Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid
Abstract
:1. Introduction
2. Technical and Historical Overview
2.1. Microdialysis
2.2. Cerebral Open Flow Microperfusion
2.3. Electrochemical Biosensors
3. Strengths and Limitations
3.1. Timeframe to Perform Experiments
3.1.1. Blood–Brain Barrier Integrity
3.1.2. Inflammation
3.2. Recovery Rates
3.3. Spatiotemporal Resolution
3.4. Sample Analysis
4. Overview of Macromolecules Sampled from the ISF
5. Innovations in the Field from a Legal Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kola, I.; Landis, J. Can the Pharmaceutical Industry Reduce Attrition Rates? Nat. Rev. Drug Discov. 2004, 3, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Qosa, H.; Volpe, D.A. The Development of Biological Therapies for Neurological Diseases: Moving on from Previous Failures. Expert Opin. Drug Discov. 2018, 13, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Kinch, M.S. An Overview of FDA-Approved Biologics Medicines. Drug Discov. Today 2015, 20, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.H. The History of Monoclonal Antibody Development-Progress, Remaining Challenges and Future Innovations. Ann. Med. Surg. 2014, 3, 113–116. [Google Scholar] [CrossRef]
- Gklinos, P.; Papadopoulou, M.; Stanulovic, V.; Mitsikostas, D.D.; Papadopoulos, D. Monoclonal Antibodies as Neurological Therapeutics. Pharmaceuticals 2021, 14, 92. [Google Scholar] [CrossRef]
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to Watch in 2022. MAbs 2022, 14, 2014296. [Google Scholar] [CrossRef]
- EMA Refusal of the Marketing Authorisation for Aduhelm (Aducanumab). Available online: https://www.ema.europa.eu/en/documents/smop-initial/refusal-marketing-authorisation-aduhelm-aducanumab_en.pdf (accessed on 28 February 2022).
- Pardridge, W.M. Treatment of Alzheimer’s Disease and Blood–Brain Barrier Drug Delivery. Pharmaceuticals 2020, 13, 394. [Google Scholar] [CrossRef]
- Pardridge, W.M. CSF, Blood-Brain Barrier, and Brain Drug Delivery. Expert Opin. Drug Deliv. 2016, 13, 963–975. [Google Scholar] [CrossRef]
- Abbott, N.J.; Pizzo, M.E.; Preston, J.E.; Janigro, D.; Thorne, R.G. The Role of Brain Barriers in Fluid Movement in the CNS: Is There a ‘Glymphatic’ System? Acta Neuropathol. 2018, 135, 387–407. [Google Scholar] [CrossRef] [Green Version]
- Mestre, H.; Mori, Y.; Nedergaard, M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci. 2020, 43, 458–466. [Google Scholar] [CrossRef]
- Kaur, J.; Fahmy, L.M.; Davoodi-Bojd, E.; Zhang, L.; Ding, G.; Hu, J.; Zhang, Z.; Chopp, M.; Jiang, Q. Waste Clearance in the Brain. Front. Neuroanat. 2021, 15, 665803. [Google Scholar] [CrossRef] [PubMed]
- van Lessen, M.; Shibata-Germanos, S.; van Impel, A.; Hawkins, T.A.; Rihel, J.; Schulte-Merker, S. Intracellular Uptake of Macromolecules by Brain Lymphatic Endothelial Cells during Zebrafish Embryonic Development. Elife 2017, 6, e25932. [Google Scholar] [CrossRef] [PubMed]
- Strazielle, N.; Ghersi-Egea, J.F. Physiology of Blood-Brain Interfaces in Relation to Brain Disposition of Small Compounds and Macromolecules. Mol. Pharm. 2013, 10, 1473–1491. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Stenken, J.A. Microdialysis Sampling of Cytokines. Methods 2006, 38, 331–341. [Google Scholar] [CrossRef]
- Cirrito, J.R.; May, P.C.; O’Dell, M.A.; Taylor, J.W.; Parsadanian, M.; Cramer, J.W.; Audia, J.E.; Nissen, J.S.; Bales, K.R.; Paul, S.M.; et al. In Vivo Assessment of Brain Interstitial Fluid with Microdialysis Reveals Plaque-Associated Changes in Amyloid-β Metabolism and Half-Life. J. Neurosci. 2003, 23, 8844–8853. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Cirrito, J.R.; Stewart, F.R.; Jiang, H.; Finn, M.B.; Holmes, B.B.; Binder, L.I.; Mandelkow, E.M.; Diamond, M.I.; Lee, V.M.Y.; et al. In Vivo Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice. J. Neurosci. 2011, 31, 13110–13117. [Google Scholar] [CrossRef]
- Barini, E.; Plotzky, G.; Mordashova, Y.; Hoppe, J.; Rodriguez-Correa, E.; Julier, S.; LePrieult, F.; Mairhofer, I.; Mezler, M.; Biesinger, S.; et al. Tau in the Brain Interstitial Fluid Is Fragmented and Seeding–Competent. Neurobiol. Aging 2022, 109, 64–77. [Google Scholar] [CrossRef]
- Magnoni, S.; Esparza, T.J.; Conte, V.; Carbonara, M.; Carrabba, G.; Holtzman, D.M.; Zipfel, G.J.; Stocchetti, N.; Brody, D.L. Tau Elevations in the Brain Extracellular Space Correlate with Reduced Amyloid-β Levels and Predict Adverse Clinical Outcomes after Severe Traumatic Brain Injury. Brain 2012, 135, 1268–1280. [Google Scholar] [CrossRef] [Green Version]
- Ameri, M.; Shabaninejad, Z.; Movahedpour, A.; Sahebkar, A.; Mohammadi, S.; Hosseindoost, S.; Ebrahimi, M.S.; Savardashtaki, A.; Karimipour, M.; Mirzaei, H. Biosensors for Detection of Tau Protein as an Alzheimer’s Disease Marker. Int. J. Biol. Macromol. 2020, 162, 1100–1108. [Google Scholar] [CrossRef]
- Légat, L.; Smolders, I.; Dupont, A.G. AT1 Receptor Mediated Hypertensive Response to Ang II in the Nucleus Tractus Solitarii of Normotensive Rats Involves NO Dependent Local GABA Release. Front. Pharmacol. 2019, 10, 460. [Google Scholar] [CrossRef]
- Wang, Z. Personalized Medicine for HER2 Positive Breast Cancer. Breast Cancer Manag. 2015, 4, 237–240. [Google Scholar] [CrossRef]
- Issa, A.M. Personalized Medicine and the Practice of Medicine in the 21st Century. McGill J. Med. 2007, 10, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Morrow, K.; Bonacquisti, E.; Zhang, W.Y.; Shah, D.K. Antibody Pharmacokinetics in Rat Brain Determined Using Microdialysis. MAbs 2018, 10, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Le Prieult, F.; Barini, E.; Laplanche, L.; Schlegel, K.; Mezler, M. Collecting Antibodies and Large Molecule Biomarkers in Mouse Interstitial Brain Fluid: A Comparison of Microdialysis and Cerebral Open Flow Microperfusion. MAbs 2021, 13, 1918819. [Google Scholar] [CrossRef]
- Mucelli, S.P.; Zamuner, M.; Tormen, M.; Stanta, G.; Ugo, P. Nanoelectrode Ensembles as Recognition Platform for Electrochemical Immunosensors. Biosens. Bioelectron. 2008, 23, 1900–1903. [Google Scholar] [CrossRef] [Green Version]
- Hammarlund-udenaes, M. Microdialysis as an Important Technique in Systems Pharmacology—A Historical and Methodological Review. AAPS J. 2017, 19, 1294–1303. [Google Scholar] [CrossRef] [Green Version]
- Gaddum, J. Push-Pull Cannulae. J. Physiol. 1961, 155, 46–47. [Google Scholar] [CrossRef]
- Fox, B.Y.R.H.; Hilton, S.M. Bradykinin Formation in Human Skin as a Factor in Heat Vasodilatation. J. Appl. Physiol. 1958, 142, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.D. Development of Push-Pull Systems for Perfusion of Anatomically Distinct Regions of the Brain of the Awake Animal. Ann. N. Y. Acad. Sci. 1986, 473, 21–41. [Google Scholar] [CrossRef]
- Myers, R.D.; Adell, A.; Lankford, M.F. Simultaneous Comparison of Cerebral Dialysis and Push-Pull Perfusion in the Brain of Rats: A Critical Review. Neurosci. Biobehav. Rev. 1998, 22, 371–387. [Google Scholar] [CrossRef]
- Bito, L.; Davson, H.; Levin, E.; Murray, M.; Snider, N. The Concentrations of Free Amino Acids and Other Electrolytes in Cerebrospinal Fluid, in Vivo Dialysate of Brain, and Blood Plasma of the Dog. J. Neurochem. 1966, 13, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.M.; DeFeudis, F.V.; Roth, R.H.; Ryugo, D.K.; Mitruka, B.M. Dialytrode for Long Term Intracerebral Perfusion in Awake Monkeys. Arch. Int. Pharmacodyn. Ther. 1972, 198, 9–21. [Google Scholar] [PubMed]
- Ungerstedt, U.; Herrera-Marschitz, M.; Jungnelius, U.; Stahle, L.; Tossman, U.; Zetterström, T. Dopamine Synaptic Mechanisms Reflected in Studies Combining Behavioural Recordings and Brain Dialysis; Pergamon Press Ltd.: Oxford, UK, 1982. [Google Scholar]
- Ungerstedt, U.; Pyock, C. Functional Correlates of Dopamine Neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 1974, 30, 44–55. [Google Scholar] [PubMed]
- Chu, J.; Koudriavtsev, V.; Hjort, K.; Dahlin, A.P. Fluorescence Imaging of Macromolecule Transport in High Molecular Weight Cut-off Microdialysis. Anal. Bioanal. Chem. 2014, 406, 7601–7609. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Khaowroongrueng, V.; Derendorf, H. Microdialysis of Large Molecules. J. Pharm. Sci. 2016, 105, 3233–3242. [Google Scholar] [CrossRef]
- Van Wanseele, Y.; De Prins, A.; De Bundel, D.; Smolders, I.; Van Eeckhaut, A. Challenges for the in Vivo Quantification of Brain Neuropeptides Using Microdialysis Sampling and LC-MS. Bioanalysis 2016, 8, 1965–1985. [Google Scholar] [CrossRef]
- Chu, J.; Hjort, K.; Larsson, A.; Dahlin, A.P. Impact of Static Pressure on Transmembrane Fluid Exchange in High Molecular Weight Cut off Microdialysis. Biomed. Microdevices 2014, 16, 301–310. [Google Scholar] [CrossRef]
- Takeda, S.; Sato, N.; Ikimura, K.; Nishino, H.; Rakugi, H.; Morishita, R. Novel Microdialysis Method to Assess Neuropeptides and Large Molecules in Free-Moving Mouse. Neuroscience 2011, 186, 110–119. [Google Scholar] [CrossRef]
- Birngruber, T.; Ghosh, A.; Perez-Yarza, V.; Kroath, T.; Ratzer, M.; Pieber, T.R.; Sinner, F. Cerebral Open Flow Microperfusion: A New in Vivo Technique for Continuous Measurement of Substance Transport across the Intact Blood-Brain Barrier. Clin. Exp. Pharmacol. Physiol. 2013, 40, 864–871. [Google Scholar] [CrossRef]
- Birngruber, T.; Sinner, F. Cerebral Open Flow Microperfusion (COFM) an Innovative Interface to Brain Tissue. Drug Discov. Today Technol. 2016, 20, 19–25. [Google Scholar] [CrossRef]
- Birngruber, T.; Ghosh, A.; Hochmeister, S.; Asslaber, M.; Kroath, T.; Pieber, T.R.; Sinner, F. Long-Term Implanted COFM Probe Causes Minimal Tissue Reaction in the Brain. PLoS ONE 2014, 9, e90221. [Google Scholar] [CrossRef] [PubMed]
- Custers, M.-L.; Wouters, Y.; Jaspers, T.; De Bundel, D.; Dewilde, M.; Van Eeckhaut, A.; Smolders, I. Applicability of Cerebral Open Flow Microperfusion and Microdialysis to Quantify a Brain-Penetrating Nanobody in Mice. Anal. Chim. Acta 2021, 1178, 338803. [Google Scholar] [CrossRef] [PubMed]
- Hummer, J.; Altendorfer-Kroath, T.; Birngruber, T. Cerebral Open Flow Microperfusion to Monitor Drug Transport Across the Blood-Brain Barrier. Curr. Protoc. Pharmacol. 2019, 85, e60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, N.; Yetisen, A.K. Brain Neurochemical Monitoring. Biosens. Bioelectron. 2021, 189, 113351. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Leca-Bouvier, B.; Blum, L.J. Biosensors for Protein Detection: A Review. Anal. Lett. 2005, 38, 1491–1517. [Google Scholar] [CrossRef]
- Yoo, E.H.; Lee, S.Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [Green Version]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [Green Version]
- Murugaiyan, S.B.; Ramasamy, R.; Gopal, N.; Kuzhandaivelu, V. Biosensors in Clinical Chemistry: An Overview. Adv. Biomed. Res. 2014, 3, 67. [Google Scholar] [CrossRef]
- Scofield, M.D.; Boger, H.A.; Smith, R.J.; Hao, L.; Haydon, P.G.; Kalivas, P.W. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-Induced Cocaine Seeking. Biol. Psychiatry 2015, 78, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotanen, C.N.; Moussy, F.G.; Carrara, S.; Guiseppi-Elie, A. Implantable Enzyme Amperometric Biosensors. Biosens. Bioelectron. 2012, 35, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lee, H. Anti-Biofouling Strategies for Long-Term Continuous Use of Implantable Biosensors. Chemosensors 2020, 8, 66. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Shen, W.; Gao, Z. An Interference-Free Glucose Biosensor Based on an Anionic Redox Polymer-Mediated Enzymatic Oxidation of Glucose. ChemPhysChem 2013, 14, 2343–2347. [Google Scholar] [CrossRef]
- Peng, Y.; Wei, C.W.; Liu, Y.N.; Li, J. Nafion Coating the Ferrocenylalkanethiol and Encapsulated Glucose Oxidase Electrode for Amperometric Glucose Detection. Analyst 2011, 136, 4003–4007. [Google Scholar] [CrossRef]
- Ganesana, M.; Trikantzopoulos, E.; Maniar, Y.; Lee, S.T.; Venton, B.J. Development of a Novel Micro Biosensor for in Vivo Monitoring of Glutamate Release in the Brain. Biosens. Bioelectron. 2019, 130, 103–109. [Google Scholar] [CrossRef]
- Johnston, M.V.; Ammanuel, S.; O’Driscoll, C.; Wozniak, A.; Naidu, S.; Kadam, S.D. Twenty-Four Hour Quantitative-EEG and in-Vivo Glutamate Biosensor Detects Activity and Circadian Rhythm Dependent Biomarkers of Pathogenesis in Mecp2 Null Mice. Front. Syst. Neurosci. 2014, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Lowry, J.P.; Miele, M.; O’Neill, R.D.; Boutelle, M.G.; Fillenz, M. An Amperometric Glucose-Oxidase/Poly(o-Phenylenediamine) Biosensor for Monitoring Brain Extracellular Glucose: In Vivo Characterisation in the Striatum of Freely-Moving Rats. J. Neurosci. Methods 1998, 79, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, C.A.; de Vries, M.G.; Ngabi, W.; Oomen, P.E.; Cremers, T.I.F.H.; Westerink, B.H.C. In Vivo Continuous and Simultaneous Monitoring of Brain Energy Substrates with a Multiplex Amperometric Enzyme-Based Biosensor Device. Biosens. Bioelectron. 2015, 67, 677–686. [Google Scholar] [CrossRef]
- Esteves-Villanueva, J.O.; Trzeciakiewicz, H.; Martic, S. A Protein-Based Electrochemical Biosensor for Detection of Tau Protein, a Neurodegenerative Disease Biomarker. Analyst 2014, 139, 2823–2831. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, P.; Loureiro, J.; Delerue-Matos, C.; Morais, S.; do Carmo Pereira, M. Alzheimer’s Disease: Development of a Sensitive Label-Free Electrochemical Immunosensor for Detection of Amyloid Beta Peptide. Sens. Actuators B Chem. 2017, 239, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi-Manesh, H. An Electrochemical Nanobiosensor for Plasma MiRNA-155, Based on Graphene Oxide and Gold Nanorod, for Early Detection of Breast Cancer. Biosens. Bioelectron. 2016, 77, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Stanta, G. Electrochemical Nanobiosensors and Protein Detection. Eur. J. Nanomed. 2008, 1, 33–36. [Google Scholar] [CrossRef]
- Antipchik, M.; Korzhikova-Vlakh, E.; Polyakov, D.; Tarasenko, I.; Reut, J.; Öpik, A.; Syritski, V. An Electrochemical Biosensor for Direct Detection of Hepatitis C Virus. Anal. Biochem. 2021, 624, 114196. [Google Scholar] [CrossRef]
- Ilkhani, H.; Farhad, S. A Novel Electrochemical DNA Biosensor for Ebola Virus Detection. Anal. Biochem. 2018, 557, 151–155. [Google Scholar] [CrossRef]
- Peng, Y.; Pan, Y.; Sun, Z.; Li, J.; Yi, Y.; Yang, J. An Electrochemical Biosensor for Sensitive Analysis of the SARS-CoV-2 RNA. Biosens. Bioelectron. 2021, 186, 113309. [Google Scholar] [CrossRef]
- Velho, G.; Froguel, P.; Sternberg, R.; Thevenot, D.R.; Reach, G. In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors. Influence of Needle Material. Diabetes 1989, 38, 164–171. [Google Scholar] [CrossRef]
- Reid, C.H.; Finnerty, N.J. An Electrochemical Investigation into the Effects of Local and Systemic Administrations of Sodium Nitroprusside in Brain Extracellular Fluid of Mice. Bioelectrochemistry 2020, 132, 107441. [Google Scholar] [CrossRef]
- Khan, A.S.; Michael, A.C. Invasive Consequences of Using Micro-Electrodes and Microdialysis Probes in the Brain. TrAC-Trends Anal. Chem. 2003, 22, 503–508. [Google Scholar] [CrossRef]
- Sumbria, R.K.; Klein, J.; Bickel, U. Acute Depression of Energy Metabolism after Microdialysis Probe Implantation Is Distinct from Ischemia-Induced Changes in Mouse Brain. Neurochem. Res. 2011, 36, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Caljon, G.; Caveliers, V.; Lahoutte, T.; Stijlemans, B.; Ghassabeh, G.H.; Van Den Abbeele, J.; Smolders, I.; De Baetselier, P.; Michotte, Y.; Muyldermans, S.; et al. Using Microdialysis to Analyse the Passage of Monovalent Nanobodies through the Blood-Brain Barrier. Br. J. Pharmacol. 2012, 165, 2341–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groothuis, D.R.; Ward, S.; Schlageter, K.E.; Itskovich, A.C.; Schwerin, S.C.; Allen, C.V.; Dills, C.; Levy, R.M. Changes in Blood-Brain Barrier Permeability Associated with Insertion of Brain Cannulas and Microdialysis Probes. Brain Res. 1998, 803, 218–230. [Google Scholar] [CrossRef]
- De Lange, E.C.M.; Danhof, M.; De Boer, A.G.; Breimer, D.D. Methodological Considerations of Intracerebral Microdialysis in Pharmacokinetic Studies on Drug Transport across the Blood-Brain Barrier. Brain Res. Rev. 1997, 25, 27–49. [Google Scholar] [CrossRef]
- Benveniste, H.; Drejer, J.; Schousboe, A.; Diemer, N.H. Regional Cerebral Glucose Phosphorylation and Blood Flow After Insertion of a Microdialysis Fiber Through the Dorsal Hippocampus in the Rat. J. Neurochem. 1987, 49, 729–734. [Google Scholar] [CrossRef]
- Mitala, C.M.; Wang, Y.; Borland, L.M.; Jung, M.; Shand, S.; Watkins, S.; Weber, S.G.; Michael, A.C. Impact of Microdialysis Probes on Vasculature and Dopamine in the Rat Striatum: A Combined Fluorescence and Voltammetric Study. J. Neurosci. Methods 2008, 174, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.E.; Singhal, D.; Anderson, B.D. Quantitative Assessment of Blood-Brain Barrier Damage during Microdialysis. J. Pharmacol. Exp. Ther. 1996, 277, 1167–1176. [Google Scholar]
- Ghosh, A.; Birngruber, T.; Sattler, W.; Kroath, T.; Ratzer, M.; Sinner, F.; Pieber, T.R. Assessment of Blood-Brain Barrier Function and the Neuroinflammatory Response in the Rat Brain by Using Cerebral Open Flow Microperfusion (COFM). PLoS ONE 2014, 9, e98143. [Google Scholar] [CrossRef]
- Tossman, U.; Ungerstedt, U. Microdialysis in the Study of Extracellular Levels of Amino Acids in the Rat Brain. Acta Physiol. Scand. 1986, 128, 9–14. [Google Scholar] [CrossRef]
- Benveniste, H.; Drejer, J.; Schousboe, A.; Diemer, N.H. Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral Microdialysis. J. Neurochem. 1984, 43, 1369–1374. [Google Scholar] [CrossRef]
- Altendorfer-Kroath, T.; Schimek, D.; Eberl, A.; Rauter, G.; Ratzer, M.; Raml, R.; Sinner, F.; Birngruber, T. Comparison of Cerebral Open Flow Microperfusion and Microdialysis When Sampling Small Lipophilic and Small Hydrophilic Substances. J. Neurosci. Methods 2019, 311, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Kleinert, M.; Kotzbeck, P.; Altendorfer-Kroath, T.; Birngruber, T.; Tschöp, M.H.; Clemmensen, C. Time-Resolved Hypothalamic Open Flow Micro-Perfusion Reveals Normal Leptin Transport across the Blood–Brain Barrier in Leptin Resistant Mice. Mol. Metab. 2018, 13, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, S.K.; Zain, Z.M. In Vivo Electrochemical Biosensor for Brain Glutamate Detection: A Mini Review. Malays. J. Med. Sci. 2014, 21, 11–25. [Google Scholar]
- Benveniste, H.; Diemer, N.H. Cellular Reactions to Implantation of a Microdialysis Tube in the Rat Hippocampus. Acta Neuropathol. 1987, 74, 234–238. [Google Scholar] [CrossRef]
- Hascup, E.R.; af Bjerkén, S.; Hascup, K.N.; Pomerleau, F.; Huettl, P.; Strömberg, I.; Gerhardt, G.A. Histological Studies of the Effects of Chronic Implantation of Ceramic-Based Microelectrode Arrays and Microdialysis Probes in Rat Prefrontal Cortex. Brain Res. 2009, 1291, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Meller, S.; Brandt, C.; Theilmann, W.; Klein, J.; Löscher, W. Commonalities and Differences in Extracellular Levels of Hippocampal Acetylcholine and Amino Acid Neurotransmitters during Status Epilepticus and Subsequent Epileptogenesis in Two Rat Models of Temporal Lobe Epilepsy. Brain Res. 2019, 1712, 109–123. [Google Scholar] [CrossRef]
- Osborne, P.G.; O’Connor, W.T.; Kehr, J.; Ungerstedt, U. In Vivo Characterisation of Extracellular Dopamine, GABA and Acetylcholine from the Dorsolateral Striatum of Awake Freely Moving Rats by Chronic Microdialysis. J. Neurosci. Methods 1991, 37, 93–102. [Google Scholar] [CrossRef]
- Orłowska-Majdak, M. Microdialysis of the Brain Structures: Application in Behavioral Research on Vasopressin and Oxytocin. Acta Neurobiol. Exp. 2004, 64, 177–188. [Google Scholar]
- Korf, J.; Venema, K. Amino Acids in Rat Striatal Dialysates: Methodological Aspects and Changes After Electroconvulsive Shock. J. Neurochem. 1985, 45, 1341–1348. [Google Scholar] [CrossRef]
- FDA Use of International Standard ISO 10993-1, “Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process”. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and (accessed on 15 March 2022).
- Lin, P.-H.; Li, B.-R. Antifouling Strategies in Advanced Electrochemical Sensors and Biosensors. Analyst 2020, 145, 1110–1120. [Google Scholar] [CrossRef]
- Xu, C.; Wu, F.; Yu, P.; Mao, L. In Vivo Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sens. 2019, 4, 3102–3118. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Robbins, E.M.; Wu, B.; Cui, X.T. Recent Advances in In Vivo Neurochemical Monitoring. Micromachines 2021, 12, 208. [Google Scholar] [CrossRef]
- Brown, F.O.; Finnerty, N.J.; Lowry, J.P. Nitric Oxide Monitoring in Brain Extracellular Fluid: Characterisation of Nafion®-Modified Pt Electrodes In Vitro and In Vivo. Analyst 2009, 134, 2012. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.H.; Finnerty, N.J. Long Term Amperometric Recordings in the Brain Extracellular Fluid of Freely Moving Immunocompromised NOD SCID Mice. Sensors 2017, 17, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Villagrán, A.; Medina-Ceja, L.; López-Pérez, S.J. Simultaneous Glutamate and EEG Activity Measurements during Seizures in Rat Hippocampal Region with the Use of an Electrochemical Biosensor. J. Neurosci. Methods 2008, 168, 48–53. [Google Scholar] [CrossRef]
- Clapp-Lilly, K.L.; Roberts, R.C.; Duffy, L.K.; Irons, K.P.; Hu, Y.; Drew, K.L. An Ultrastructural Analysis of Tissue Surrounding a Microdialysis Probe. J. Neurosci. Methods 1999, 90, 129–142. [Google Scholar] [CrossRef]
- Grabb, M.C.; Sciotti, V.M.; Gidday, J.M.; Cohen, S.A.; Van Wylen, D.G.L. Neurochemical and Morphological Responses to Acutely and Chronically Implanted Brain Microdialysis Probes. J. Neurosci. Methods 1998, 82, 25–34. [Google Scholar] [CrossRef]
- Thomas, M.; Moriyama, K.; Ledebo, I. AN69: Evolution of the World’s First High Permeability Membrane. In High-Performance Membrane Dialyzers; Karger: Basel, Switzerland, 2011; Volume 173, pp. 119–129. ISBN 9783805598132. [Google Scholar]
- Birngruber, T. Development of a Continuous Sampling System for Monitoring Transport across the Intact Blood-Brain Barrier; Graz University of Technology: Graz, Austria, 2013. [Google Scholar]
- Pieber, T.; Birngruber, T.; Bodenlenz, M.; Höfferer, C.; Mautner, S.; Tiffner, K.; Sinner, F. Open Flow Microperfusion: An Alternative Method to Microdialysis? In AAPS Advances in the Pharmaceutical Sciences Series; Springer: New York, NY, USA, 2013; pp. 283–302. ISBN 9781461448143. [Google Scholar]
- Nicholson, C.; Phillips, J.M. Ion Diffusion Modified by Tortuosity and Volume Fraction in the Extracellular Microenvironment of the Rat Cerebellum. J. Physiol. 1981, 321, 225–257. [Google Scholar] [CrossRef]
- Kealy, J.; Bennett, R.; Woods, B.; Lowry, J.P. Real-Time Changes in Hippocampal Energy Demands during a Spatial Working Memory Task. Behav. Brain Res. 2017, 326, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Thelin, J.; Jörntell, H.; Psouni, E.; Garwicz, M.; Schouenborg, J.; Danielsen, N.; Linsmeier, C.E. Implant Size and Fixation Mode Strongly Influence Tissue Reactions in the CNS. PLoS ONE 2011, 6, e16267. [Google Scholar] [CrossRef]
- Xiao, T.; Wu, F.; Hao, J.; Zhang, M.; Yu, P.; Mao, L. In Vivo Analysis with Electrochemical Sensors and Biosensors. Anal. Chem. 2017, 89, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Cooley, J.C.; Ducey, M.W.; Regel, A.R.; Nandi, P.; Lunte, S.M.; Lunte, C.E. Analytical Considerations for Microdialysis Sampling. In AAPS Advances in the Pharmaceutical Sciences Series; Springer: New York, NY, USA, 2013; pp. 35–66. ISBN 9781461448150. [Google Scholar]
- Weltin, A.; Kieninger, J.; Urban, G.A. Microfabricated, Amperometric, Enzyme-Based Biosensors for In Vivo Applications. Anal. Bioanal. Chem. 2016, 408, 4503–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, M.; Li, Q.; Kennedy, R.T. Review of Recent Advances in Analytical Techniques for the Determination of Neurotransmitters. Anal. Chim. Acta 2009, 653, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenot, D.; Toth, K.; Durst, R.; Wilson, G. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Phetsanthad, A.; Vu, N.Q.; Yu, Q.; Buchberger, A.R.; Chen, Z.; Keller, C.; Li, L. Recent Advances in Mass Spectrometry Analysis of Neuropeptides. Mass Spectrom. Rev. 2021, e21734. [Google Scholar] [CrossRef]
- Zhou, Y.; Mabrouk, O.S.; Kennedy, R.T. Rapid Preconcentration for Liquid Chromatography–Mass Spectrometry Assay of Trace Level Neuropeptides. J. Am. Soc. Mass Spectrom. 2013, 24, 1700–1709. [Google Scholar] [CrossRef] [Green Version]
- Maes, K.; Béchade, G.; Van Schoors, J.; Van Wanseele, Y.; Van Liefferinge, J.; Michotte, Y.; Harden, S.N.; Chambers, E.E.; Claereboudt, J.; Smolders, I.; et al. An Ultrasensitive Nano UHPLC–ESI–MS/MS Method for the Quantification of Three Neuromedin-like Peptides in Microdialysates. Bioanalysis 2015, 7, 605–619. [Google Scholar] [CrossRef]
- Zestos, A.G.; Kennedy, R.T. Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. AAPS J. 2017, 19, 1284–1293. [Google Scholar] [CrossRef]
- van Mever, M.; Segers, K.; Drouin, N.; Guled, F.; Van der Heyden, Y.; Van Eeckhaut, A.; Hankemeier, T.; Ramautar, R. Direct Profiling of Endogenous Metabolites in Rat Brain Microdialysis Samples by Capillary Electrophoresis-Mass Spectrometry with on-Line Preconcentration. Microchem. J. 2020, 156, 104949. [Google Scholar] [CrossRef]
- Maurer, M.H.; Berger, C.; Wolf, M.; Fütterer, C.D.; Feldmann, R.E.; Schwab, S.; Kuschinsky, W. The Proteome of Human Brain Microdialysate. Proteome Sci. 2003, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-Molecule Enzyme-Linked Immunosorbent Assay Detects Serum Proteins at Subfemtomolar Concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PerkinElmer AlphaLISA and AlphaScreen No-Wash Assays. Available online: https://www.perkinelmer.com/nl/lab-products-and-services/application-support-knowledgebase/alphalisa-alphascreen-no-wash-assays/alphalisa-alphascreen-no-washassays-main.html (accessed on 18 November 2020).
- PerkinElmer Principles of AlphaScreenTM. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/APP_AlphaScreen_Principles.pdf (accessed on 2 March 2022).
- Helmy, A.; Guilfoyle, M.R.; Carpenter, K.L.; Pickard, J.D.; Menon, D.K.; Hutchinson, P.J. Recombinant Human Interleukin-1 Receptor Antagonist in Severe Traumatic Brain Injury: A Phase II Randomized Control Trial. J. Cereb. Blood Flow Metab. 2014, 34, 845–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmy, A.; Guilfoyle, M.R.; Carpenter, K.L.; Pickard, J.D.; Menon, D.K.; Hutchinson, P.J. Recombinant Human Interleukin-1 Receptor Antagonist Promotes M1 Microglia Biased Cytokines and Chemokines Following Human Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 2016, 36, 1434–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, J.; Åneman, O.; Persson, M.; Andersson, C.; Dabrosin, C.; Mellergård, P. Variations in the Response of Interleukins in Neurosurgical Intensive Care Patients Monitored Using Intracerebral Microdialysis. J. Neurosurg. 2007, 106, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Mellergård, P.; Åneman, O.; Sjögren, F.; Pettersson, P.; Hillman, J. Changes in Extracellular Concentrations of Some Cytokines, Chemokines, and Neurotrophic Factors after Insertion of Intracerebral Microdialysis Catheters in Neurosurgical Patients. Neurosurgery 2008, 62, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Mellergård, P.; Sjögren, F.; Hillman, J. The Cerebral Extracellular Release of Glycerol, Glutamate, and FGF2 Is Increased in Older Patients Following Severe Traumatic Brain Injury. J. Neurotrauma 2012, 29, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Hanafy, K.A.; Grobelny, B.; Fernandez, L.; Kurtz, P.; Connolly, E.S.; Mayer, S.A.; Schindler, C.; Badjatia, N. Brain Interstitial Fluid TNF-α after Subarachnoid Hemorrhage. J. Neurol. Sci. 2010, 291, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lennartz, M.R.; Loegering, D.J.; Stenken, J.A. Interleukin-6 Collection through Long-Term Implanted Microdialysis Sampling Probes in Rat Subcutaneous Space. Anal. Chem. 2007, 79, 1816–1824. [Google Scholar] [CrossRef]
- Winter, C.D.; Iannotti, F.; Pringle, A.K.; Trikkas, C.; Clough, G.F.; Church, M.K. A Microdialysis Method for the Recovery of IL-1β, IL-6 and Nerve Growth Factor from Human Brain In Vivo. J. Neurosci. Methods 2002, 119, 45–50. [Google Scholar] [CrossRef]
- Hillman, J.; Åneman, O.; Anderson, C.; Sjögren, F.; Säberg, C.; Mellergård, P. A Microdialysis Technique for Routine Measurement of Macromolecules in the Injured Human Brain. Neurosurgery 2005, 56, 1264–1270. [Google Scholar] [CrossRef]
- Duo, J.; Stenken, J.A. In Vitro and In Vivo Affinity Microdialysis Sampling of Cytokines Using Heparin-Immobilized Microspheres. Anal. Bioanal. Chem. 2011, 399, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, C.D. Raised Parenchymal Interleukin-6 Levels Correlate with Improved Outcome after Traumatic Brain Injury. Brain 2004, 127, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Sarrafzadeh, A.; Schlenk, F.; Gericke, C.; Vajkoczy, P. Relevance of Cerebral Interleukin-6 After Aneurysmal Subarachnoid Hemorrhage. Neurocrit. Care 2010, 13, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.J.; O’Connell, M.T.; Rothwell, N.J.; Hopkins, S.J.; Nortje, J.; Carpenter, K.L.H.; Timofeev, I.; Al-Rawi, P.G.; Menon, D.K.; Pickard, J.D. Inflammation in Human Brain Injury: Intracerebral Concentrations of IL-1 α, IL-1 β, and Their Endogenous Inhibitor IL-1ra. J. Neurotrauma 2007, 24, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.J.; Jenne, C.N.; Léger, C.; Kramer, A.H.; Gallagher, C.N.; Todd, S.; Parney, I.F.; Doig, C.J.; Yong, V.W.; Kubes, P.; et al. Association between the Cerebral Inflammatory and Matrix Metalloproteinase Responses after Severe Traumatic Brain Injury in Humans. J. Neurotrauma 2013, 30, 1727–1736. [Google Scholar] [CrossRef]
- Marcus, H.J.; Carpenter, K.L.H.; Price, S.J.; Hutchinson, P.J. In Vivo Assessment of High-Grade Glioma Biochemistry Using Microdialysis: A Study of Energy-Related Molecules, Growth Factors and Cytokines. J. Neurooncol. 2010, 97, 11–23. [Google Scholar] [CrossRef]
- Yamamoto, K.; Asano, K.; Tasaka, A.; Ogura, Y.; Kim, S.; Ito, Y.; Yamatodani, A. Involvement of Substance P in the Development of Cisplatin-Induced Acute and Delayed Pica in Rats. Br. J. Pharmacol. 2014, 171, 2888–2899. [Google Scholar] [CrossRef] [Green Version]
- Kutlu, S.; Aydin, M.; Alcin, E.; Ozcan, M.; Bakos, J.; Jezova, D.; Yilmaz, B. Leptin Modulates Noradrenaline Release in the Paraventricular Nucleus and Plasma Oxytocin Levels in Female Rats: A Microdialysis Study. Brain Res. 2010, 1317, 87–91. [Google Scholar] [CrossRef]
- Frost, S.I.; Keen, K.L.; Levine, J.E.; Terasawa, E. Microdialysis Methods for In Vivo Neuropeptide Measurement in the Stalk-Median Eminence in the Rhesus Monkey. J. Neurosci. Methods 2008, 168, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Ide, S.; Hara, T.; Ohno, A.; Tamano, R.; Koseki, K.; Naka, T.; Maruyama, C.; Kaneda, K.; Yoshioka, M.; Minami, M. Opposing Roles of Corticotropin-Releasing Factor and Neuropeptide Y within the Dorsolateral Bed Nucleus of the Stria Terminalis in the Negative Affective Component of Pain in Rats. J. Neurosci. 2013, 33, 5881–5894. [Google Scholar] [CrossRef]
- Guilfoyle, M.R.; Carpenter, K.L.H.; Helmy, A.; Pickard, J.D.; Menon, D.K.; Hutchinson, P.J.A. Matrix Metalloproteinase Expression in Contusional Traumatic Brain Injury: A Paired Microdialysis Study. J. Neurotrauma 2015, 32, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.J.; Jenne, C.N.; Léger, C.; Kramer, A.H.; Gallagher, C.N.; Todd, S.; Parney, I.F.; Doig, C.J.; Yong, V.W.; Kubes, P.; et al. A Prospective Evaluation of the Temporal Matrix Metalloproteinase Response after Severe Traumatic Brain Injury in Humans. J. Neurotrauma 2013, 30, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Sarrafzadeh, A.; Copin, J.-C.; Bengualid, D.J.; Turck, N.; Vajkoczy, P.; Bijlenga, P.; Schaller, K.; Gasche, Y. Matrix Metalloproteinase-9 Concentration in the Cerebral Extracellular Fluid of Patients during the Acute Phase of Aneurysmal Subarachnoid Hemorrhage. Neurol. Res. 2012, 34, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Sen, J.; Belli, A.; Petzold, A.; Russo, S.; Keir, G.; Thompson, E.J.; Smith, M.; Kitchen, N. Extracellular Fluid S100B in the Injured Brain: A Future Surrogate Marker of Acute Brain Injury? Acta Neurochir. 2005, 147, 897–900. [Google Scholar] [CrossRef]
- Afinowi, R.; Tisdall, M.; Keir, G.; Smith, M.; Kitchen, N.; Petzold, A. Improving the Recovery of S100B Protein in Cerebral Microdialysis: Implications for Multimodal Monitoring in Neurocritical Care. J. Neurosci. Methods 2009, 181, 95–99. [Google Scholar] [CrossRef]
- Ulrich, J.D.; Burchett, J.M.; Restivo, J.L.; Schuler, D.R.; Verghese, P.B.; Mahan, T.E.; Landreth, G.E.; Castellano, J.M.; Jiang, H.; Cirrito, J.R.; et al. In Vivo Measurement of Apolipoprotein E from the Brain Interstitial Fluid Using Microdialysis. Mol. Neurodegener. 2013, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Herukka, S.-K.; Rummukainen, J.; Ihalainen, J.; von und zu Fraunberg, M.; Koivisto, A.M.; Nerg, O.; Puli, L.K.; Seppälä, T.T.; Zetterberg, H.; Pyykkö, O.T.; et al. Amyloid-β and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus. J. Alzheimer’s Dis. 2015, 46, 261–269. [Google Scholar] [CrossRef]
- Marklund, N.; Blennow, K.; Zetterberg, H.; Ronne-Engström, E.; Enblad, P.; Hillered, L. Monitoring of Brain Interstitial Total Tau and Beta Amyloid Proteins by Microdialysis in Patients with Traumatic Brain Injury. J. Neurosurg. 2009, 110, 1227–1237. [Google Scholar] [CrossRef]
- Brody, D.L.; Magnoni, S.; Schwetye, K.E.; Spinner, M.L.; Esparza, T.J.; Stocchetti, N.; Zipfel, G.J.; Holtzman, D.M. Amyloid-β Dynamics Correlate with Neurological Status in the Injured Human Brain. Science 2008, 321, 1221–1224. [Google Scholar] [CrossRef] [Green Version]
- Helbok, R.; Schiefecker, A.; Delazer, M.; Beer, R.; Bodner, T.; Pfausler, B.; Benke, T.; Lackner, P.; Fischer, M.; Sohm, F.; et al. Cerebral Tau Is Elevated after Aneurysmal Subarachnoid Haemorrhage and Associated with Brain Metabolic Distress and Poor Functional and Cognitive Long-Term Outcome. J. Neurol. Neurosurg. Psychiatry 2015, 86, 79–86. [Google Scholar] [CrossRef]
- Petzold, A.; Tisdall, M.M.; Girbes, A.R.; Martinian, L.; Thom, M.; Kitchen, N.; Smith, M. In Vivo Monitoring of Neuronal Loss in Traumatic Brain Injury: A Microdialysis Study. Brain 2011, 134, 464–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bache, S.; Rasmussen, R.; Rossing, M.; Hammer, N.R.; Juhler, M.; Friis-Hansen, L.; Nielsen, F.C.; Møller, K. Detection and Quantification of MicroRNA in Cerebral Microdialysate. J. Transl. Med. 2015, 13, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birngruber, T.; Raml, R.; Gladdines, W.; Gatschelhofer, C.; Gander, E.; Ghosh, A.; Kroath, T.; Gaillard, P.J.; Pieber, T.R.; Sinner, F. Enhanced Doxorubicin Delivery to the Brain Administered through Glutathione PEGylated Liposomal Doxorubicin (2B3-101) as Compared with Generic Caelyx,®/Doxil®—A Cerebral Open Flow Microperfusion Pilot Study. J. Pharm. Sci. 2014, 103, 1945–1948. [Google Scholar] [CrossRef] [PubMed]
- Umbrain, V.J.; Lauwers, M.-H.; Shi, L.; Smolders, I.; Michotte, Y.; Poelaert, J. Comparison of the Effects of Intrathecal Administration of Levobupivacaine and Lidocaine on the Prostaglandin E 2 and Glutamate Increases in Cerebrospinal Fluid: A Microdialysis Study in Freely Moving Rats. Br. J. Anaesth. 2009, 102, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Sakaguchi, T.; Tamai, I.; Nakanishi, T. Quantification of Prostaglandin E2 Concentration in Interstitial Fluid from the Hypothalamic Region of Free-Moving Mice. Bio Protoc. 2019, 9, e3324. [Google Scholar] [CrossRef]
- Hökfelt, T.; Bartfai, T.; Bloom, F. Neuropeptides: Opportunities for Drug Discovery. Lancet Neurol. 2003, 2, 463–472. [Google Scholar] [CrossRef]
- European Patent Office. Espacenet-Patent Search. Available online: https://worldwide.espacenet.com/patent/search?q=microdialysis (accessed on 4 May 2022).
- Ungerstedt, C.U. Sonde de Dialyse. Patent FR2537000A1, 8 June 1984. [Google Scholar]
- Ungerstedt, C.U. Dialysis Probe. U.S. Patent 4,694,832, 22 September 1987. [Google Scholar]
- Birngruber, T.; Altendorfer-Kroath, T. Catheter Having a Healing Dummy. International Patent WO 2012/156478 A1, 22 November 2011. [Google Scholar]
- Birngruber, T.; Altendorfer-Kroath, T. Catheter Having a Healing Dummy. U.S. Patent 9,656,018 B2, 23 May 2017. [Google Scholar]
- Nishino, H.; Ikimura, K.; Tekda, S.; Sato, N.; Morishita, R. Dialysis Probe. U.S. Patent 2011/0259811 A1, 27 October 2011. [Google Scholar]
- Cremers, T.I.F.H.; de Vries, M.G.; Huinink, K.D.; van Loon, J.P.; Hart, M.V.D.; Ebert, B.; Westerink, B.H.C.; De Lange, E.C.M. Quantitative Microdialysis Using Modified Ultraslow Microdialysis: Direct Rapid and Reliable Determination of Free Brain Concentrations with the MetaQuant Technique. J. Neurosci. Methods 2009, 178, 249–254. [Google Scholar] [CrossRef]
- Cremers, T.I.F.H. Use of Push Pull Microdialysis in Combination with Shotgun Proteomics for Analyzing the Proteome in Extracellular Space of Brain. International Patent WO2017174557A2, 12 October 2017. [Google Scholar]
- Stenken, J.A.; Sellati, T.J. Method and Kit for Enhancing Extraction and Quantification of Target Molecules Using Microdialysis. U.S. Patent US 2004/0248181 A1, 9 December 2004. [Google Scholar]
- Ao, X.; Sellati, T.J.; Stenken, J.A. Enhanced Microdialysis Relative Recovery of Inflammatory Cytokines Using Antibody-Coated Microspheres Analyzed by Flow Cytometry. Anal. Chem. 2004, 76, 3777–3784. [Google Scholar] [CrossRef]
- Clark, L.C. Electrochemical Device for Chemical Analysis. U.S. Patent 2,913,386, 17 November 1959. [Google Scholar]
- Stangler, L.A.; Kouzani, A.; Bennet, K.E.; Dumee, L.; Berk, M.; Worrell, G.A.; Steele, S.; Burns, T.C.; Howe, C.L. Microdialysis and Microperfusion Electrodes in Neurologic Disease Monitoring. Fluids Barriers CNS 2021, 18, 52. [Google Scholar] [CrossRef]
Large Pore Microdialysis | cOFM | Biosensors | |
---|---|---|---|
Timeframe | |||
| After 16–24 h | After 14 days | Upon equilibration |
| 48–72 h | Up to 30 days | 2–3 weeks |
Recovery | Limited due to membrane | Macroscopic openings | Recognition element |
| Aspecific adsorption | Not applicable | Not applicable |
Spatial resolution | ±500 µm OD | ±50–125 µm OD | |
Depending on length probe: mm | Cylinder vs. disc | ||
Temporal resolution | minutes | (milli)seconds | |
Sample analysis | (Bio-)analytical technique | Not applicable | |
Analyte range | Omics screening possible | Limited | |
Others | Local administration of molecules possible | - |
Microdialysis | cOFM | |||
---|---|---|---|---|
Neuropeptides and proteins | Cytokines | [40,80,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135] | Cytokines | [80] |
TNF-alpha | [40,126] | TNF-alpha | [80] | |
Neuromedins | [114] | Leptin | [84] | |
Substance P | [136] | Tau | [18] | |
Hormones | [137,138,139] | Antibodies | [25] | |
Matrix metalloproteinases | [134,135,140,141,142] | Nanobodies | [44] | |
Growth factors | [123,124,125,128,130,131,135] | |||
S100B | [143,144] | |||
Apolipoprotein E | [145] | |||
Amyloid beta | [16,19,40,146,147,148] | |||
Tau | [17,18,19,146,147,149] | |||
Neurofilaments | [19,150] | |||
Antibodies | [24,25] | |||
Nanobodies | [44,74] | |||
Others | microRNAs | [151] | PEGylated liposomal doxorubicin | [152] |
Prostaglandin E2 | [153,154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Custers, M.-L.; Nestor, L.; De Bundel, D.; Van Eeckhaut, A.; Smolders, I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022, 14, 1051. https://doi.org/10.3390/pharmaceutics14051051
Custers M-L, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics. 2022; 14(5):1051. https://doi.org/10.3390/pharmaceutics14051051
Chicago/Turabian StyleCusters, Marie-Laure, Liam Nestor, Dimitri De Bundel, Ann Van Eeckhaut, and Ilse Smolders. 2022. "Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid" Pharmaceutics 14, no. 5: 1051. https://doi.org/10.3390/pharmaceutics14051051
APA StyleCusters, M. -L., Nestor, L., De Bundel, D., Van Eeckhaut, A., & Smolders, I. (2022). Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics, 14(5), 1051. https://doi.org/10.3390/pharmaceutics14051051