Macrolide Treatment Failure due to Drug–Drug Interactions: Real-World Evidence to Evaluate a Pharmacological Hypothesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and IRB
2.2. Data Source and Software
2.3. Study Cohorts
2.3.1. Common Acute Infections
Inclusion Criteria
- Existence of a primary or secondary diagnosis code for acute bronchitis (ICD-9-CM 466.0), suppurative acute otitis media (AOM) (ICD-9-CM 382.01) or acute sinusitis (ICD-9-CM 461.9).
- Filled a prescription for a macrolide (erythromycin, azithromycin, or clarithromycin) within 5 days of infection diagnosis.
- Had longitudinal data available 12 months prior to and 60 days after infection diagnosis.
Exclusion Criteria
- The patient was hospitalized within 30 days prior to the inclusion date.
- The patient had any of the inclusion criteria infections (ICD-9-CM 466.0, ICD-9-CM 382.01, or ICD-9-CM 461.9) within 6 months prior to the inclusion date.
- The patient had a previous pharmacy claim for an antibiotic within 30 days prior to the diagnosis date.
- The patient had an immunocompromising disorder within 2 years prior to the inclusion date. Disorders included inherited immune/autoimmune disorders, HIV/AIDs, any form of cancer or any type of organ transplant.
2.3.2. Bacterial-Specific Community-Acquired Pneumonia (CAP)
2.3.3. Case–Control Identification
- A refill of the index drug (original macrolide) within 30 days of the initial dispense date.
- A fill of another antibiotic within 30 days of initial dispense date.
- A hospitalization or emergency department visit within 30 days of inclusion date due to the same diagnostic code as the original infection.
2.3.4. Case–Control Matching
2.4. Pharmacokinetic Parameters of the Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FDA Office of the Commissioner. Combating Antibiotic Resistance. 2019. Available online: https://www.fda.gov/consumers/consumer-updates/combating-antibiotic-resistance (accessed on 24 March 2022).
- Jenkins, S.G.; Farrell, D.J. Increase in Pneumococcus Macrolide Resistance, United States. Emerg. Infect. Dis. 2009, 15, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Cherazard, R.; Epstein, M.; Doan, T.-L.; Salim, T.; Bharti, S.; Smith, M.A. Antimicrobial Resistant Streptococcus pneumoniae. Am. J. Ther. 2017, 24, 361–369. [Google Scholar] [CrossRef]
- Albert, R.H. Diagnosis and Treatment of Acute Bronchitis. Am. Fam. Physician 2010, 82, 1345–1350. [Google Scholar]
- Chow, A.W.; Benninger, M.S.; Brook, I.; Brozek, J.L.; Goldstein, E.J.C.; Hicks, L.A.; Pankey, G.A.; Seleznick, M.; Volturo, G.; Wald, E.R.; et al. IDSA Clinical Practice Guideline for Acute Bacterial Rhinosinusitis in Children and Adults. Clin. Infect. Dis. 2012, 54, 72–112. [Google Scholar] [CrossRef] [Green Version]
- Harmes, K.M.; Blackwoord, A.; Burrows, H.L.; Cooke, J.M.; van Harrison, R.; Passamani, P.P. Otitis Media: Diagnosis and Treatment. Am. Fam. Physician 2013, 88, 435–440. [Google Scholar] [PubMed]
- Hughes, J.H.; Sweeney, K.; Ahadieh, S.; Ouellet, D. Predictions of Systemic, Intracellular and Lung Concentrations of Azithromycin with Different Dosing Regimens Used in COVID-19 Clinical Trials. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Ernst, D. Antibiotic with History of Safety Issues Discontinued. 2016. Available online: https://www.empr.com/home/news/antibiotic-with-history-of-safety-issues-discontinued/ (accessed on 24 March 2022).
- Lonks, J.R.; Garau, J.; Gomez, L.; Xercavins, M.; de Echagüen, A.O.; Gareen, I.F.; Reiss, P.T.; Medeiros, A.A. Failure of Macrolide Antibiotic Treatment in Patients with Bacteremia Due to Erythromycin-Resistant Streptococcus pneumoniae. Clin. Infect. Dis. 2002, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Matzneller, P.; Krasniqi, S.; Kinzig, M.; Sörgel, F.; Hüttner, S.; Lackner, E.; Müller, M.; Zeitlinger, M. Blood, tissue and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob. Agents Chemother. 2013, 57, 1736–1742. [Google Scholar] [CrossRef] [Green Version]
- Metzler, K.; Drlica, K.; Blondeau, J.M. Minimal inhibitory and mutant prevention concentrations of azithromycin, clarithromycin and erythromycin for clinical isolates of Streptococcus pneumoniae. J. Antimicrob. Chemother. 2012, 68, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Matzneller, P.; Zeitlinger, M.; Schmidt, S. Development of a Population Pharmacokinetic Model Characterizing the Tissue Distribution of Azithromycin in Healthy Subjects. Antimicrob. Agents Chemother. 2014, 58, 6675–6684. [Google Scholar] [CrossRef] [Green Version]
- Malhotra-Kumar, S.; Lammens, C.; Coenen, S.; Herck, K.V.; Goossens, H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: A randomised, double-blind, placebo-controlled study. Lancet 2007, 369, 482–490. [Google Scholar] [CrossRef]
- Bolhuis, M.S.; Panday, P.N.; Pranger, A.D.; Kosterink, J.G.W.; Alffenaar, J.-W.C. Pharmacokinetic Drug Interactions of Antimicrobial Drugs: A Systematic Review on Oxazolidinones, Rifamycines, Macrolides, Fluoroquinolones and Beta-Lactams. Pharmaceutics 2011, 3, 865–913. [Google Scholar] [CrossRef] [Green Version]
- Flockhart, D.; Bies, R.R.; Gastonguay, M.R.; Schwartz, S.L. Big Data: Challenges and opportunities for clinical pharmacology. Br. J. Clin. Pharmacol. 2016, 81, 804–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Kim, S.; Vozmediano, V.; Cristofoletti, R.; Winterstein, A.G.; Brown, J.D. Pharmacometrics, Physiologically Based Pharmacokinetics, Quantitative Systems Pharmacology—Whats Next?—Joining Mechanistic and Epidemiological Approaches. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Henriksen, C.; Vozmediano, V.; Schmidt, S. Real-World Data Approaches for Early Detection of Potential Safety and Effectiveness Signals for Generic Substitution: A Metoprolol Extended-Release Case Study. J. Clin. Pharmacol. 2019, 59, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Sharma, V.D.; Lingineni, K.; Farhan, N.; Fang, L.; Zhao, L.; Brown, J.D.; Cristofoletti, R.; Vozmediano, V.; Ait-Oudhia, S.; et al. Evaluating the Clinical Impact of Formulation Variability: A Metoprolol Extended-Release Case Study. J. Clin. Pharmacol. 2019, 59, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Olesen, S.W.; Barnett, M.L.; Macfadden, D.R.; Brownstein, J.S.; Hernández-Díaz, S.; Lipsitch, M.; Grad, Y.H. The distribution of antibiotic use and its association with antibiotic resistance. eLife 2018, 7, e39435. [Google Scholar] [CrossRef]
- Furuno, J.P.; Metlay, J.P.; Harnett, J.P.; Wilson, J.; Langenberg, P.; McGregor, J.C.; Zhu, J.; Perencevich, E.N. Population antibiotic susceptibility for Streptococcus pneumoniae and treatment outcomes in common respiratory tract infections. Pharmacoepidemiol. Drug Saf. 2005, 15, 1–9. [Google Scholar] [CrossRef]
- Ye, X.; Sikirica, V.; Schein, J.R.; Grant, R.; Zarotsky, V.; Doshi, D.; Benson, C.J.; Riedel, A.A. Treatment failure rates and health care utilization and costs among patients with community-acquired pneumonia treated with levofloxacin or macrolides in an outpatient setting: A retrospective claims database analysis. Clin. Ther. 2008, 30, 358–371. [Google Scholar] [CrossRef]
- Hess, G.; Hill, J.W.; Raut, M.K.; Fisher, A.C.; Mody, S.; Schein, J.R.; Chen, C.-C. Comparative antibiotic failure rates in the treatment of community-acquired pneumonia: Results from a claims analysis. Adv. Ther. 2010, 27, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Elixhauser, A.; Steiner, C.; Harris, D.R.; Coffey, R.M. Comorbidity Measures for Use with Administrative Data. Med. Care 1998, 36, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Westphal, J.F. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: An update focused on clarithromycin, azithromycin and dirithromycin. Br. J. Clin. Pharmacol. 2001, 50, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Sugie, M.; Asakura, E.; Zhao, Y.L.; Torita, S.; Nadai, M.; Baba, K.; Kitaichi, K.; Takagi, K.; Takagi, K.; Hasegawa, T. Possible Involvement of the Drug Transporters P Glycoprotein and Multidrug Resistance-Associated Protein Mrp2 in Disposition of Azithromycin. Antimicrob. Agents Chemother. 2004, 48, 809–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachad, H.; Ragueneau-Majlessi, I.; Levy, R.H. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database. Hum. Genom. 2010, 5, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Food and Drug Administration (FDA). Clinical Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available online: https://www.fda.gov/media/134581/download (accessed on 20 July 2020).
- European Medicines Association (EMA). Guideline on the Investigation of Drug Interactions. 2012. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf (accessed on 20 July 2020).
- Hess, L.M.; Raebel, M.A.; Conner, D.A.; Malone, D.C. Measurement of Adherence in Pharmacy Administrative Databases: A Proposal for Standard Definitions and Preferred Measures. Ann. Pharmacother. 2006, 40, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Doshi, P.A.; Talbert, J.C. Utilization of free medication samples in the United States in a nationally representative sample: 2009–2013. Res. Soc. Adm. Pharm. 2017, 13, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauly, N.J.; Brown, J.D. Prevalence of low-cost generic program use in a nationally representative cohort of privately insured adults. J. Manag. Care Spec. Pharm. 2015, 21, 1162–1170. [Google Scholar] [CrossRef]
- Boyd, S.E.; Charani, E.; Lyons, T.; Frost, G.; Holmes, A.H. Information provision for antibacterial dosing in the obese patient: A sizeable absence? J. Antimicrob. Chemother. 2016, 71, 3588–3592. [Google Scholar] [CrossRef]
- Abdullahi, M.; Annibale, B.; Capoccia, D.; Tari, R.; Lahner, E.; Osborn, J.; Leonetti, F.; Severi, C. The Eradication of Helicobacter pylori is Affected by Body Mass Index (BMI). Obes. Surg. 2008, 18, 1450–1454. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Nie, X.-Y.; Chen, X.-M.; Lin, X.-X.; Tang, K.; Zeng, W.-T.; Mei, W.-Y.; Liu, L.-J.; Long, M.; Yao, F.-J.; et al. The Role of Macrolide Antibiotics in Increasing Cardiovascular Risk. J. Am. Coll. Cardiol. 2015, 66, 2173–2184. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.K.; Schuller, J.L. Macrolide Antibiotics and the Risk of Cardiac Arrhythmias. Am. J. Respir. Crit. Care Med. 2014, 189, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.A.; Murray, K.T.; Hall, K.; Arbogast, P.G.; Stein, C.M. Azithromycin and the Risk of Cardiovascular Death. N. Engl. J. Med. 2012, 367, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2019, 18, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Population | Demographic Summary |
---|---|
Matched Pairs | 135,683 |
Age (years) | 40.6 (14.7) |
Sex (M/F) | 0.71 |
Azithromycin Only | |
Matched Pairs | 120,197 |
Age (years) | 40.4 (14.9) |
Sex (M/F) | 0.70 |
Clarithromycin Only | |
Matched Pairs | 15,171 |
Age (years) | 42.2 (13.4) |
Sex (M/F) | 0.81 |
Erythromycin Only | |
Matched Pairs | 315 |
Age (years) | 42.9 (12.3) |
Sex (M/F) | 0.71 |
Demographic Summary | ||
---|---|---|
Total Population | Case | Control |
Matched Pairs | 1115 | 1090 |
Age (years) | 37.8 (17.1) | 37.8 (17.0) |
Sex (M/F) | 0.93 | 0.93 |
Azithromycin Only | ||
Matched Pairs | 926 | 920 |
Age (years) | 37.4 (17.2) | 37.5 (17.1) |
Sex (M/F) | 1 | 1 |
Clarithromycin Only | ||
Matched Pairs | 189 | 170 |
Age (years) | 39.4 (16.6) | 39.4 (16.6) |
Sex (M/F) | 0.84 | 0.84 |
Erythromycin Only | ||
Matched Pairs | NA | NA |
Age (years) | NA | NA |
Sex (M/F) | NA | NA |
Treatment Failure | Treatment Success | |
---|---|---|
Total Population | 15,468 (5.7%) | 255,898 (94.3%) |
Azithromycin Only | 13,462 (5.6%) | 226,931 (94.4%) |
Clarithromycin Only | 2094 (6.9%) | 28,248 (93.1%) |
Erythromycin Only | 39 (6.2%) | 591 (93.8%) |
Treatment Failure | Treatment Success | |
---|---|---|
Total Population | 172 (7.7%) | 2058 (92.3%) |
Azithromycin Only | 141 (7.6%) | 1711 (92.4%) |
Clarithromycin Only | 40 (10.6%) | 338 (89.4%) |
Erythromycin Only | NA | NA |
AUC Change Covariate | Odds Ratio for Treatment Failure | 95% Confidence Interval |
Total Population | ||
Mild AUC Increase | 0.99 | 0.92, 1.06 |
Moderate AUC Increase | 1.12 | 1.08, 1.17 |
Mild AUC Decrease | 0.56 | 0.30, 1.02 |
Moderate AUC Decrease | 1.37 | 1.02, 1.86 |
Azithromycin Only | ||
Mild AUC Increase | 0.98 | 0.91, 1.06 |
Moderate AUC Increase | 1.12 | 1.08, 1.17 |
Mild AUC Decrease | 0.64 | 0.34, 1.21 |
Moderate AUC Decrease | 1.34 | 0.99, 1.85 |
Clarithromycin Only | ||
Mild AUC Increase | 1.01 | 0.83, 1.25 |
Moderate AUC Increase | 1.11 | 1.00, 1.23 |
Mild AUC Decrease | 0.81 | 0.22, 3.03 |
Moderate AUC Decrease | 1.64 | 0.68, 3.96 |
Erythromycin Only | ||
Mild AUC Increase | 0.50 | 0.05, 5.51 |
Moderate AUC Increase | 1.18 | 0.53, 2.64 |
Mild AUC Decrease | NA | NA |
Moderate AUC Decrease | NA | NA |
AUC Change Covariate | Odds Ratio for Treatment Failure | 95% Confidence Interval |
Total Population | ||
Mild AUC Increase | 1.01 | 0.40, 2.53 |
Moderate AUC Increase | 1.09 | 0.62, 1.92 |
Mild AUC Decrease | NA | NA |
Moderate AUC Decrease | 3.00 | 0.31, 28.8 |
Azithromycin Only | ||
Mild AUC Increase | 1.01 | 0.38, 2.69 |
Moderate AUC Increase | 1.21 | 0.66, 2.22 |
Mild AUC Decrease | NA | NA |
Moderate AUC Decrease | *** | *** |
Clarithromycin Only | ||
Mild AUC Increase | 1.00 | 0.63, 15.9 |
Moderate AUC Increase | 0.50 | 0.09, 2.73 |
Mild AUC Decrease | NA | NA |
Moderate AUC Decrease | *** | *** |
Erythromycin Only | ||
Mild AUC Increase | NA | NA |
Moderate AUC Increase | NA | NA |
Mild AUC Decrease | NA | NA |
Moderate AUC Decrease | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicali, B.; Schmidt, S.; Zeitlinger, M.; Brown, J.D. Macrolide Treatment Failure due to Drug–Drug Interactions: Real-World Evidence to Evaluate a Pharmacological Hypothesis. Pharmaceutics 2022, 14, 704. https://doi.org/10.3390/pharmaceutics14040704
Cicali B, Schmidt S, Zeitlinger M, Brown JD. Macrolide Treatment Failure due to Drug–Drug Interactions: Real-World Evidence to Evaluate a Pharmacological Hypothesis. Pharmaceutics. 2022; 14(4):704. https://doi.org/10.3390/pharmaceutics14040704
Chicago/Turabian StyleCicali, Brian, Stephan Schmidt, Markus Zeitlinger, and Joshua D. Brown. 2022. "Macrolide Treatment Failure due to Drug–Drug Interactions: Real-World Evidence to Evaluate a Pharmacological Hypothesis" Pharmaceutics 14, no. 4: 704. https://doi.org/10.3390/pharmaceutics14040704
APA StyleCicali, B., Schmidt, S., Zeitlinger, M., & Brown, J. D. (2022). Macrolide Treatment Failure due to Drug–Drug Interactions: Real-World Evidence to Evaluate a Pharmacological Hypothesis. Pharmaceutics, 14(4), 704. https://doi.org/10.3390/pharmaceutics14040704