 37 °C | |
Hardness | 0.07 ± 0.01 | 1.36 ± 0.07 | 1.41 ± 0.07 | 0.08 ± 0.02 | 1.37 ± 0.04 | 1.27 ± 0.02 |
Compressibility | 0.49 ± 0.07 | 13.68 ± 0.82 | 14.28 ± 0.60 | 0.57 ± 0.10 | 13.97 ± 0.58 | 12.67 ± 0.09 |
Adhesiveness | - | 11.79 ± 0.66 | 12.14 ± 0.38 | - | 12.21 ± 0.49 | 10.99 ± 0.06 |
Cohesiveness | 0.93 ± 0.06 | 0.96 ± 0.03 | 0.94 ± 0.01 | 0.96 ± 0.01 | 0.96 ± 0.01 | 0.94 ± 0.01 |
Elasticity | 0.98 ± 0.04 | 0.99 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
EOChl-0.5 | EOChl-1.0 | |||||
---|---|---|---|---|---|---|
Days | ||||||
Parameters | 1° | 60° | 270° | 1° | 60° | 270° |
Hardness (N) | 1.34 ± 0.06 | 1.46 ± 0.05 | 1.35 ± 0.70 | 1.35 ± 0.05 | 1.64 ± 0.07 | 1.45 ± 0.39 |
Compressibility (N·mm) | 6.84 ± 0.42 | 6.69 ± 0.67 | 6.61 ± 3.41 | 6.92 ± 0.37 | 7.32 ± 0.61 | 6.77 ± 1.67 |
Adhesiveness (N·mm) | 6.02 ± 0.32 | 5.83 ± 0.43 | 5.77 ± 2.56 | 6.12 ± 0.29 | 6.29 ± 0.47 | 5.80 ± 1.06 |
Elasticity (dimensionless) | 0.99 ± 0.02 | 1.01 ± 0.01 | 1.00 ± 0.00 | 0.99 ± 0.00 | 1.03 ± 0.04 | 0.99 ± 0.02 |
Cohesiveness (dimensionless) | 0.95 ± 0.04 | 0.94 ± 0.03 | 0.97 ± 0.10 | 0.96 ± 0.01 | 0.92 ± 0.02 | 0.94 ± 0.04 |
Bioadhesion Parameter | Formulation | |||
---|---|---|---|---|
EChl-0.5 | EChl-1.0 | EOChl-0.5 | EOChl-1.0 | |
BF—Force (N) | 0.090 ± 0.005 | 0.092 ± 0.003 | 0.075 ± 0.004 | 0.094 ± 0.010 |
BW—Work (N·sec.) | 0.011 ± 0.003 | 0.011 ± 0.001 | 0.011 ± 0.003 | 0.013 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanholi, K.d.S.S.; Junior, R.C.d.S.; Jaski, J.M.; Silva, J.B.d.; Oliveira, M.C.d.; Santos, R.S.d.; Pozza, M.S.d.S.; Castro-Hoshino, L.V.d.; Baesso, M.L.; Cardozo-Filho, L.; et al. Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin. Pharmaceutics 2022, 14, 2798. https://doi.org/10.3390/pharmaceutics14122798
Campanholi KdSS, Junior RCdS, Jaski JM, Silva JBd, Oliveira MCd, Santos RSd, Pozza MSdS, Castro-Hoshino LVd, Baesso ML, Cardozo-Filho L, et al. Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin. Pharmaceutics. 2022; 14(12):2798. https://doi.org/10.3390/pharmaceutics14122798
Chicago/Turabian StyleCampanholi, Katieli da Silva Souza, Ranulfo Combuca da Silva Junior, Jonas Marcelo Jaski, Jéssica Bassi da Silva, Mariana Carla de Oliveira, Rafaela Said dos Santos, Magali Soares dos Santos Pozza, Lidiane Vizioli de Castro-Hoshino, Mauro Luciano Baesso, Lucio Cardozo-Filho, and et al. 2022. "Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin" Pharmaceutics 14, no. 12: 2798. https://doi.org/10.3390/pharmaceutics14122798
APA StyleCampanholi, K. d. S. S., Junior, R. C. d. S., Jaski, J. M., Silva, J. B. d., Oliveira, M. C. d., Santos, R. S. d., Pozza, M. S. d. S., Castro-Hoshino, L. V. d., Baesso, M. L., Cardozo-Filho, L., Bruschi, M. L., & Caetano, W. (2022). Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin. Pharmaceutics, 14(12), 2798. https://doi.org/10.3390/pharmaceutics14122798