Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches
Abstract
:1. Introduction
2. Structure of the Skin
2.1. Epidermis
2.2. Dermis
2.3. Hypodermis
3. Permeation Process
4. Marketed Transdermal Products
5. Drug–Vehicle Interaction
6. Vesicles and Their Analogues
7. Chemical Permeation Enhancers (CPEs)
7.1. Water
7.2. Alcohols
7.3. Sulfoxides
7.4. Azone
7.5. Surfactants
7.6. Terpenes
7.7. Pyrrolidone
7.8. Fatty Acids
7.9. Phospholipids
7.10. Urea
8. Lipid Synthesis Inhibitors (LSIs)
9. Cell-Penetrating Peptides (CPPs)
10. Ionic Liquids (ILs)
11. Selection of CPEs
12. Microneedles
Three-Dimensional Printed Microneedles
13. Challenges in Transdermal Drug Delivery
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feingold, K.R.; Elias, P.M. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. BBA Mol. Cell Biol. Lipids 2014, 1841, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.; Redelmeier, T.E. Skin Barrier; Karger Publishers: Basel, Switzerland, 1996. [Google Scholar]
- Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta (BBA)-Biomembr. 2006, 1758, 2080–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, G.K.; Cleary, G.W.; Lane, M.E. The structure and function of the stratum corneum. Int. J. Pharm. 2012, 435, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Agache, P.G.; Monneur, C.; Leveque, J.L.; Rigal, J.D. Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. 1980, 269, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Williams, A. Transdermal and Topical Drug Delivery: From Theory to Clinical Practice; Pharmaceutical Press: London, UK, 2003. [Google Scholar]
- Walters, K.A. Dermatological and Transdermal Formulations; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Lademann, J.; Richter, H.; Schanzer, S.; Knorr, F.; Meinke, M.; Sterry, W.; Patzelt, A. Penetration and storage of particles in human skin: Perspectives and safety aspects. Eur. J. Pharm. Biopharm. 2011, 77, 465–468. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Food and Drug Administration. Drugs@FDA: FDA-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 26 October 2022).
- Escobar-Chavez, J.J.; Diaz-Torres, R.; Rodriguez-Cruz, I.M. Nanocarriers for transdermal drug delivery. Res. Rep. Transdermal Drug Deliv. 2012, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv. 2012, 9, 783–804. [Google Scholar] [CrossRef]
- Rupp, R.E.; Rosenthal, S.L.; Stanberry, L.R. VivaGel™ (SPL7013 Gel): A candidate dendrimer—Microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007, 2, 561–566. [Google Scholar]
- Gupta, M.; Sharma, V.; Chauhan, N.S. Promising Novel Nanopharmaceuticals for Improving Topical Antifungal Drug Delivery. In Nano-and Microscale Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 197–228. [Google Scholar] [CrossRef]
- Ita, K. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges. Pharmaceutics 2015, 7, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Rautio, J.; Nevalainen, T.; Taipale, H.; Vepsäläinen, J.; Gynther, J.; Laine, K.; Järvinen, T. Piperazinylalkyl prodrugs of naproxen improve in vitro skin permeation. Eur. J. Pharm. Sci. 2000, 11, 157–163. [Google Scholar] [CrossRef]
- Holmes, E.-M.; Breytenbach, J.C.; Gerber, M.; Du Plessis, J. Synthesis and Transdermal Penetration of Stavudine-5s-Esters. Med. Chem. 2010, 6, 271–276. [Google Scholar] [CrossRef]
- Wang, J.-J.; Sung, K.C.; Huang, J.-F.; Yeh, C.-H.; Fang, J.-Y. Ester prodrugs of morphine improve transdermal drug delivery: A mechanistic study. J. Pharm. Pharmacol. 2007, 59, 917–925. [Google Scholar] [CrossRef]
- Morris, A.P.; Brain, K.R.; Heard, C.M. Skin permeation and ex vivo skin metabolism of O-acyl haloperidol ester prodrugs. Int. J. Pharm. 2009, 367, 44–50. [Google Scholar] [CrossRef]
- Valiveti, S.; Hammell, D.C.; Paudel, K.S.; Hamad, M.O.; Crooks, P.A.; Stinchcomb, A.L. In vivo evaluation of 3-O-alkyl ester transdermal prodrugs of naltrexone in hairless guinea pigs. J. Control. Release 2005, 102, 509–520. [Google Scholar] [CrossRef]
- Thorsteinsson, T.; Másson, M.; Jarvinen, T.; Nevalainen, T.; Loftsson, T. Cycloserine Fatty Acid Derivatives as Prodrugs: Synthesis, Degradation and in Vitro Skin Permeability. Chem. Pharm. Bull. 2002, 50, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Jona, J.A.; Dittert, L.W.; Crooks, P.A.; Milosovich, S.M.; Hussain, A.A. Design of novel prodrugs for the enhancement of the transdermal penetration of indomethacin. Int. J. Pharm. 1995, 123, 127–136. [Google Scholar] [CrossRef]
- Kiptoo, P.K.; Paudel, K.S.; Hammell, D.C.; Pinninti, R.R.; Chen, J.; Crooks, P.A.; Stinchcomb, A.L. Transdermal Delivery of Bupropion and its Active Metabolite, Hydroxybupropion: A Prodrug Strategy as an Alternative Approach. J. Pharm. Sci. 2009, 98, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Morrow, D.; Carron, M.P.; Woolfson, A.; Donnelly, R. Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Deliv. J. 2007, 1, 36–59. [Google Scholar] [CrossRef]
- Li, Q.; Wan, X.; Liu, C.; Fang, L. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive. Eur. J. Pharm. Sci. 2018, 119, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.H.; Xu, Y.J.; Nam, H.; Jin, G.-W.; Jeong, Y.; An, S.; Park, J.-S. Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int. J. Pharm. 2011, 419, 114–120. [Google Scholar] [CrossRef]
- Torky, A.S.; Freag, M.S.; Nasra, M.M.; Abdallah, O.Y. Novel skin penetrating berberine oleate complex capitalising on hydrophobic ion pairing approach. Int. J. Pharm. 2018, 549, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, C.; Quan, P.; Wan, X.; Shen, M.; Fang, L. Mechanism study on ion-pair complexes controlling skin permeability: Effect of ion-pair dissociation in the viable epidermis on transdermal permeation of bisoprolol. Int. J. Pharm. 2017, 532, 29–36. [Google Scholar] [CrossRef]
- Cui, H.; Quan, P.; Zhao, H.; Wen, X.; Song, W.; Xiao, Y.; Zhao, Y.; Fang, L. Mechanism of Ion-Pair Strategy in Modulating Skin Permeability of Zaltoprofen: Insight from Molecular-Level Resolution Based on Molecular Modeling and Confocal Laser Scanning Microscopy. J. Pharm. Sci. 2015, 104, 3395–3403. [Google Scholar] [CrossRef]
- Wang, W.; Song, T.; Wan, X.; Liu, C.; Zhao, H.; Fang, L. Investigate the control release effect of ion-pair in the development of escitalopram transdermal patch using FT-IR spectroscopy, molecular modeling and thermal analysis. Int. J. Pharm. 2017, 529, 391–400. [Google Scholar] [CrossRef]
- Stott, P.W.; Williams, A.; Barry, B.W. Transdermal delivery from eutectic systems: Enhanced permeation of a model drug, ibuprofen. J. Control. Release 1998, 50, 297–308. [Google Scholar] [CrossRef]
- Stott, P.W.; Williams, A.C.; Barry, B.W. Mechanistic study into the enhanced transdermal permeation of a model β-blocker, propranolol, by fatty acids: A melting point depression effect. Int. J. Pharm. 2001, 219, 161–176. [Google Scholar] [CrossRef]
- Kang, L.; Jun, H.; McCall, J. Physicochemical studies of lidocaine–menthol binary systems for enhanced membrane transport. Int. J. Pharm 2000, 206, 35–42. [Google Scholar] [CrossRef]
- Marei, H.F.; Arafa, M.F.; Essa, E.A.; El Maghraby, G.M. Lidocaine as eutectic forming drug for enhanced transdermal delivery of nonsteroidal anti-inflammatory drugs. J. Drug Deliv. Sci. Technol. 2021, 61, 102338. [Google Scholar] [CrossRef]
- Akayleh, A.F.; Adwan, S.; Khanfer, M.; Idkaidek, N.; Remawi, A.M. A Novel Eutectic-Based Transdermal Delivery System for Risperidone. AAPS PharmSciTech 2021, 22, 4. [Google Scholar] [CrossRef]
- Grimaldi, N.; Andrade, F.; Segovia, N.; Tasies, F.L.; Sala, S.; Veciana, J. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 2016, 45, 6520–6545. [Google Scholar] [CrossRef] [Green Version]
- Sinico, C.; Manconi, M.; Peppi, M.; Lai, F.; Valenti, D.; Fadda, A.M. Liposomes as carriers for dermal delivery of tretinoin: In vitro evaluation of drug permeation and vesicle–skin interaction. J. Control. Release 2005, 103, 123–136. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [Green Version]
- Sacha, M.; Faucon, L.; Hamon, E.; Ly, I.; Haltner-Ukomadu, E. Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomed. Pharmacother. 2019, 111, 785–790. [Google Scholar] [CrossRef]
- Kim, A.R.; Lee, N.H.; Park, Y.M.; Park, S.N. Preparation and characterisation of novel pseudo ceramide liposomes for the transdermal delivery of baicalein. J. Drug Deliv. Sci. Technol. 2019, 52, 150–156. [Google Scholar] [CrossRef]
- Manosroi, A.; Kongkaneramit, L. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int. J. Pharm. 2003, 270, 279–286. [Google Scholar] [CrossRef]
- Maestrelli, F.; González-Rodríguez, M.L.; Rabasco, A.M.; Mura, P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery. Int. J. Pharm. 2006, 312, 53–60. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, W.; Zou, L.; Liu, W.; Liu, C.; Liang, R.; Chen, J. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surfaces B Biointerfaces 2014, 117, 330–337. [Google Scholar] [CrossRef]
- Rukavina, Z.; Klarić, M.Š.; Filipović-Grčić, J.; Lovrić, J.; Vanić, Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int. J. Pharm. 2018, 553, 109–119. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Shen, L.-N.; Wu, Z.-H.; Zhao, J.-H.; Feng, N.-P. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int. J. Pharm. 2014, 471, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Pathan, I.B.; Jaware, B.P.; Shelke, S.; Ambekar, W. Curcumin loaded ethosomes for transdermal application: Formulation, optimization, in-vitro and in-vivo study. J. Drug Deliv. Sci. Technol. 2017, 44, 49–57. [Google Scholar] [CrossRef]
- Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimisation, characterisation and pharmacokinetic assessment. Int. J. Pharm. 2013, 443, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Sakdiset, P.; Amnuaikit, T.; Pichayakorn, W.; Pinsuwan, S. Formulation development of ethosomes containing indomethacin for transdermal delivery. J. Drug Deliv. Sci. Technol. 2019, 52, 760–768. [Google Scholar] [CrossRef]
- Ramadon, D.; Anwar, E.; Harahap, Y. In vitro Penetration and Bioavailability of Novel Transdermal Quercetin-loaded Ethosomal Gel. Indian J. Pharm. Sci. 2017, 79, 948–956. [Google Scholar] [CrossRef]
- Yu, X.; Du, L.; Li, Y.; Fu, G.; Jin, Y. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel. Biomed. Pharmacother. 2015, 73, 6–11. [Google Scholar] [CrossRef]
- Verma, P.; Pathak, K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 489–496. [Google Scholar] [CrossRef]
- Ramadon, D.; Wirarti, G.A.; Anwar, E. Novel Transdermal Ethosomal Gel Containing Green Tea (Camellia sinensis L. Kuntze) Leaves Extract: Formulation and In vitro Penetration Study. J. Young-Pharm. 2017, 9, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Zhang, K.; Li, Z.; Guo, T.; Wu, T.; Hou, X.; Feng, N. Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis. Nanomed. Nanotechnol. Biol. Med. 2020, 28, 102212. [Google Scholar] [CrossRef]
- Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B. Systematic development of transethosomal gel system of piroxicam: Formulation optimisation, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech 2017, 18, 58–71. [Google Scholar] [CrossRef]
- Ansari, M.D.; Ahmed, S.; Imam, S.S.; Khan, I.; Singhal, S.; Sharma, M. CCD based development and characterisation of nano-transethosome to augment the antidepressant effect of agomelatine on Swiss albino mice. J. Drug Deliv. Sci. Technol. 2019, 54, 101234. [Google Scholar] [CrossRef]
- Chen, Z.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci. 2016, 99, 240–245. [Google Scholar] [CrossRef]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimisation, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Ramadon, D.; Pramesti, S.S.; Anwar, E. Formulation, stability test and in vitro penetration study of transethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract. Int. J. Appl. Pharm. 2017, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef]
- Kumar, A.; Pathak, K.; Bali, V. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discov. Today 2012, 17, 1233–1241. [Google Scholar] [CrossRef]
- Joshi, A.; Kaur, J.; Kulkarni, R.; Chaudhari, R. In-vitro and Ex-vivo evaluation of Raloxifene hydrochloride delivery using nano-transfersome based formulations. J. Drug Deliv. Sci. Technol. 2018, 45, 151–158. [Google Scholar] [CrossRef]
- Khatoon, K.; Rizwanullah, M.; Amin, S.; Mir, S.R.; Akhter, S. Cilnidipine loaded transfersomes for transdermal application: Formulation optimisation, in-vitro and in-vivo study. J. Drug Deliv. Sci. Technol. 2019, 54, 101303. [Google Scholar] [CrossRef]
- Shuwaili, A.H.A.; Rasool, B.K.A.; Abdulrasool, A.A. Optimisation of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm. 2016, 102, 101–114. [Google Scholar] [CrossRef]
- El-Alim, S.H.A.; Kassem, A.A.; Basha, M.; Salama, A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation. Int. J. Pharm. 2019, 563, 293–303. [Google Scholar] [CrossRef]
- Ramezani, V.; Honarvar, M.; Seyedabadi, M.; Karimollah, A.; Ranjbar, A.M.; Hashemi, M. Formulation and optimisation of transfersome containing minoxidil and caffeine. J. Drug Deliv. Sci. Technol. 2018, 44, 129–135. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- González-Rodríguez, M.L.; Mouram, I.; Cózar-Bernal, M.J.; Villasmil, S.; Rabasco, A.M. Applying the taguchi method to optimize sumatriptan succinate niosomes as drug carriers for skin delivery. J. Pharm. Sci. 2012, 101, 3845–3863. [Google Scholar] [CrossRef] [PubMed]
- Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surfaces B Biointerfaces 2015, 128, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Jing, Q.; Hu, H.; He, Z.; Wu, T.; Guo, T.; Feng, N. Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential. Int. J. Pharm. 2020, 580, 119183. [Google Scholar] [CrossRef]
- Ramkanth, S.; Chetty, C.M.; Sudhakar, Y.; Thiruvengadarajan, V.; Anitha, P.; Gopinath, C. Development, characterisation & in vivo evaluation of proniosomal based transdermal delivery system of Atenolol. Future J. Pharm. Sci. 2018, 4, 80–87. [Google Scholar]
- Muzzalupo, R.; Tavano, L.; Lai, F.; Picci, N. Niosomes containing hydroxyl additives as percutaneous penetration enhancers: Effect on the transdermal delivery of sulfadiazine sodium salt. Colloids Surfaces B Biointerfaces 2014, 123, 207–212. [Google Scholar] [CrossRef]
- Wu, T.; Zhu, C.; Wang, X.; Kong, Q.; Guo, T.; He, Z.; He, Y.; Ruan, S.; Ruan, H.; Pei, L.; et al. Cholesterol and Phospholipid-free Multilamellar Niosomes Regulate Transdermal Permeation of a Hydrophobic Agent Potentially Administrated for Treating Diseases in Deep Hair Follicles. J. Pharm. Sci. 2021, 111, 1785–1797. [Google Scholar] [CrossRef]
- Danielsson, I.; Lindman, B. The definition of microemulsion. Colloids Surf. 1981, 3, 391–392. [Google Scholar] [CrossRef]
- Gautam, N.; Kesavan, K. Development of microemulsions for ocular delivery. Ther. Deliv. 2017, 8, 313–330. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. J. Agric. Food Chem. 2011, 59, 5026–5035. [Google Scholar] [CrossRef]
- He, E.; Li, H.; Li, X.; Wu, X.; Lei, K.; Diao, Y. Transdermal Delivery of Indirubin-Loaded Microemulsion Gel: Preparation, Characterization and Anti-Psoriatic Activity. Int. J. Mol. Sci. 2022, 23, 3798. [Google Scholar] [CrossRef]
- Patel, P.; Pol, A.; Kalaria, D.; Date, A.A.; Kalia, Y.; Patravale, V. Microemulsion-based gel for the transdermal delivery of rasagiline mesylate: In vitro and in vivo assessment for Parkinson’s therapy. Eur. J. Pharm. Biopharm. 2021, 165, 66–74. [Google Scholar] [CrossRef]
- Islam, R.; Uddin, S.; Chowdhury, R.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Appl. Mater. Interfaces 2021, 13, 42461–42472. [Google Scholar] [CrossRef]
- Hu, Q.; Lin, H.; Wang, Y.; Wang, X.; Yao, J.; Fu, X.; Yu, X. Design, optimization and evaluation of a microemulsion-based hydrogel with high malleability for enhanced transdermal delivery of levamisole. Int. J. Pharm. 2021, 605, 120829. [Google Scholar] [CrossRef]
- Panghal, A.; Sachdeva, M.; Agarwal, V. Formulation & Development of Baclofen microemulsion incorporated into Transdermal patch. J. Drug Deliv. Ther. 2022, 12, 55–63. [Google Scholar] [CrossRef]
- Shewaiter, M.A.; Hammady, T.M.; El-Gindy, A.; Hammadi, S.H.; Gad, S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J. Drug Deliv. Sci. Technol. 2020, 61, 102110. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, L.; Wu, Y.; Wang, Y.; Zhao, R. Astilbin microemulsion transdermal delivery system optimization with enhancive stability and anti-psoriasis effect. Curr. Drug Deliv. 2022. [Google Scholar] [CrossRef]
- de Araujo, G.R.S.; Macieira, G.M.D.C.; de Oliveira, D.X.; Matos, S.S.; dos Santos, Q.N.; Otubo, L.; Araújo, A.A.D.S.; Duarte, M.C.; Lira, A.A.M.; Nunes, R.D.S.; et al. Microemulsions formed by PPG-5-CETETH-20 at low concentrations for transdermal delivery of nifedipine: Structural and in vitro study. Colloids Surfaces B Biointerfaces 2022, 214, 112474. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- El-Telbany, D.F.A.; Zakaria, S.; Ahmed, K.A.; El-Feky, Y.A. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed. Pharmacother. 2021, 143, 112130. [Google Scholar] [CrossRef] [PubMed]
- Ner, B.; Zdemir, S.; Taşzsoy, Y.; Ner, M. Development of Lipid Nanoparticles for Transdermal Loteprednol Etabonate Delivery. J. Microencapsul. 2022, 39, 1–27. [Google Scholar]
- Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Kumar, M.V.; Nabavi, S.M. Transdermal Delivery of Curcumin-Loaded Solid Lipid Nanoparticles as Microneedle Patch: An In Vitro and In Vivo Study. AAPS PharmSciTech 2022, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Sharma, S.K.; Gaur, P.K.; Singh, A.P. Lovastatin Loaded Solid lipid nanoparticles for Transdermal delivery: In vitro Characterization. Res. J. Pharm. Technol. 2022, 15, 1085–1089. [Google Scholar] [CrossRef]
- Bagde, A.; Kouagou, E.; Singh, M. Formulation of Topical Flurbiprofen Solid Lipid Nanoparticle Gel Formulation Using Hot Melt Extrusion Technique. AAPS PharmSciTech 2022, 23, 257. [Google Scholar] [CrossRef]
- Rincón, M.; Silva-Abreu, M.; Espinoza, L.C.; Sosa, L.; Calpena, A.C.; Rodríguez-Lagunas, M.J.; Colom, H. Enhanced Transdermal Delivery of Pranoprofen Using a Thermo-Reversible Hydrogel Loaded with Lipid Nanocarriers for the Treatment of Local Inflammation. Pharmaceuticals 2021, 15, 22. [Google Scholar] [CrossRef]
- Sabir, F.; Qindeel, M.; Rehman, A.U.; Ahmad, N.M.; Khan, G.M.; Csoka, I.; Ahmed, N. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery. J. Microencapsul. 2021, 38, 233–248. [Google Scholar] [CrossRef]
- Walkley, K. Bound Water in Stratum Corneum Measured by Differential Scanning Calorimetry. J. Investig. Dermatol. 1972, 59, 225–227. [Google Scholar] [CrossRef] [Green Version]
- Cornwell, P.A.; Barry, B.W. Sesquiterpene Components of Volatile Oils as Skin Penetration Enhancers for the Hydrophilic Permeant 5-Fluorouracil. J. Pharm. Pharmacol. 1994, 46, 261–269. [Google Scholar] [CrossRef]
- van Hal, D.A.; Jeremiasse, E.; Junginger, H.E.; Spies, F.; Bouwstra, J.A. Structure of Fully Hydrated Human Stratum Corneum: A Freeze-Fracture Electron Microscopy Study. J. Investig. Dermatol. 1996, 106, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.R.; Barry, B.W. Limitations of hairless mouse skin as a model for in vitro permeation studies through human skin: Hydration damage. J. Investig. Dermatol. 1988, 90, 486–489. [Google Scholar] [CrossRef]
- Morimoto, Y.; Wada, Y.; Seki, T.; Sugibayashi, K. In Vitro Skin Permeation of Morphine Hydrochloride during the Finite Application of Penetration-Enhancing System Containing Water, Ethanol and l-Menthol. Biol. Pharm. Bull. 2002, 25, 134–136. [Google Scholar] [CrossRef]
- Liu, P.; Kurihara-Bergstrom, T.; Good, W.R. Cotransport of Estradiol and Ethanol Through Human Skin in Vitro: Understanding the Permeant/Enhancer Flux Relationship. Pharm. Res. 1991, 8, 938–944. [Google Scholar] [CrossRef]
- Kurihara-Bergstrom, T.; Knutson, K.; DeNoble, L.J.; Goates, C.Y. Percutaneous Absorption Enhancement of an Ionic Molecule by Ethanol–Water Systems in Human Skin. Pharm. Res. 1990, 7, 762–766. [Google Scholar] [CrossRef]
- Watkinson, R.; Herkenne, C.; Guy, R.H.; Hadgraft, J.; Oliveira, G.; Lane, M.E. Influence of ethanol on the solubility, ionisation and permeation characteristics of ibuprofen in silicone and human skin. Skin Pharmacol. Physiol. 2009, 22, 15–21. [Google Scholar] [CrossRef]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef]
- Friend, D.; Catz, P.; Heller, J.; Reid, J.; Baker, R. Transdermal delivery of levonorgestrel I: Alkanols as permeation enhancers in vitro. J. Control. Release 1988, 7, 243–250. [Google Scholar] [CrossRef]
- Friend, D.R. Transdermal delivery of levonorgestrel. Med. Res. Rev. 1991, 11, 49–80. [Google Scholar] [CrossRef]
- Andega, S.; Kanikkannan, N.; Singh, M. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. J. Control. Release 2001, 77, 17–25. [Google Scholar] [CrossRef]
- Dias, M.; Naik, A.; Guy, R.; Hadgraft, J.; Lane, M. In vivo infrared spectroscopy studies of alkanol effects on human skin. Eur. J. Pharm. Biopharm. 2008, 69, 1171–1175. [Google Scholar] [CrossRef]
- Sullivan, D.W., Jr.; Gad, S.C.; Julien, M. A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food Chem. Toxicol. 2014, 72, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Manconi, M.; Caddeo, C.; Sinico, C.; Valenti, D.; Mostallino, M.C.; Biggio, G.; Fadda, A.M. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle–skin interaction. Eur. J. Pharm. Biopharm. 2011, 78, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Chavez, J.J.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. In Vivo Skin Permeation of Sodium Naproxen Formulated in Pluronic F-127 Gels: Effect of Azone® and Transcutol®. Drug Dev. Ind. Pharm. 2005, 31, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Michniak-Kohn, B. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Deliv. 2018, 25, 1943–1949. [Google Scholar] [CrossRef] [Green Version]
- Anigbogu, A.N.; Williams, A.C.; Barry, B.W.; Edwards, H.G. Fourier transform Raman spectroscopy of interactions between the penetration enhancer dimethyl sulfoxide and human stratum corneum. Int. J. Pharm. 1995, 125, 265–282. [Google Scholar] [CrossRef]
- Stoughton, R.B. Dimethylsulfoxide (DMSO) Induction of a Steroid Reservoir in Human Skin. Arch. Dermatol. 1965, 91, 657–660. [Google Scholar] [CrossRef]
- Maibach, H.I.; Feldmann, R.J. The effect of dmso on percutaneous penetration of hydrocortisone and testosterone in man. Ann. N. Y. Acad. Sci. 1967, 141, 423–427. [Google Scholar] [CrossRef]
- Coldman, M.F.; Kalinovsky, T.; Poulsen, B.J. The in vitro penetration of fluocinonide through human skin from different volumes of dmso. Br. J. Dermatol. 1971, 85, 457–461. [Google Scholar] [CrossRef]
- Klamerus, K.; Lee, G. Effects of some hydrophilic permeation enhancers on the absorption of bepridil through excised human skin. Drug Dev. Ind. Pharm. 1992, 18, 1411–1422. [Google Scholar] [CrossRef]
- Notman, R.; Anwar, J.; Briels, W.; Noro, M.G.; Otter, W.K.D. Simulations of Skin Barrier Function: Free Energies of Hydrophobic and Hydrophilic Transmembrane Pores in Ceramide Bilayers. Biophys. J. 2008, 95, 4763–4771. [Google Scholar] [CrossRef] [Green Version]
- Southwell, D.; Barry, B.W. Penetration Enhancers for Human Skin: Mode of Action of 2-Pyrrolidone and Dimethylformamide on Partition and Diffusion of Model Compounds Water, n-Alcohols, and Caffeine. J. Investig. Dermatol. 1983, 80, 507–514. [Google Scholar] [CrossRef]
- Rajadhyaksha, V.J. Novel N-bis-Azacyclopentan-2-onyl Alkanes. U.S. Patent 3,989,815, 2 November 1976. [Google Scholar]
- Hoogstraate, A.; Verhoef, J.; Brussee, J.; Ijzerman, A.; Spies, F.; Boddé, H. Kinetics, ultrastructural aspects and molecular modelling of transdermal peptide flux enhancement by N-alkylazacycloheptanones. Int. J. Pharm. 1991, 76, 37–47. [Google Scholar] [CrossRef]
- Pilgram, G.; Van der Meulen, J.; Gooris, G.; Koerten, H.; Bouwstra, J.A. The influence of two azones and sebaceous lipids on the lateral organisation of lipids isolated from human stratum corneum. Biochim. Biophys. Acta Biomembr. 2001, 1511, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.E.; Watkinson, A.C.; Green, D.M.; Hadgraft, J.; Brain, K. The Relative Effect of Azone® and Transcutol® on Permeant Diffusivity and Solubility in Human Stratum Corneum. Pharm. Res. 1996, 13, 542–546. [Google Scholar] [CrossRef]
- Engblom, J.; Engström, S.; Jönsson, B. Phase coexistence in cholesterol–fatty acid mixtures and the effect of the penetration enhancer Azone. J. Control. Release 1998, 52, 271–280. [Google Scholar] [CrossRef]
- Degim, I.T.; Uslu, A.; Hadgraft, J.; Atay, T.; Akay, C.; Cevheroglu, S. The effects of Azone and capsaicin on the permeation of naproxen through human skin. Int. J. Pharm. 1999, 179, 21–25. [Google Scholar] [CrossRef]
- Zhao, Q.; Dai, C.; Fan, S.; Lv, J.; Nie, L. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy. Sci. Rep. 2016, 6, 34954. [Google Scholar] [CrossRef] [Green Version]
- Senna, T.D.; Dos Santos, H.A.M.; Kibwila, D.M.; Leitao, A.C.; Pyrrho, A.; De Padula, M.; Rosas, E.C.; Padua, T.A.; Lara, M.G.; Pierre, M.B.R. In Vitro and In Vivo Evaluation of DMSO and Azone as Penetration Enhancers for Cutaneous Application of Celecoxib. Curr. Drug Deliv. 2017, 14, 992–1004. [Google Scholar] [CrossRef]
- Baby, A.R.; Lacerda, A.C.L.; Velasco, M.V.R.; Lopes, P.S.; Kawano, Y.; Kaneko, T.M. Evaluation of the interaction of surfactants with stratum corneum model membrane from Bothrops jararaca by DSC. Int. J. Pharm. 2006, 317, 7–9. [Google Scholar] [CrossRef]
- Wilhelm, K.-P.; Cua, A.B.; Wolff, H.H.; Maibach, H.I. Surfactant-Induced Stratum Corneum Hydration In Vivo: Prediction of the Irritation Potential of Anionic Surfactants. J. Investig. Dermatol. 1993, 101, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, S.; Ikarashi, A. Enhanced Skin Permeation of Cationic Drug Ketotifen through Excised Guinea Pig Dorsal Skin by Surfactants with Different Electric Charges. Chem. Pharm. Bull. 2003, 51, 1183–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nokhodchi, A.; Shokri, J.; Dashbolaghi, A.; Hassan-Zadeh, D.; Ghafourian, T.; Barzegar-Jalali, M. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int. J. Pharm. 2002, 250, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S. Synergistic Effect of Enhancers for Transdermal Drug Delivery. Pharm. Res. 2000, 17, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Legen, I.; Kračun, M.; Salobir, M.; Kerč, J. The evaluation of some pharmaceutically acceptable excipients as permeation enhancers for amoxicillin. Int. J. Pharm. 2006, 308, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Shokri, J.; Nokhodchi, A.; Dashbolaghi, A.; Hassan-Zadeh, D.; Ghafourian, T.; Jalali, M.B. The effect of surfactants on the skin penetration of diazepam. Int. J. Pharm. 2001, 228, 99–107. [Google Scholar] [CrossRef]
- Vaddi, H.; Wang, L.; Ho, P.; Chan, S. Effect of some enhancers on the permeation of haloperidol through rat skin in vitro. Int. J. Pharm. 2001, 212, 247–255. [Google Scholar] [CrossRef]
- Ashton, P.; Walters, K.A.; Brain, K.R.; Hadgraft, J. Surfactant effects in percutaneous absorption I. Effects on the transdermal flux of methyl nicotinate. Int. J. Pharm. 1992, 87, 261–264. [Google Scholar] [CrossRef]
- Ghafourian, T.; Nokhodchi, A.; Kaialy, W. Surfactants as penetration enhancers for dermal and transdermal drug delivery. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Cham, Switzerland, 2015; pp. 207–230. [Google Scholar]
- Ashton, P.; Hadgraft, J.; Stevens, J. Some Effects of a Non-Ionic Surfactant on Topical Availability. J. Pharm. Pharmacol. 1986, 38. [Google Scholar] [CrossRef]
- Ryan, K.J.; Mezei, M. In Vivo Method for Monitoring Polysorbate 85 Effect on Epidermal Permeability. J. Pharm. Sci. 1975, 64, 671–673. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Banno, T.; Toyota, T.; Matsumura, S. Creation of novel green surfactants containing carbonate linkages. In Biodegradation–Life of Science; Intech: Rijeka, Croatia, 2013; pp. 115–140. [Google Scholar]
- Jimoh, A.A.; Lin, J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef]
- Rao, V.U.; Misra, A. Effect of Penetration Enhancers on Transdermal Absorption of Insulin Across Human Cadaver Skin. Drug Dev. Ind. Pharm. 1994, 20, 2585–2591. [Google Scholar] [CrossRef]
- Nicoli, S.; Eeman, M.; Deleu, M.; Bresciani, E.; Padula, C.; Santi, P. Effect of lipopeptides and iontophoresis on aciclovir skin delivery. J. Pharm. Pharmacol. 2010, 62, 702–708. [Google Scholar] [CrossRef]
- Vermeire, A.; De Muynck, C.; Vandenbossche, G.; Eechaute, W.; Geerts, M.-L.; Remon, J.P. Sucrose Laurate Gels as a Percutaneous Delivery System for Oestradiol in Rabbits. J. Pharm. Pharmacol. 1996, 48, 463–467. [Google Scholar] [CrossRef]
- Ishii, N.; Kobayashi, T.; Matsumiya, K.; Ryu, M.; Hirata, Y.; Matsumura, Y.; Suzuki, Y.A. Transdermal administration of lactoferrin with sophorolipid. Biochem. Cell Biol. 2012, 90, 504–512. [Google Scholar] [CrossRef]
- Naik, N.J.; Abhyankar, I.; Darne, P.; Prabhune, A.; Madhusudhan, B. Sustained Transdermal Release of Lignans Facilitated by Sophorolipid based Transferosomal Hydrogel for Cosmetic Application. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1783–1791. [Google Scholar] [CrossRef]
- Saija, A.; Tomaino, A.; Trombetta, D.; Giacchi, M.; De Pasquale, A.; Bonina, F. Influence of different penetration enhancers on in vitro skin permeation and in vivo photoprotective effect of flavonoids. Int. J. Pharm. 1998, 175, 85–94. [Google Scholar] [CrossRef]
- Williams, A.; Barry, B. The enhancement index concept applied to terpene penetration enhancers for human skin and model lipophilic (oestradiol) and hydrophilic (5-fluorouracil) drugs. Int. J. Pharm. 1991, 74, 157–168. [Google Scholar] [CrossRef]
- Nagai, T.; Okabe, H.; Ogura, A.; Takayama, K. Effect of limonene and related compounds on the percutaneous absorption of indomethacin. In Proceedings of the 16th International Symposium on Controlled Release Bioactive Material, Chicago, IL, USA, 1 June 1989; pp. 181–182. [Google Scholar]
- Okabe, H.; Takayama, K.; Ogura, A.; Nagai, T. Effect of limonene and related compounds on the percutaneous absorption of indomethacin. Drug Des. Deliv. 1989, 4, 313–321. [Google Scholar]
- Barry, B.; Williams, A. Human skin penetration enhancement: The synergy of propylene glycol with terpenes. In Proceedings of the International Symposium on Controlled Release of Bioactive Materials, Controlled Release Society, Chicago, IL, USA, 6–11 August 1989; pp. 33–34. [Google Scholar]
- Mendanha, S.; Moura, S.S.; Anjos, J.L.; Valadares, M.C.; Alonso, A. Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Toxicol. Vitr. 2013, 27, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Thomas, N.S.; Panchagnula, R. Transdermal drug delivery of imipramine hydrochloride. I. Effect of terpenes. J. Control. Release 2002, 79, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Trommer, H.; Neubert, R.H.H. Overcoming the Stratum Corneum: The Modulation of Sk in Penetration. Ski. Pharmacol. Physiol. 2006, 19, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, V.K.; Yerramsetty, K.M.; Madihally, S.V.; Robinson, R.L.; Gasem, K.A.M. Screening of Chemical Penetration Enhancers for Transdermal Drug Delivery Using Electrical Resistance of Skin. Pharm. Res. 2008, 25, 2697–2704. [Google Scholar] [CrossRef]
- Yerramsetty, K.; Rachakonda, V.; Neely, B.; Madihally, S.; Gasem, K. Effect of different enhancers on the transdermal permeation of insulin analog. Int. J. Pharm. 2010, 398, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, G.M.; McKie, J.E.; Potts, R.O. Role of Stratum Corneum Lipid Fluidity in Transdermal Drug Flux. J. Pharm. Sci. 1987, 76, 25–28. [Google Scholar] [CrossRef]
- Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. Evidence that Oleic Acid Exists in a Separate Phase Within Stratum Corneum Lipids. Pharm. Res. 1991, 8, 350–354. [Google Scholar] [CrossRef]
- Tanojo, H.; Geest, A.B.-V.; Bouwstra, J.A.; Junginger, H.E.; Boodé, H.E. In vitro human skin barrier perturbation by oleic acid: Thermal analysis and freeze fracture electron microscopy studies. Thermochim. Acta 1997, 293, 77–85. [Google Scholar] [CrossRef]
- Naik, A.; Pechtold, L.A.; Potts, R.O.; Guy, R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release 1995, 37, 299–306. [Google Scholar] [CrossRef]
- Ochalek, M.; Podhaisky, H.; Ruettinger, H.-H.; Wohlrab, J.; Neubert, R. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation—Part II: Diffusion and permeation of model drugs. Eur. J. Pharm. Biopharm. 2012, 82, 360–366. [Google Scholar] [CrossRef]
- Atef, E.; Altuwaijri, N. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin. AAPS PharmSciTech 2017, 19, 114–122. [Google Scholar] [CrossRef]
- Kato, A.; Ishibashi, Y.; Miyake, Y. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J. Pharm. Pharmacol. 1987, 39, 399–400. [Google Scholar] [CrossRef]
- Gloor, M.; Fluhr, J.; Wasik, B.; Gehring, W. Clinical effect of salicylic acid and high dose urea applied according to the standardised New German Formulary. Die Pharm. 2001, 56, 810–814. [Google Scholar]
- Wong, O.; Tsuzuki, N.; Nghiem, B.; Kuehnhoff, J.; Itoh, T.; Masaki, K.; Huntington, J.; Konishi, R.; Rytting, J.; Higuchi, T. Unsaturated cyclic ureas as new non-toxic biodegradable transdermal penetration enhancers. II. Evaluation study. Int. J. Pharm. 1989, 52, 191–202. [Google Scholar] [CrossRef]
- Tsai, J.-C.; Guy, R.H.; Thornfeldt, C.R.; Ni Gao, W.; Feingold, K.R.; Elias, P.M. Metabolic Approaches To Enhance Transdermal Drug Delivery. 1. Effect of Lipid Synthesis Inhibitors. J. Pharm. Sci. 1996, 85, 643–648. [Google Scholar] [CrossRef]
- Babita, K.; Tiwary, A.K. Skin lipid synthesis inhibition: A possible means for enhancing percutaneous delivery of levodopa. Curr. Drug Deliv. 2004, 1, 397–403. [Google Scholar] [CrossRef]
- Babita, K.; Tiwary, A.K. Transcutaneous Delivery of Levodopa: Enhancement by Fatty Acid Synthesis Inhibition. Mol. Pharm. 2004, 2, 57–63. [Google Scholar] [CrossRef]
- Babita, K.; Rana, V.; Tiwary, A.K. Lipid synthesis inhibitors: Effect on epidermal lipid conformational changes and percutaneous permeation of levodopa. AAPS PharmSciTech 2005, 6, E473–E481. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Mahajan, A.; Babita; Gupta, S.; Tiwary, A.K. Inhibition of skin sphingosine synthesis: Enhanced percutaneous permeation of 5-fluorouracil. Die Pharm. 2004, 59, 212–216. [Google Scholar]
- Li, Y.Z.; Quan, Y.S.; Zang, L.; Jin, M.N.; Kamiyama, F.; Katsumi, H. Trypsin as a novel potential absorption enhancer for improving the transdermal delivery of macromolecules. J. Pharm. Pharmacol. 2009, 61, 1005–1012. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Quan, Y.-S.; Zang, L.; Jin, M.-N.; Kamiyama, F.; Katsumi, H.; Yamamoto, A.; Tsutsumi, S. Transdermal Delivery of Insulin Using Trypsin as a Biochemical Enhancer. Biol. Pharm. Bull. 2008, 31, 1574–1579. [Google Scholar] [CrossRef] [Green Version]
- Prochiantz, A. Messenger proteins: Homeoproteins, TAT and others. Curr. Opin. Cell Biol. 2000, 12, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Rothbard, J.B.; Garlington, S.; Lin, Q.; Kirschberg, T.; Kreider, E.; McGrane, P.L.; Wender, P.A.; Khavari, P.A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 2000, 6, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-C.; Ludovice, P.J.; Prausnitz, M.R. Transdermal delivery enhanced by magainin pore-forming peptide. J. Control. Release 2007, 122, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Jung, E.; Park, J.; Park, D. Transdermal delivery of interferon-γ (IFN-γ) mediated by penetratin, a cell-permeable peptide. Biotechnol. Appl. Biochem. 2005, 42, 169–173. [Google Scholar]
- Hsu, T.; Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. USA 2011, 108, 15816–15821. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.; Nanda, J.S.; Samuel, J.S.; Kumari, M.; Priyanka, P.; Bedi, G.; Nath, S.K.; Mittal, G.; Khatri, N.; Raghava, G.P.S. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci. Rep. 2016, 6, 26278. [Google Scholar] [CrossRef]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.S.; Jaenicke, S.; Klähn, M. How the spontaneous insertion of amphiphilic imidazolium-based cations changes biological membranes: A molecular simulation study. Phys. Chem. Chem. Phys. 2015, 17, 29171–29183. [Google Scholar] [CrossRef]
- Kundu, N.; Roy, S.; Mukherjee, D.; Maiti, T.K.; Sarkar, N. Unveiling the Interaction between Fatty-Acid-Modified Membrane and Hydrophilic Imidazolium-Based Ionic Liquid: Understanding the Mechanism of Ionic Liquid Cytotoxicity. J. Phys. Chem. B 2017, 121, 8162–8170. [Google Scholar] [CrossRef]
- Wu, H.; Fang, F.; Zheng, L.; Ji, W.; Qi, M.; Hong, M. Ionic liquid form of donepezil: Preparation, characterisation and formulation development. J. Mol. Liq. 2020, 300, 112308. [Google Scholar] [CrossRef]
- Moshikur, R.M.; Chowdhury, R.; Wakabayashi, R.; Tahara, Y.; Kamiya, N.; Moniruzzaman, M.; Goto, M. Ionic liquids with N-methyl-2-pyrrolidonium cation as an enhancer for topical drug delivery: Synthesis, characterization, and skin-penetration evaluation. J. Mol. Liq. 2019, 299, 112166. [Google Scholar] [CrossRef]
- Islam, R.; Chowdhury, R.; Wakabayashi, R.; Kamiya, N.; Moniruzzaman, M.; Goto, M. Ionic Liquid-In-Oil Microemulsions Prepared with Biocompatible Choline Carboxylic Acids for Improving the Transdermal Delivery of a Sparingly Soluble Drug. Pharmaceutics 2020, 12, 392. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, Z.; Yang, Y.; Li, Y.; Wang, C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int. J. Pharm. 2020, 576, 119031. [Google Scholar] [CrossRef]
- Jorge, L.R.; Harada, L.K.; Silva, E.C.; Campos, W.F.; Moreli, F.C.; Shimamoto, G.; Pereira, J.F.B.; Oliveira, J.M.J.; Tubino, M.; Vila, M.M.D.C.; et al. Non-invasive Transdermal Delivery of Human Insulin Using Ionic Liquids: In vitro Studies. Front. Pharmacol. 2020, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, H.; He, S.; Yu, Q.; Lu, Y.; Wu, W. Improving dermal delivery of hyaluronic acid by ionic liquids for attenuating skin deydration. Int. J. Biol. Macromol. 2020, 150, 528–535. [Google Scholar] [CrossRef]
- Tanner, E.E.L.; Wiraja, C.; Curreri, C.A.; Xu, C.; Mitragotri, S. Stabilization and Topical Skin Delivery of Framework Nucleic Acids using Ionic Liquids. Adv. Ther. 2020, 3, 2000041. [Google Scholar] [CrossRef]
- Zakrewsky, M.; Mitragotri, S. Therapeutic RNAi robed with ionic liquid moieties as a simple, scalable prodrug platform for treating skin disease. J. Control. Release 2016, 242, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Mathur, V.; Satrawala, Y.; Rajput, M. Physical and chemical penetration enhancers in transdermal drug delivery system. Asian J. Pharm. 2010, 4, 173. [Google Scholar] [CrossRef]
- Akhtar, N. Microneedles: An innovative approach to transdermal delivery–a review. Int. J. Pharm. Pharm. Sci. 2014, 4, 18–25. [Google Scholar]
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2018, 109, 1249–1258. [Google Scholar] [CrossRef]
- Howells, O.; Blayney, G.J.; Gualeni, B.; Birchall, J.C.; Eng, P.F.; Ashraf, H.; Sharma, S.; Guy, O.J. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process. Eur. J. Pharm. Biopharm. 2021, 171, 19–28. [Google Scholar] [CrossRef]
- Ilić, T.; Savić, S.; Batinić, B.; Marković, B.; Schmidberger, M.; Lunter, D.; Savic, M.; Savić, S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci. 2018, 125, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.J.; Cordeiro, A.S.; Donnelly, R.F.; Montesinos, M.C.; Garrigues, T.M.; Melero, A. Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics 2020, 12, 569. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, S.; Yang, G.; Gao, Y. Enhanced delivery efficiency and sustained release of biopharmaceuticals by complexation-based gel encapsulated coated microneedles: rhIFNα-1b example. Asian J. Pharm. Sci. 2021, 16, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.; Zhai, Y.; Yu, K.; Wu, C.; Xu, Y. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int. J. Pharm. 2018, 553, 298–309. [Google Scholar] [CrossRef]
- Xing, M.; Wang, X.; Zhao, L.; Zhou, Z.; Liu, H.; Wang, B.; Cheng, A.; Zhang, S.; Gao, Y. Novel dissolving microneedles preparation for synergistic melasma therapy: Combined effects of tranexamic acid and licorice extract. Int. J. Pharm. 2021, 600, 120406. [Google Scholar] [CrossRef]
- Permana, A.D.; Tekko, I.A.; McCrudden, M.T.C.; Anjani, Q.K.; Ramadon, D.; McCarthy, H.O.; Donnelly, R.F. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J. Control. Release 2019, 316, 34–52. [Google Scholar] [CrossRef]
- Cárcamo-Martínez, Á.; Mallon, B.; Domínguez-Robles, J.; Vora, L.K.; Anjani, Q.K.; Donnelly, R.F. Hollow microneedles: A perspective in biomedical applications. Int. J. Pharm. 2021, 599, 120455. [Google Scholar] [CrossRef]
- Yadav, V.; Sharma, P.K.; Murty, U.S.; Mohan, N.H.; Thomas, R.; Dwivedy, S.K.; Banerjee, S. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int. J. Pharm. 2021, 605, 120815. [Google Scholar] [CrossRef]
- Wu, T.; Hou, X.; Li, J.; Ruan, H.; Pei, L.; Guo, T.; Wang, Z.; Ci, T.; Ruan, S.; He, Y.; et al. Microneedle-Mediated Biomimetic Cyclodextrin Metal Organic Frameworks for Active Targeting and Treatment of Hypertrophic Scars. ACS Nano 2021, 15, 20087–20104. [Google Scholar] [CrossRef]
- Jing, Q.; Ruan, H.; Li, J.; Wang, Z.; Pei, L.; Hu, H.; He, Z.; Wu, T.; Ruan, S.; Guo, T.; et al. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials 2021, 278, 121142. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Fu, Y.; Song, Y. Recent advances of microneedles for biomedical applications: Drug delivery and beyond. Acta Pharm. Sin. B 2019, 9, 469–483. [Google Scholar] [CrossRef]
- Yang, Q.; Zhong, W.; Xu, L.; Li, H.; Yan, Q.; She, Y.; Yang, G. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int. J. Pharm. 2020, 593, 120106. [Google Scholar] [CrossRef]
- Tucak, A.; Sirbubalo, M.; Hindija, L.; Rahic, O.; Hadziabdic, J.; Muhamedagic, K.; Cekic, A.; Vranic, E. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines 2020, 11, 961. [Google Scholar] [CrossRef]
- Shin, D.; Hyun, J. Silk fibroin microneedles fabricated by digital light processing 3D printing. J. Ind. Eng. Chem. 2021, 95, 126–133. [Google Scholar] [CrossRef]
- Economidou, S.N.; Pere, C.P.P.; Reid, A.; Uddin, J.; Windmill, J.F.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755. [Google Scholar] [CrossRef]
- Uddin, M.J.; Scoutaris, N.; Economidou, S.N.; Giraud, C.; Chowdhry, B.Z.; Donnelly, R.F.; Douroumis, D. 3D printed microneedles for anti-cancer therapy of skin tumours. Mater. Sci. Eng. C 2020, 107, 110248. [Google Scholar] [CrossRef]
CPEs | Drug | Mechanism of Action | References |
---|---|---|---|
Water | - | Formation of aqueous pore pathway in the stratum corneum | [94,95] |
Alcohols | Estradiol Salicylic acid Ibuprofen Levonorgestrel Diclofenac Sodium naproxen Thymoquinone | Extraction of lipids present in between the cells | [97,98,99,100,103,108,109] |
Sulfoxides | Fluocinolone acetonide Triamcinolone acetonide Hydrocortisone Testosterone Fluocinonide Bepridil | Distort proteins and modify the intercellular keratin confirmation | [111,112,113,114] |
Azones | Cyophenol Naproxen Salicylic acid Celecoxib Thymoquine | Disorganization of well-organized lipid packing of SC bilayer region | [109,119,121,122,123,124] |
Surfactants | Ketotifen Lorazepam Diazepam Haloperidol Methyl nicotinate Insulin Hydrocortisone Acyclovir Oestradiol Lactoferrin Lignans | Create a scale-like structure in the lipid phase Swell the SC and interact with the intercellular keratins Lipid fluidization Present as a puddle in the lipid region | [123,127,128,131,133,139,140,141,142,143,144] |
Terpenes | 5-Fluorouracil and Oestradiol Indomethacin Morphine hydrochloride Imipramine hydrochloride | Modify the solvent nature of the SC and impart partition Interact with intercellular lipids | [147,148,149,150,151] |
Pyrrolidone | Melatonin | Lipid fluidization | |
Fatty acids | Diclofenac sodium Caffeine | Disorganization of well-organized lipid packing of the SC bilayer region | [159,160] |
Phospholipids | Diclofenac | Present as a puddle in the lipid region | [162] |
Urea | Indomethacin | Increase the SC water content and act on keratin | [163] |
Lipid synthesis inhibitor | Lidocaine Caffeine Levodopa 5-Fluorouracil Insulin | Inhibiting skin lipid metabolism | [164,165,169] |
Cell-penetrating Peptides | Cyclosporine A (CsA) Interferon-gamma siRNA | Disrupting the SC lipid structure | [172,174,175] |
Ionic liquids | Donepezil Ibuprofen Acyclovir Hydrocortisone and 5-fluorouracil Insulin Hyaluronic acid framework Nucleic acid siRNA | Disruption of cellular integrity, fluidization, and creation of diffusional pathways | [180,181,182,183,184,185,186] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmingthansanga, V.; Singh, N.; Banerjee, S.; Manickam, S.; Velayutham, R.; Natesan, S. Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022, 14, 2818. https://doi.org/10.3390/pharmaceutics14122818
Hmingthansanga V, Singh N, Banerjee S, Manickam S, Velayutham R, Natesan S. Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics. 2022; 14(12):2818. https://doi.org/10.3390/pharmaceutics14122818
Chicago/Turabian StyleHmingthansanga, Victor, Nidhi Singh, Superna Banerjee, Sivakumar Manickam, Ravichandiran Velayutham, and Subramanian Natesan. 2022. "Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches" Pharmaceutics 14, no. 12: 2818. https://doi.org/10.3390/pharmaceutics14122818
APA StyleHmingthansanga, V., Singh, N., Banerjee, S., Manickam, S., Velayutham, R., & Natesan, S. (2022). Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics, 14(12), 2818. https://doi.org/10.3390/pharmaceutics14122818