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Abstract: P38α mitogen-activated protein kinase (p38α MAPK), one of the p38 MAPK isoforms
participating in a signaling cascade, has been identified for its pivotal role in the regulation of
physiological processes such as cell proliferation, differentiation, survival, and death. Herein, by
shedding light on docking- and 100-ns dynamic-based screening from 3210 FDA-approved drugs,
we found that lomitapide (a lipid-lowering agent) and nilotinib (a Bcr-Abl fusion protein inhibitor)
could alternatively inhibit phosphorylation of p38α MAPK at the allosteric site. All-atom molecular
dynamics simulations and free energy calculations including end-point and QM-based ONIOM
methods revealed that the binding affinity of the two screened drugs exhibited a comparable level
as the known p38α MAPK inhibitor (BIRB796), suggesting the high potential of being a novel p38α
MAPK inhibitor. In addition, noncovalent contacts and the number of hydrogen bonds were found
to be corresponding with the great binding recognition. Key influential amino acids were mostly
hydrophobic residues, while the two charged residues including E71 and D168 were considered
crucial ones due to their ability to form very strong H-bonds with the focused drugs. Altogether, our
contributions obtained here could be theoretical guidance for further conducting experimental-based
preclinical studies necessary for developing therapeutic agents targeting p38α MAPK.

Keywords: drug repositioning; p38α MAPK; molecular docking; MD simulation; allosteric inhibitors;
in silico screening; computer-aided drug discovery

1. Introduction

Mitogen-activated protein kinase (MAPK) signaling pathways are a cascade compris-
ing three kinases including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal
kinase (JNK), and p38, in which the upstream kinase (MAPKKK) responds to various extra-
and intracellular signals and activates the middle kinase (MAPKK) by direct phosphory-
lation [1]. Then, MAPKKs phosphorylate and activate a MAPK, resulting in cell-specific
physiological phenomena such as cell proliferation, differentiation, survival, and death [2].
MAPKs are known to be able to react with a wide range of input signals including hor-
mones, cytokines, and growth factors, as well as endogenous stress and environmental
factors. To this end, they were classified into two distinct responsive MAPKs; mitogen
activated (ERK) and stress activated kinases (JNK and p38) [3]. Substantial studies re-
vealed that the p38 pathway is a key player in response to environmental stress signals
and inflammatory stimuli as well as being responsible for the production of some inflam-
matory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β, interleukin-6,
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and interleukin-12 in response to proinflammatory signaling [4,5]. Furthermore, p38 can
be a restraint in cancer tumorigenesis (e.g., breast, lung, colon, and liver cancer), which
induces a p38-mediated proapoptotic mechanism and the killing of incipient tumor cells by
a mechanism involved in the production of reactive oxygen species (ROS) [6]. However,
p38 activity functions conversely once a tumor has already been established by supporting
its growth [7]. Experimental evidence indicates that tumor cells need to modulate the
level of p38 MAPK activity in order to perform metastases, and this signaling occurs in
a variety of diseases [8]. To this end, inhibition of the p38 pathway has attracted much
attention for the reason that it could be a promising strategy in the management of cancer,
neurodegeneration, inflammation, and even the newly emerged pandemic, COVID-19 [9].

Structurally, there are four homologues of p38 MAPK including p38α, p38β, p38γ, and
p38δ [3]. Among these, p38α is the best characterized and seems to be the most physiologi-
cally related protein involved in inflammatory responses [4,10]. According to the site of the
ligand modulation, there are two different generations of p38α MAPK inhibitors, including
type I and type II inhibitors, which modulate the activity of the enzyme at the ATP-binding
and the allosteric site, respectively. However, targeting an ATP-binding site has limited
the clinical use due to a high level of sequence and structural similarity among kinase en-
zymes [2], which could result in non- or low selective behavior and cause undesirable side
effects and toxicities [11]. In order to overcome this issue, recent research has been focusing
on utilizing a novel allosteric regulatory site, which is distinct from the ATP pocket at about
60◦ spatially, and there is no structural overlap between compounds bound to the allosteric
site and ATP [12]. The conserved residues Asp-Phe-Gly (DFG) motif in the active site were
conformationally altered, which is often known as DFG-out conformation and seems to
be more stable in protein Tyr kinases [12]. To date, even though a number of clinical p38
MAPK inhibitors have emerged for inflammatory disease indications such as rheumatoid
arthritis, there have been no approved agents [13,14] due to the lack of target modulation,
adverse events, toxicities, and poor pharmacokinetics [4,14]. Some toxicities reported by
clinical studies of well-known p38 MAPK inhibitors, BIRB796 (doramapimod), VX-745
(Vertex), and SCIO-469 (talmapimod) included hepatotoxic elevation of liver transaminases,
skin rash, and so forth [15–17]. Accordingly, searching for novel compounds capable of
impeding p38 MAPK has still been necessarily important to provide bottom-up preclin-
ical information, guiding the development of therapeutic agents disrupting the MAPK
signaling pathway.

Herein, by shedding light on the advancement of computational biology partly con-
tributed to a preclinical stage of drug discovery and development, we aimed to search for
novel agents capable of binding to p38α MAPK at the allosteric site by a drug repositioning
approach. Bioinformatic databases and in silico methods including docking-based virtual
screening, molecular dynamics (MD) simulations, and free energy calculations were em-
ployed to guide the discovery of hit compounds that may present a significant potential
for further optimization. All the results obtained here provide some useful information
and may outline the next steps governing experimental studies for drug discovery and
development against p38α MAPK.

2. Materials and Methods
2.1. Preparation of the 3D Structure of P38α MAPK and Ligands

The three-dimensional structure of p38α MAPK in complex with a known inhibitor,
BIRB796, was retrieved from the RCSB Protein Data Bank (PDB ID: 1KV2). The missing
residues (170–184) of p38α MAPK were constructed by means of the homology model imple-
mented in the SWISS-MODEL server [18]. The newly generated structure was consequently
validated by plotting the Ramachandran diagram (Figure S1), using PROCHECK [19]. The
protonation states of all ionizable amino acids were predicted based on their pKa value
by using the PROPKA 3.0 web interface [20], and were then set into the modeled complex
structure before performing molecular docking and MD simulations.
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Partial atomic charges of BIRB796 were calculated for their geometry and then assigned
for the electrostatic potential (ESP) charges via the Gaussian 09W program (G09) using the
Hartree–Fock method and 6-31G(d) level of theory [21]. Its structure was then assigned
for atom type, and we generated its topology file using the Antechamber program [22].
Converting from the ‘mol2’ file into a ‘pdbqt’ format was achieved by AutoDockTools
(ADT). For the virtual screening studies, all focused compounds were obtained from
the 3210 FDA-approved drugs available in the ZINC database (http://zinc.docking.org,
accessed on 12 November 2019). These ligands were also subsequently converted from the
‘mol2’ format into a ‘pdbqt’ format using ADT.

2.2. Molecular Docking and Visual Inspection

Docking calculations were carried out on a Linux operating system using AutoDock
VinaXB, which provides a new empirical halogen bond scoring function [23]. Three docking
parameters, including exhaustiveness, num_modes, and energy_range, were set to 20, 50,
and 5 kcal/mol, respectively. For system validation, the crystallized ligand was redocked
into the same binding site (Figure S2), and the verified grid box was then employed for
all ligands in virtual screening. Predicted binding affinity (Ebinding, kcal/mol) of the most
likely occurring conformation was a parameter used to rank the studied compounds, and
the structure coordinate was employed to be the initial structure for the MD run.

To reduce the chance of false-positive scoring, a visual inspection of the intermolecular
interactions between each ligand and amino-acid residues lining in the focused allosteric
site was carried out by specifically examining (i) hydrogen bonding with E71, M109, and
D168 as well as (ii) hydrophobic interactions with V38, A51, K53, R67, L75, I84, L104, L108,
A157, L167, and F169, which were derived from the binding mode observed in the inhibitor
prototype, BIRB796. For this purpose, compounds sharing features of intermolecular
interactions with BIRB796 greater than five interactions were then selected.

2.3. Molecular Dynamics (MD) Simulations

The protein-ligand complex coordinates of the two screened drugs and the inhibitor
prototype from molecular docking were dynamically modeled under the periodic boundary
condition with the isothermal-isobaric (NPT) scheme [24–28]. The AMBER ff14SB and
generalized AMBER force field version 2 (GAFF2) [29] were selected for a force field
governing bonded and nonbonded interaction parameters. Electrostatic interactions were
treated by the particle mesh Ewald summation method [30] with a cutoff distance for
nonbonded interactions of 10 Å. The SHAKE algorithm [31] was retrieved to constrain
hydrogen atoms. The temperature was controlled by the Langevin thermostat [32] and
set to 310 K by increasing from 10 to 310 K. Controlling the pressure was achieved by
the Berendsen barostat [33] with a relaxation time of 1 ps. Moreover, the TIP3P water
model [34] was used to solvate the system with minimum padding of 10.0 Å between the
protein surface and the solvation box edge. The overall charge of the molecular system
was neutralized by randomly adding either sodium or chloride ions. Minimization of the
added hydrogen atoms and water molecules was carried out using 500 steps of steepest
descent (SD) followed by 1500 steps of conjugated gradient (CG) methods before running
the MD simulations with constrained solvent molecules. The whole complex was then fully
minimized using the same procedure. For MD production, all systems were set to 100 ns (2-
fs increment). The root-mean-square displacement (RMSD), the numbers of hydrogen bond
(H-bond), and the contact atoms were calculated through the cpptraj module whilst the per-
residue decomposition energy (∆Gresidue

binding) was estimated by MM/PBSA.py implemented
in AMBER16.

2.4. End-Point Binding Energy Calculations

To observe the ligand-binding affinity, the end-point binding free energy (∆Gbind) of
each system was predicted by the solvated interaction energy (SIE) approach [35]. ∆Gbind
can be estimated by the summation of the van der Waals (EvdW), electrostatic (Eele), reaction

http://zinc.docking.org
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field (GRF), cavity (γ∆SA(ρ)), and a constant (C) value. The mathematical equation can be
expressed as follow:

∆Gbind (ρ, Din, α, γ, C) = α[EvdW + Eele(Din) + ∆GRF(ρ,Din) + γ∆SA(ρ)] + C

where Din denotes the solute dielectric value. EvdW and Eele represent intermolecular van
der Waals and Coulombic interaction energies in the bound state, respectively. ∆GRF is the
alteration of the reaction field energy between the bound and free states, ∆Gcavity (γ∆SA)
denotes the change in the non-electrostatic solvation free energy between the bound and
free forms, and C is the constant value. The coefficients were set as α = 0.105, γ = 0.013,
and C = −2.89.

2.5. QM-Based ONIOM Binding Energy Calculations

A quantum mechanics (QM)-based Our Own N-layered Integrated Molecular Orbital
and Molecular mechanics (ONIOM) [36,37] was carried out to additionally observe the
binding strength between BIRB796 and the screened drug candidate(s). Before calculating
the binding energy, the constructed complexes were optimized using the Hartree−Fock
method and a mechanical parameter (HF/6-31G(d):UFF). After optimization, two-layered
ONIOM calculations (B3LYP/6-31G(d,):PM6) were applied to determine and compare the
binding energies of the three systems. The residues lining within the 5 Å from the ligand,
which include Y35, V38, A51, V52, K53, L55, R67, T68, R70, E71, L74, L75, I84, L86, L104,
V105, T106, H107, M109, H148, R149, L167, D168, F169, G107, and L171, were selected to
represent an allosteric site of p38α MAPK and separated into a low-level layer, while each
screened drug was set to a high-level layer. Then, the selected amino acid residues and the
ligand were again simulated individually with the B3LYP/6-31G(d) basis set and the PM6
method, respectively. The polarizable continuum model (PCM) was applied to observe the
effect of water solvent on the binding energy. All calculations were performed by using
the GAUSSIAN16 software package [38], and the binding energy was estimated using the
equation below [39].

Esolvation
binding = EPCM

complex − EPCM
residues − EPCM

ligand

where Esolvation
binding is the binding energy of the drug-receptor in the solvation system, EPCM

complex

is the extrapolated ONIOM energy of the complex, EPCM
residues is the potential energy of

residues lining within the 5 Å from the ligand, and EPCM
ligand is the potential energy of the

studied ligand.

3. Results and Discussion
3.1. Docking-Based Screening and Visual Inspection

Finding the existing drugs that can offer inhibition towards novel targets is a great
challenge. To this end, 3210 compounds retrieved from the FDA-approved drugs available
in the ZINC database were docked into the allosteric site of the p38α MAPK where its
3D-structure and the inhibitor binding site are illustrated in Figure 1. The compounds
were selected and ranked according to their binding affinity (Ebinding) predicted by the
scoring function of the Autodock XB software package. By considering their binding
affinity, it was found that, among the 3210 compounds, only ZINC27990463 exhibited
higher binding affinity (Ebinding = −12.10 kcal/mol) when compared to the ligand refer-
ence, BIRB796 (Ebinding = −11.9 kcal/mol). However, to reduce false-negative selection,
compounds exhibiting Ebinding lower than −10.00 kcal/mol were also clustered, which
were totally filtered into 22 compounds. Note that the in silico filtering scheme and the
plot of binding affinity of the selected first-round screened compounds were illustrated in
Figures 2 and 3, respectively. All these first-round screened compounds were then inspected
for intermolecular interactions inside the cleft of the allosteric site, which is commonly
known as “visual inspection”. This method has been widely used in the decision-making
step for a great number of drug discovery campaigns [40].
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Figure 1. The ribbon representation of the 3D structure of p38α MAPK (PDB ID: 1KV2). The close-up
regions illustrate two common inhibitors including VX-745 (green) and BIBR796 (yellow), indicating
the ATP-binding site and allosteric pocket, which is distinct from each other at about 60◦ spatially.
An orientation of F169 exhibiting the unique DFG-out conformation is also shown. Additionally, the
hydrophobic nature (obtained via UCSF ChimeraX 1.4, Resource for Biocomputing, Visualization,
and Informatics (RBVI), San Francisco, CA, USA.) within the focused allosteric cleft is depicted in a
close-up view.
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Figure 3. Binding affinity in kcal/mol of selected first-round screened compounds that were suc-
cessfully docked into the focused allosteric site of p38α MAPK compared to BIRB796. Note that the
prediction was based upon the scoring function implemented in the Autodock VinaXB, Sirimulla
Research Group at the University of Texas at El Paso, TX, USA.

It is obviously known that noncovalent interactions are essentially responsible for
ligand binding. Compounds showing sufficient interactions in both qualitative and quan-
titative manners tend to exhibit greater binding capability and could form a more stable
complex. Thus, an inspection of intermolecular interactions between each ligand and
amino-acid residues lining in the focused allosteric site was visually carried out by specifi-
cally examining (i) hydrogen bonding with E71, M109, and D168, as well as (ii) hydrophobic
interactions with V38, A51, K53, R67, L75, I84, L104, L108, A157, L167, and F169, which
were derived from the binding mode observed in the inhibitor prototype, BIRB796. For
this purpose, compounds sharing features of intermolecular interactions with BIRB796
greater than five interactions were then selected, for which the detailed information of
all 22 compounds is listed in Figure 4. Thus, we could obtain 10 promising compounds
(Figure 2A), which are hereinafter referred to as “hit compounds”. These 10 hit compounds
were subsequently subjected to second-round screening by MD simulations, and the MD
output was used to compute SIE-based end-point free energy calculations.

3.2. Dynamic-Based Screening and End-Point Binding Free Energy Calculations

To observe and screen the hit compounds’ binding capability in a near-physiological
condition and dynamic system, the constructed protein-ligand complexes were performed
to run MD simulations for 100 ns. The trajectories in the last ten nanoseconds (90–100 ns)
was considered to have reached the equilibrated state (supported by the plot of root-mean-
square displacement (RMSD) for the backbone amino acids within 5 Å from the ligand as
shown in Figure S3) were used to calculate the binding free energy (∆Gbind). This parameter
was used to indicate the protein-ligand binding affinity and to employ a dynamics-based
screening tool for ranking the hit compounds in the aftermath of rigid docking.
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illustrated in different colors. It is worth noting that these occurred interactions were based upon
the best docked conformation and visualized by Accelrys Discovery Studio 2.5. * The compounds
selected to run MD simulations.

As listed in Table 1, the ∆Gbind values of all hit compounds were in the range of
−11.4 to −7.2 kcal/mol, whilst the ∆Gbind of BIRB796 is −11.95 kcal/mol. Importantly, the
predicted ∆Gbind of BIRB796 (−11.95 ± 0.04 kcal/mol) is close to the experimental-derived
∆Gbind value (−10.98 kcal/mol [41]), showing the verification of the predictive method and
the reliability of the results obtained. For screening purposes, only two hit compounds, lomi-
tapide (∆Gbind = −11.39 ± 0.05 kcal/mol) and nilotinib (∆Gbind = −11.21 ± 0.04 kcal/mol)
displaying a similar level of binding strength to the BIRB796, were selected for further
investigation and the chemical structures of these three drug candidates are illustrated
in Figure 2B. For nilotinib, it was previously reported that it could be a new off-target to
p38 MAPK in the myoblast cell line [42], which could support our theoretical findings.
In particular, the calculated energy terms shown in Table 1 could imply the influence of
specific types of noncovalent interactions responsible for drug recognition. In this case,
we found that all three drugs possessed a considerably higher contribution of van der
Waals interaction energies than other types of interaction energies, agreeing well with the
previous study that suggested the hydrophobicity of the binding pocket [43]. Additionally,
the higher contribution of vdW interaction energies might imply that the screened drugs
could preferentially target the hydrophobic regions within the focused binding site, which
was similarly observed in the previously reported potent inhibitors [11]. For the solvation
effect, the polar solvation energies expressed as the ∆GRF were in the range of 10.52 to
20.55 kcal/mol. Lomitapide showed a slightly higher ∆GRF (17.01 ± 0.24) than nilotinib
and BIRB796 (15.54 ± 0.19 and 15.60 ± 0.20, respectively), implying the relatively minute
higher polar solvation in the lomitapide complex system. For ∆Gcavity, it was found that the
nonpolar solvation energies were in the range of −7.13 to −14.43 kcal/mol. Among candi-
dates, lomitapide possessed the highest contribution of ∆Gcavity (−14.43 ± 0.04), showing
that the drug could be well-buried into the cleft of the binding site while nilotinib and
BIRB796 demonstrated a slight reduction in the nonpolar solvation effect (−12.35 ± 0.03
and −13.63 ± 0.04, respectively). By including the solvation free energy, the vdW term
(∆EvdW + ∆Gnonpolar

sol ) was the main contribution to the total binding free energies of both
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drug candidates as well as BIRB796 whilst the electrostatic term (∆Eele + ∆Gpolar
sol ) became

much less favorable to the binding (Figure S4).

Table 1. ∆Gbind values (kcal/mol) of the candidate compounds as well as BIRB796 in complex with
p38α MAPK calculated by the SIE-based end-point method using α, γ, and constant coefficients of
0.10, 0.01, and −2.89, respectively.

Drugs
(ZINC ID)

Energy Components (kcal/mol)

EVdW Ecoul ∆GRF ∆Gcavity ∆Gbind

BIRB796
experiment −10.98 *

−78.53 ± 0.29 −9.93 ± 0.15 15.60 ± 0.20 −13.63 ± 0.04 −11.95 ± 0.04

Lomitapide
(ZINC27990463) −77.77 ± 0.39 −5.95 ± 0.18 17.01 ± 0.24 −14.43 ± 0.04 −11.39 ± 0.05

Nebivolol
(ZINC1999441) −49.57 ± 0.29 −12.66 ± 0.26 12.78 ± 0.21 −10.19 ± 0.03 −9.14 ± 0.03

Nilotinib
(ZINC6716957) −69.53 ± 0.35 −13.04 ± 0.17 15.54 ± 0.19 −12.35 ± 0.03 −11.21 ± 0.04

Ibrutinib
(ZINC35328014) −61.87 ± 0.29 −4.07 ± 0.17 13.21 ± 0.23 −10.81 ± 0.04 −9.55 ± 0.04

Atovaquone
(ZINC116473771) −42.15 ± 0.27 −2.43 ± 0.39 10.94 ± 0.23 −7.90 ± 0.05 −7.24 ± 0.03

Dicumarol
(ZINC3869855) −39.68 ± 0.26 −13.87 ± 0.40 20.55 ± 0.32 −7.13 ± 0.03 −7.09 ± 0.03

Raloxifene
(ZINC538275) −51.19 ± 0.44 −12.45 ± 0.50 18.50 ± 0.25 −9.90 ± 0.05 −8.66 ± 0.07

Ponatinib
(ZINC36701290) −61.66 ± 0.25 −4.92 ± 0.14 16.99 ± 0.24 −12.08 ± 0.05 −9.35 ± 0.03

Eltrombopag
(ZINC11679756) −59.44 ± 0.33 −5.39 ± 0.17 10.52 ± 0.17 −10.97 ± 0.03 −9.73 ± 0.04

Samsca
(ZINC538658) −51.69 ± 0.26 −16.63 ± 0.21 19.86 ± 0.18 −10.38 ± 0.04 −9.05 ± 0.03

* The experimental binding free energy was derived from the IC50 of 0.018 µM [41] and was calculated by the
equation ∆Gbind = RTlnIC50.

3.3. Contact Atoms and Numbers of Hydrogen Bond Formation

Identifying the number of atoms surrounding a ligand is one of the crucial parameters
implying the ability of the drug recognition within the focused allosteric target. Herein,
noncovalent contacts of any atoms within the 5.0 Å from the ligand were computed, and
we found that the number of surrounding atoms averaged in the last 10 nanoseconds
of each focused complex was in the order of lomitapide (429 ± 17 atoms) > BIRB796
(424 ± 6 atoms) > nilotinib (405 ± 2 atoms) as illustrated in Figure 5. The number of
surrounding atoms of the lomitapide complex was slightly higher than that of the BIRB796
and nilotinib complexes, suggesting that the binding pocket residues are close-packed
during complexation.

Furthermore, the quantity of hydrogen bonds (H-bond), which was considered one
of the strong interactions responsible for drug-receptor binding, was analyzed during
90–100 ns with three independent replicates. As shown in Figure 5, the numbers of av-
eraged H-bond interactions in BIRB796 and nilotinib were in a vicinity of a similar level
(≈3–4 bonds), while the lomitapide displayed lower numbers of this kind of interaction
(≈2–3 bonds). For drug binding, this indicated that both BIRB796 and nilotinib could form
more H-bonds when compared to lomitapide. This is likely to occur since the intrinsic
structural characteristic of lomitapide consists of gradual lower numbers of hydrogen bond
donors and acceptors when compared to BIRB796 and nilotinib, (total numbers of H-bond
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donors and acceptors of BIRB796, nilotinib, and lomitapide are 7, 8, and 5, respectively
(analyzed by PharmaGist web interface [44] as listed in Table S1).
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during a complex formation of two screened drugs and the BIRB796 using two criteria as follows:
(1) the distance between the hydrogen bond donor (HD) and hydrogen acceptor (HA) of ≤3.5 Å
(2) the angle ≥120◦.

In addition, the intermolecular H-bond interactions were observed in terms of the
percentage of occupations (Figure 5B), which indicated how often the transient H-bonds
could occur during the whole simulated time. As expected, a few strong hydrogen bonds
could be seen in all focused drugs and even in BIRB796 since their inhibitory actions were
mainly driven by hydrophobic interactions (Table 1). Obviously, all three compounds were
found to have very strong H-bonds with D168 (99.7%, 92.7%, and 98.7% occupations for
BIRB796, lomitapide, and nilotinib, respectively). Additionally, the BIRB796 showed an
additional very strong H-bond with E71 (≈99%), while this bond was reduced to 70%
and 34.5% for nilotinib. The slight loss of this interaction in nilotinib might cause a slight
reduction in binding affinity when compared to BIRB796 (Table 1). Nonetheless, we could
not observe the H-bond with E71 for lomitapide binding since it lacks H-bond donors at
that oriented position. Hence, we hypothesized that adding functional groups containing
H-bond donors (e.g., -NH2) onto the carbon atom in the piperidine ring within its structure
might allow it to have more additional H-bond interactions with E71. Hence, we ran MD
simulations of the modified structure of lomitapide and subjected the MD output to analyze
the binding energy at the last 10 ns by using the end-point SIE-based method (as the same
protocol used previously with other compounds). As expected, the H-bond occupation with
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E71 could be formed at 82.45% during the whole simulated time. Moreover, the binding
energy was decreased from −11.39 ± 0.05 kcal/mol to −12.15 ± 0.06 kcal/mol (better
binding affinity, Table S3), and slightly lower than BIRB796 (−11.95 ± 0.04 kcal/mol). This
finding suggested that modification of a lomitapide’s structure by permitting it to interact
with E71 could improve its binding affinity, which encouraged us to investigate further.

3.4. Key Binding Residues

To elucidate the key binding amino acids responsible for the drug recognition within
the allosteric pocket of p38α MAPK, the decomposition of free energy (∆Gbind

residue) based on
the MM/GBSA method was computed. The negative and positive ∆Gbind

residue values indicate
the ligand stabilization and destabilization, respectively. The contribution of each amino
acid of the known inhibitor and two focused complexes is shown in Figure 6. Note that
among residues 5–352 of p38α MAPK, only residues 5–250 are shown.
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For the BIRB796, it was obviously seen that E71 and D168 played a pivotal role in
stabilizing the protein–ligand complex as its large ∆Gbind

residue value was observed (approxi-
mately −6 and −4 kcal/mol, respectively). In addition, four hydrophobic residues (L75,
I84, L108, and L107) and one polar uncharged amino acid (T106) were found to be involved
in a process of complex formation. This key-binding elucidation agreed well with the
previous reports of BIRB796’s binding mode analysis [11,41]. Apart from a reference ligand,
the amino acids largely contributing to the lomitapide binding (∆Gbind

residue < −1.5 kcal/mol)
include L74, L75, T106, L167, L171, and H174. Almost all were hydrophobic residues
(except H174, a polar positively charged residue), suggesting the ensembles of hydrophobic
interactions were dominant towards the binding (supported by per-residue vdW inter-
action energy as illustrated in Figure S4). Among these, the four residues L75, I84, T106,
and L167 shared binding features in common with BIRB796. Interestingly, unlike BIRB796,
lomitapide could bind to L171 and H174. Having interaction with the amino acids in the
region of 170–199 attracted considerable attention, as similarly observed in a new series of
benzooxadiazole-based p38 inhibitors which was granted a patent in 2014–2015 (Allinky
Biopharma. Co., Madrid, Spain) [11]. In the case of nilotinib, it was found that key amino
acids contributing to its binding were mostly the same residues responsible for BIRB796
binding (E71, L75, I84, L107, L108, and D168) since it belongs to the same type of inhibitor
(kinase inhibitor). Among these, E71 and D168 were essentially responsible for stabilizing
the complex via H-bond while the others relied on hydrophobic interactions (Figure S4).
Two additional residues, K53 and L74 were also observed. We noted that these results are
correlated well with the calculated SIE-based ∆Gbind and each energy component as listed
in Table 1.

3.5. QM-Based ONIOM Binding Energy

The analysis of the ONIOM binding energies was employed to additionally observe
the binding ability of the two screened drugs within the focused allosteric site of p38α
MAPK. The calculations were based on the QM method, which could provide a more
reliable prediction when compared to the end-point estimation [45]. As shown in Table 2,
the calculated binding energy (Esolvation

binding ) values ranged from approximately −41.0 to

−48.5 kcal/mol. The Esolvation
binding values displayed a similar trend to the SIE-based prediction

in which the binding affinity of BIRB7996 was slightly higher than that of lomitapide and
nilotinib. Even though the Esolvation

binding of the two screened drugs showed as slightly lower,
their predicted binding strength was still high and comparable to the reference inhibitor,
BIRB796. Accordingly, we believe that lomitapide and nilotinib could be able to inhibit the
phosphorylation of p38α MAPK, and the ONIOM-based method theoretically confirmed
their inhibitory capability towards p38α MAPK at the allosteric site. It is worth noting
that the prediction trend of binding affinity by ONIOM energy calculations was in good
agreement with the SIE-based end-point method.

Table 2. Calculated binding energy (Esolvation
binding ) in kcal/mol of two screened drugs and BIRB796 by

means of ONIOM at B3LYP/6-31G(d):PM6 level of theory.

Drugs

Energy Terms

EPCM
complex
(a.u.)

EPCM
residues
(a.u.)

EPCM
ligand

(a.u.)
Esolvation

binding
(kcal/mol)

BIRB796 −1706.396 −3.391 −1702.927 −48.536

Lomitapide −2425.571 −3.303 −2422.203 −41.159

Nilotinib −1841.536 −3.240 −1838.230 −41.048

4. Conclusions

Since there have been no drugs approved as therapeutic agents for p38α MAPK, our
research is considered one of the collective efforts to search for effective drugs targeting this
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target at the allosteric site by a drug repurposing approach. Verified docking- and dynamic-
based screening revealed that lomitapide and nilotinib could alternatively impede the p38α
MAPK’s function with a great binding affinity and characteristics. The binding affinity
estimated by both end-point and QM-based ONIOM methods revealed a comparable
level to the inhibitor prototype (BIRB796), supported by the calculated numbers of atoms
surrounded within the 5.0 Å from the ligand. Specifically, vdW interaction energies were
the main force driving the complex formation. Moreover, all drugs could form a few
H-bonds with the amino acids lining in the allosteric site, which could rank in the order of
BIRB796 ≈ nilotinib > lomitapide. The two residues (E71 and D168) played a pivotal role
in forming very strong H-bonds with the focused drugs. More importantly, we proposed
that modifying a lomitapide’s structure by allowing it to interact with E71 via H-bonds
could improve its binding affinity. Altogether, our in silico study not only presented the
potential inhibitors, but also provided useful information at the atomic level to shed light
on rationally designing more potent inhibitors disrupting the MAPK signaling pathway.
However, experiments determining the biological activities of these elucidated compounds
including enzyme- and cell-based assays should be further carried out.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics14071461/s1, Figure S1: Ramanchandran plot analysis of a homologically
constructed protein structure, Figure S2: Alignment of the re-docked pose and available crystallized
ligand (BIRB796) of p38α MAPK indicating a verified docking protocol used in this study, Figure
S3: Plot of root-mean-square displacement (RMSD) for the backbone amino acids within 5 Å from
the ligand, Figure S4: Analysis of per-residue VdW and electrostatic decomposition energy, Table S1:
Summary of key pharmacophore features of BIRB796, lomitapide, and nilotinib detected by using
the PharmaGist web interface, Table S2: The ∆Gbind value (kcal/mol) in each run and the averaged
∆Gbind of the two focused drug candidates and BIRB796 in complex with p38α MAPK, Table S3:
The ∆Gbind value (kcal/mol) of the modified structure of lomitapide in complex with p38α MAPK,
calculated by using end-point SIE method.
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