Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Microparticles and a Nanosuspension for Griseofulvin
2.2.2. Preparation of a Microparticle and a Nanosuspension for Hydrocortisone
2.2.3. X-ray Powder Diffraction (XRPD)
2.2.4. Particle Size Measurement
2.2.5. Permeability Measurement by MicroFlux™
2.2.6. UHPLC Analysis
3. Results
3.1. Characterization of Microparticles and Nanosuspensions
3.2. Permeability Measurement
3.2.1. Griseofulvin
3.2.2. Hydrocortisone
3.2.3. Calculation of Pm(app) and PUWL(app)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahamsson, B.; McAllister, M.; Augustijns, P.; Zane, P.; Butler, J.; Holm, R.; Langguth, P.; Lindahl, A.; Müllertz, A.; Pepin, X.; et al. Six years of progress in the oral biopharmaceutics area—A summary from the IMI OrBiTo project. Eur. J. Pharm. Biopharm. 2020, 152, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, J.; Butler, J.; Muenster, U.; Dressman, J. Application of a Refined Developability Classification System. J. Pharm. Sci. 2019, 108, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315–499. [Google Scholar] [CrossRef] [PubMed]
- Wais, U.; Jackson, A.W.; He, T.; Zhang, H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 2016, 8, 1746–1769. [Google Scholar] [CrossRef] [PubMed]
- Lopalco, A.; Denora, N. Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy. Methods Mol. Biol. 2018, 1800, 347–365. [Google Scholar] [CrossRef]
- Boyd, B.J.; Bergström, C.A.S.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandl, M.; Bernkop-Schnürch, A.; Shrestha, N.; Préat, V.; et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur. J. Pharm. Sci. 2019, 137, 104967. [Google Scholar] [CrossRef]
- Butler, J.M.; Dressman, J.B. The developability classification system: Application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 2010, 99, 4940–4954. [Google Scholar] [CrossRef]
- Rosenberger, J.; Butler, J.; Dressman, J. A Refined Developability Classification System. J. Pharm. Sci. 2018, 107, 2020–2032. [Google Scholar] [CrossRef]
- Lennernäs, H.; Aarons, L.; Augustijns, P.; Beato, S.; Bolger, M.; Box, K.; Brewster, M.; Butler, J.; Dressman, J.; Holm, R.; et al. Oral biopharmaceutics tools—Time for a new initiative—An introduction to the IMI project OrBiTo. Eur. J. Pharm. Sci. 2014, 57, 292–299. [Google Scholar] [CrossRef]
- Kostewicz, E.S.; Abrahamsson, B.; Brewster, M.; Brouwers, J.; Butler, J.; Carlert, S.; Dickinson, P.A.; Dressman, J.; Holm, R.; Klein, S.; et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci. 2014, 57, 342–366. [Google Scholar] [CrossRef] [PubMed]
- Lennernäs, H.; Lindahl, A.; Van Peer, A.; Ollier, C.; Flanagan, T.; Lionberger, R.; Nordmark, A.; Yamashita, S.; Yu, L.; Amidon, G.L.; et al. In Vivo Predictive Dissolution (IPD) and Biopharmaceutical Modeling and Simulation: Future Use of Modern Approaches and Methodologies in a Regulatory Context. Mol. Pharm. 2017, 14, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Tsume, Y.; Mudie, D.M.; Langguth, P.; Amidon, G.E.; Amidon, G.L. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur. J. Pharm. Sci. 2014, 57, 152–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Chen, Y.; Xie, H. In vitro dissolution considerations associated with nano drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1732. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.A.; Murdande, S.B.; Dave, R.H. A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions. J. Pharm. Sci. 2016, 105, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Kesisoglou, F.; Mitra, A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS J. 2012, 14, 677–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, D.; Sjögren, E.; Lennernäs, H. Intestinal absorption of BCS class II drugs administered as nanoparticles: A review based on in vivo data from intestinal perfusion models. ADMET DMPK 2020, 8, 375–390. [Google Scholar] [CrossRef]
- Murdande, S.B.; Shah, D.A.; Dave, R.H. Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J. Pharm. Sci. 2015, 104, 2094–2102. [Google Scholar] [CrossRef]
- Juenemann, D.; Jantratid, E.; Wagner, C.; Reppas, C.; Vertzoni, M.; Dressman, J.B. Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. Eur. J. Pharm. Biopharm. 2012, 77, 257–264. [Google Scholar] [CrossRef]
- Karakucuk, A.; Teksin, Z.S.; Eroglu, H.; Celebi, N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur. J. Pharm. Sci. 2019, 131, 153–158. [Google Scholar] [CrossRef]
- Roos, C.; Dahlgren, D.; Sjögren, E.; Sjöblom, M.; Hedeland, M.; Lennernäs, H. Jejunal absorption of aprepitant from nanosuspensions: Role of particle size, prandial state and mucus layer. Eur. J. Pharm. Biopharm. 2018, 132, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Imono, M.; Uchiyama, H.; Yoshida, S.; Miyazaki, S.; Tamura, N.; Tsutsumimoto, H.; Kadota, K.; Tozuka, Y. The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: In vitro–in vivo correlation of nanocrystals. Eur. J. Pharm. Biopharm. 2020, 146, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Tsinman, K.; Tsinman, O.; Lingamaneni, R.; Zhu, S.; Riebesehl, B.; Grandeury, A.; Juhnke, M.; Van Eerdenbrugh, B. Ranking Itraconazole Formulations Based on the Flux through Artificial Lipophilic Membrane. Pharm. Res. 2018, 35, 161. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers-interlaboratory comparison. Pharm. Res. 2010, 27, 480–489. [Google Scholar] [CrossRef]
- Sugita, K.; Takata, N.; Yonemochi, E. Dose-Dependent Solubility–Permeability Interplay for Poorly Soluble Drugs under Non-Sink Conditions. Pharmaceutics 2021, 13, 323. [Google Scholar] [CrossRef]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res. 2011, 28, 962–977. [Google Scholar] [CrossRef]
- Guo, J.; Elzinga, P.A.; Hageman, M.; Herron, J.N. Rapid throughput solubility screening method for BCS class II drugs in animal GI fluids and simulated human GI fluids using a 96-well format. J. Pharm. Sci. 2008, 97, 1427–1442. [Google Scholar] [CrossRef]
- Mithani, S.D.; Bakatselou, V.; TenHoor, C.N.; Dressman, J.B. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 1996, 13, 163–167. [Google Scholar] [CrossRef]
- Sigfridsson, K.; Xue, A.; Goodwin, K.; Fretland, A.J.; Arvidsson, T. Sustained release and improved bioavailability in mice after subcutaneous administration of griseofulvin as nano- and microcrystals. Int. J. Pharm. 2019, 566, 565–572. [Google Scholar] [CrossRef]
- Ali, H.S.; York, P.; Blagden, N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int. J. Pharm. 2009, 375, 107–113. [Google Scholar] [CrossRef]
- Ali, H.S.; Khan, S.; York, P.; Shah, S.M.; Khan, J.; Hussain, Z.; Khan, B.A. A stable hydrocortisone nanosuspension for improved dissolution: Preparation, characterization and in vitro evaluation. Pak. J. Pharm. Sci. 2017, 30, 1635–1643. [Google Scholar] [PubMed]
- Jünemann, D.; Dressman, J. Analytical methods for dissolution testing of nanosized drugs. J. Pharm. Pharmacol. 2012, 64, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A. Chapter 7. Permeability—PAMPA. In Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 319–498. [Google Scholar]
- Xia, D.; Cui, F.; Piao, H.; Cun, D.; Piao, H.; Jiang, Y.; Ouyang, M.; Quan, P. Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats. Pharm. Res. 2010, 27, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Galinis-Luciani, D.; Nguyen, L.; Yazdanian, M. Is PAMPA a useful tool for discovery? J. Pharm. Sci. 2007, 11, 2886–2892. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A. The rise of PAMPA. Expert. Opin. Drug. Metab. Toxicol. 2005, 1, 325–342. [Google Scholar] [CrossRef]
- Zhu, A.Z.; Ho, M.D.; Gemski, C.K.; Chuang, B.C.; Liao, M.; Xia, C.Q. Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: A Comparison with Physiologically Based Pharmacokinetic Modeling. AAPS J. 2016, 18, 1512–1523. [Google Scholar] [CrossRef]
- O’Dwyer, P.J.; Imanidis, G.; Box, K.J.; Reppas, C. On the Usefulness of Two Small-Scale In Vitro Setups in the Evaluation of Luminal Precipitation of Lipophilic Weak Bases in Early Formulation Development. Pharmaceutics 2020, 12, 272. [Google Scholar] [CrossRef] [Green Version]
- Sugano, K. Aqueous boundary layers related to oral absorption of a drug: From dissolution of a drug to carrier mediated transport and intestinal wall metabolism. Mol. Pharm. 2010, 7, 1362–1373. [Google Scholar] [CrossRef]
- Sugano, K. Possible reduction of effective thickness of intestinal unstirred water layer by particle drifting effect. Int. J. Pharm. 2010, 387, 103–109. [Google Scholar] [CrossRef]
Samples | Methods/Solvents | D10 (μm) 1,2 | D50 (μm) 1,2 | D90 (μm) 1,2 |
---|---|---|---|---|
nanosuspension griseofulvin | dynamic light scattering (DLS)/water | 0.22 ± 0.00 | 0.30 ± 0.00 | 0.43 ± 0.01 |
S-microparticle griseofulvin | laser diffraction size analyzer/heptane containing 0.2% sorbitan monooleate 3 | 4.2 ± 1.1 | 13 ± 1 | 30 ± 9 |
L-microparticle griseofulvin | laser diffraction size analyzer/heptane containing 0.2% sorbitan monooleate 3 | 16 ± 1 | 34 ± 2 | 60 ± 5 |
nanosuspension hydrocortisone | DLS/water | 0.19 ± 0.00 | 0.25 ± 0.01 | 0.33 ± 0.00 |
microparticle hydrocortisone | laser diffraction size analyzer/heptane containing 0.2% sorbitan monooleate 3 | 2.4 ± 0.5 | 6.1 ± 0.7 | 35 ± 3 |
Parameter | Nanosuspension Griseofulvin | S-Microparticle Griseofulvin | L-Microparticle Griseofulvin |
---|---|---|---|
Measured Papp (cm/min) | 0.0224 | 0.0175 | 0.0180 |
Pm(app) (cm/min) | 0.0284 | ||
Calculated PUWL(app) (cm/min) | 0.107 | 0.0456 | 0.0490 |
Parameter | ||||
---|---|---|---|---|
Measured Papp (cm/min) | 0.00239 | |||
hUWL(app) (μm) | 100 | 50 | 10 | 1 |
Calculated PUWL(app) (cm/min) | 0.0307 | 0.0615 | 0.307 | 3.07 |
Calculated Pm(app) (cm/min) | 0.00259 | 0.00249 | 0.00241 | 0.00239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugita, K.; Takata, N.; Yonemochi, E. Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions. Pharmaceutics 2022, 14, 816. https://doi.org/10.3390/pharmaceutics14040816
Sugita K, Takata N, Yonemochi E. Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions. Pharmaceutics. 2022; 14(4):816. https://doi.org/10.3390/pharmaceutics14040816
Chicago/Turabian StyleSugita, Kazuya, Noriyuki Takata, and Etsuo Yonemochi. 2022. "Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions" Pharmaceutics 14, no. 4: 816. https://doi.org/10.3390/pharmaceutics14040816
APA StyleSugita, K., Takata, N., & Yonemochi, E. (2022). Non-Effective Improvement of Absorption for Some Nanoparticle Formulations Explained by Permeability under Non-Sink Conditions. Pharmaceutics, 14(4), 816. https://doi.org/10.3390/pharmaceutics14040816