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Abstract: Radio-sensitizing nanoparticles are a potential method to increase the damage caused
to cancerous cells during the course of radiotherapy. The distribution of these particles in a given
targeted tumour is a relevant factor in determining the efficacy of nanoparticle-enhanced treatment. In
this study, a three-part mathematical model is shown to predict the distribution of nanoparticles after
direct injection into a tumour. In contrast with previous studies, here, a higher value of diffusivity
for charged particles was used and the concentration profile of deposited particles was studied.
Simulation results for particle concentrations both in the interstitial fluid and deposited onto cells
are compared for different values of particle surface charges during and after injection. Our results
show that particles with a negative surface charge can spread farther from the injection location
as compared to uncharged particles with charged particles occupying 100% of the tumour volume
compared to 8.8% for uncharged particles. This has implications for the future development of
radiosensitizers and any associated trials.
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1. Introduction

Cancer is one of the leading causes of death worldwide, with over half of cases treated
using radiotherapy. Radiotherapy involves the use of high-energy particles or waves to
kill tumour cells [1]. There are two primary radiotherapy mechanisms: DNA targeting
to cause strand breaks and thus no further cell replication; and the generation of highly
reactive particles. These free radicals are created through the Compton scattering of X-rays
off water molecules. Here, the scattering transfers energy to an electron that then scatters
off other nearby electrons in a cascading effect before an interaction with an oxygen atom
occurs. This results in a superoxide free radical that causes structural damage to nearby
cell membranes resulting in apoptosis [1,2]. Damage is caused to all cells encountered by
the radiation and so treatment is a balance between destroying the cancerous cells and
minimising the damage to healthy cells [3].

As improving the efficacy of radiotherapy is an area of keen interest, radio-sensitizing
nanoparticles are inert agents that can be directly injected into the tumour to increase the
damage caused to the cancerous cells [2,4–9]. The nanoparticles increase the number of free
radical particles by amplifying the generation of scattered electrons during the cascading
effect. However, the exact distribution of nanoparticles within the tumour post-injection
remains unclear, only that it will be heterogeneous [10]. The effect of radio-sensitizing
particles is typically localized; therefore, the distribution of particles within the targeted
tumour has a direct influence on treatment outcomes. It would be most desirable to
achieve a uniform distribution of particles covering the entire tumour without spill-over
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into surrounding healthy tissue. To this end, the mathematical modelling of nanoparticle
transport and fluid flow within a tumour can provide valuable insights that are difficult to
measure with experimental techniques.

Computational and mathematical models have been used in previous studies to
understand the transport processes involved in the delivery of chemotherapy drugs. These
include investigating the effects of the tumour shape [11] and capillary network on drug
delivery [12], improving realism through the use of realistic tumour geometry [13] and
studying the effect of adjuvant therapies to improve drug delivery [14] among others.
The transport of nanoparticles differs in that there can be a substantial deposition of
particles onto cells, and this can have a significant effect on the final particle distribution.
The addition of a deposition term to the equation governing particle transport within
tumours has been derived through a variety of means across a number of different studies.
Some studies set the deposition rate to be constant throughout the domain [15,16] or used
previously developed semi-analytical correlation equations to calculate the deposition
rate [17], and others developed their own particle trajectory tracking models [18,19].

In this work, a three-part computational particle transport model has been developed
to predict the spatiotemporal concentration of nanoparticles during the direct injection of
radio-sensitizing nanoparticles into a solid tumour. A schematic overview of the model is
shown in Figure 1, where the first two parts calculate particle deposition and the interstitial
fluid velocity, respectively; these are then inputted into the third part, a nanoparticle
transport and deposition model. In this study, an idealised tumour geometry is used with
a realistic needle inserted. This study investigates the distribution and concentration of
particles within the fluid and is deposited onto cells throughout injection and following the
end of injection. The effects of the particle surface charge and diffusion coefficient on the
distribution of particles within the tumour are also investigated.
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Figure 1. Schematic overview of the computational particle transport model.

2. Materials and Methods
2.1. Mathematical Models

The mathematical model consists of three parts, which are described below.

2.1.1. Particle Trajectory Tracking Model

The first part of the model calculates the rate of particle deposition onto cell surfaces,
this can be calculated through [17]:

k f =
3(1− ε)

2εdc
ηs|u| (1)

where ε is the porosity of the medium, dc is the diameter of the cells, |u| is the magnitude
of the local fluid velocity, and ηs is the collection efficiency that is defined as the ratio of
particles that deposit on the cell surface to the total number of particles passing the cell. It
is given by the expression [20]:
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ηs = αη0 (2)

where α is the attachment efficiency representing the effect of repulsive electrostatic forces
on the fraction of particles colliding with the cells, while η0 is the single collector contact
efficiency that describes the fraction of particles colliding with cell surfaces due to diffusion,
interception, and attractive inter-molecular forces. Both can be estimated by using semi-
analytical correlations. The single collector contact efficiency can be expressed as [21]:

η0 = ηd + ηi + ηg (3)

where ηd accounts for the transport due to diffusion and is given by:

ηd = 2.4A1/3
s N−0.081

R N−0.715
Pe N0.052

vdW (4)

ηi represents the transport due to interception:

ηi = 0.55AsN1.675
R N0.125

AT (5)

ηg accounts for the transport due to gravitation:

ηg = 0.22N−0.24
R N1.11

G N0.053
vdW (6)

The non-dimensional coefficients are given, with descriptions, in Table 1. The attach-
ment efficiency is given by [22]:

α = 2.527× 10−3N0.7031
LO N−0.3121

E1 N3.5111
E2 N1.352

DL (7)

with the non-dimensional coefficients also included in Table 1.

Table 1. Definitions of non-dimensional coefficients used in correlation equations. All symbols are
defined in Table 3.

Coefficient Value Description

As

2
(
1− γ5)

(2− 3γ + 3γ5 − 2γ6)

γ = (1− ε)1/3
Porosity-dependent parameter of Happel model

NR
dp
dc Aspect ratio

NPe
Udc
Dp Peclet number

NvdW
AH
kBT van der Waals number

NAT

AH

12πµr2
pU Attraction number

NG
2
9

r2
p

(
ρp − ρ f

)
g

µU Gravity number

NLO

AH

9πµa2
pU London number

NE1

εrε0

(
ξ2

p + ξ2
c

)
6πµrpU First electrokinetic parameter

NE2

2ξpξc

ξ2
p + ξ2

c Second electrokinetic parameter

NDL 2κrp Double Layer Force parameter
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2.1.2. Nanofluid Convection Model

The second part of the model is concerned with nanofluid convection within the
tumour (treated as a porous medium), where Brinkman equations are used to solve for
the fluid pressure and velocity [23]. The equations describe conservations of mass and
momentum assuming incompressible, steady-state flow through a porous medium. The
mass conservation equation states that the divergence of the fluid velocity, ∇u, is equal to
the difference between the source, φB, and sink, φL, terms of fluid [24].

ρ∇u = φB − φL (8)

where ρ is the density of the fluid. The source term represents the fluid leakage from
capillary vessels and the sink term represents fluid removed from the interstitium by the
lymphatic system. As tumours generally have a non-functioning lymphatic system, this is
assumed to be zero [25]. In this study, the capillary vessels are neglected. The momentum
equation is given by:

ρ

ε

(
∂u
∂t

+ (u·∇)u
ε

)
= −∇p +∇·

[
1
ε

{
µ
(
∇u + (∇u)T

) 2
3

µ(u·∇)I
}]
−

(
κ−1µ

)
u + F (9)

where µ is the dynamic viscosity of the fluid, κ is the permeability of the porous medium, p
is the interstitial fluid pressure, and F accounts for any other forces.

2.1.3. Nanoparticle Transport and Deposition Model

The third part, a nanoparticle transport model, calculates the spatiotemporal concen-
tration of the nanoparticles within the tumour. The transport of nanoparticles in a porous
medium is described by the convection–diffusion–reaction equation, which has gener-
ally been used to model the transport of macromolecular therapeutic particles [11,13,26].
For nanoparticle transport, the reaction term accounts for the deposition of nanoparticles
onto the cell surface as this greatly affects particle concentration within the fluid [27].
The inclusion of a concentration-dependent deposition rate leads to the final convection–
diffusion–deposition equation [18]:

∂C
∂t

= ∇·(De∇C)−∇·(uC)− k f ·C (10)

where C is the molar concentration of the particles in the fluid, De is the effective diffusivity
of the nanoparticles, u is the fluid velocity calculated in the previous nanofluid convection
model, and k f is the deposition rate coefficient of the particles. The expression ∇·(De∇C)
describes the particle diffusion,∇·(uC) represents the particle convection, and k f ·C denotes
the particle deposition onto the cells. The value for De can be estimated using the equation
for predicting particles diffusivity within a fluid [14], in this equation, the diffusivity
is only dependent upon the particle diameter. A recently published study, however,
preformed simulations of nanoparticle diffusion and demonstrated that the diffusivity
of the nanoparticles was dependent upon both particle diameter and surface charge [28].
With the diffusivity increasing by four orders of magnitude when the surface charge
was increased from 0 mV to −20 mV. This is due to the effect of electrostatic repulsion
between the particles themselves. To account for the increase in diffusivity for charged
particles, simulations of the negatively charged particles were run with the diffusivity being
10−7 m2/s.

2.2. Concentration of Deposited Particles

The concentration of particles depositing onto the cell surfaces of the porous medium
is calculated by solving the following ODE throughout the model domain for all time steps:

∂Cd
∂t

=
k f ·C
Sv

(11)
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Here, Cd is the concentration of deposited particles, k f is the rate of particle deposition, C is
the concentration of the particles within the fluid and Sv is the specific surface area. The
specific surface area is the total solid surface in a unit volume and is given by [29]:

Sv = − 6
dc

ε ln(ε) (12)

2.3. Model Setup

The tumour geometry is assumed to be an idealized sphere of radius 3.5 mm. The
needle used to inject nanoparticles has realistic dimensions of a 26 s gauge bevelled tip
needle [30], and the inlet of the needle is set to be at the centre of the tumour. Figure 2 shows
the tumour geometry and a cut plane defined as bisecting the needle shaft. All sections of
the model are implemented using COMSOL Multiphysics 5.6, COMSOL Inc., Stockholm,
Sweden [31]. Meshing was done within COMSOL, with a finer mesh implemented around
the needle tip.
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Figure 2. (a) Idealised tumour geometry with bevelled needle; (b) Cut plane through tumour,
bisecting the needle along its shaft.

The boundary conditions for different parts of the model are as follows: for the
nanofluid convection model, a constant velocity is set at the inlet, the needle tip, and during
injection based on the infusion rate and cross-sectional area of the needle, whereas at the
outlet, the edge of the tumour, the pressure is set to zero. For the nanoparticle transport
model, during injection, at the inlet the particle concentration is set to be constant, simu-
lating continuous infusion. The outlet boundary condition for the particle concentration
is a zero-flux condition at the outer edge of the tumour. When modelling after the end
of injection the assumption is made that the velocity be zero throughout the domain and
so the nanofluid convection model is not solved for this period. In reality, the velocity
will become zero throughout the tumour within a short period of time following the end
of injection, however, the significant reduction in computational cost offsets the slight
simplification of this assumption. After the end of injection, the inlet in the nanoparticle
transport model is converted into a no flux condition.

In addition, the nanofluid convection model is assumed to be steady, this is because
the characteristic time for achieving steady state is approximately 0.05 s and the total time
of injection is 10 s, this disparity allows for the assumption of steady-state interstitial fluid
flow inside the tumour. Unless otherwise specified, all remaining simulation parameters
used in the nanofluid convection and nanoparticle transport models are given in Table 2.
The parameters used to calculate particle deposition from the correlation equations can be
found in Table 3.

Table 2. Properties and parameters for the nanofluid convection and nanoparticle transport models
(Data extracted from [18]).

Parameters and Properties Value

Injection Amount 0.2 cc
Injection Rate 20 × 10−4 L/s
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Table 2. Cont.

Parameters and Properties Value

Needle 26 gauge
Nanoparticle Concentration 0.783 mol/m3

Tumour Porosity 0.4
Tumour Permeability 5 × 10−13 m2

Fluid Density 960 kg/m3

Fluid viscosity 1 × 10−3 kg/(ms)

Nanoparticle diffusivity 10−11 m2/s (0 mV)
10−7 m2/s (−20 mV)

Time step 0.1 s (during injection), 1 s (after injection)

Table 3. Properties and parameters for the correlation equations (Data extracted from [18]).

Parameters and Properties Value

Tumour Porosity, ε 0.4
Fluid Density, ρ f 960 kg/m3

Fluid Viscosity, µ 1 × 10−3 kg/(ms)
Nanoparticle Density, ρp 1060 kg/m3

Cell Diameter, dc 15 × 10−6 m
Cell Surface Charge, ξc −20 mV

Nanoparticle Surface Charge, ξp 0, −20 mV
Particle Diameter, dp 40 × 10−9 m

Fluid Velocity, U 1 × 10−4–1 × 10−1 m/s

Nanoparticle Diffusivity, Dp
1 × 10−11 m2/s (0 mV)
10−7 m2/s (−20 mV)

Hamaker Constant, AH 4 × 10−20 J
Debye–Huckel Parameter, κ 4.51 × 106 (m/mol)1/2

Temperature, T 310.15 K

3. Results and Discussion
3.1. Particles with a Negative Surface Charge

Figure 3 shows concentration contours at the cut plane (defined in Figure 1) for
negatively charged nanoparticles both within the fluid and deposited onto cell surfaces
during the injection at three time points: 2, 5, and 10 s, with 10 s being the end of injection.
The maximum concentration of particles within the fluid does not change during the
injection as this is constrained by the inlet concentration. Additionally, the spatial profile of
the concentration does not change much during the injection, this is due to the transport
mechanisms governing the movement of particles being in a quasi-equilibrium. Particles
are moved away from the injection point by the convective force of the fluid velocity
and additionally by the diffusivity of the particles. This is countered by the deposition
of particles onto cell surfaces, acting to reduce the particle concentration throughout the
tumour. There is some increase in particle concentration further from the injection point
due to the high diffusivity of the particles, while convection will be insignificant far from
the injection point.

The concentration of deposited nanoparticles takes the units mol/m2 as it is the
concentration of particles on the surface of the cells not the concentration of particles in a
volume. The distribution of nanoparticles follows the same spatial pattern both within the
fluid and on cell surfaces. The concentration of the particles deposited on cell surfaces is
only dependent upon the concentration of particles within the fluid and the deposition rate
at that point. Therefore, it is expected that the outer edge of the concentration profiles will
follow the same pattern. There is variation, however, in the pattern of the concentration
magnitude within the profiles. The concentration of particles within the fluid uniformly
decreases when moving away from the injection point. This is due to the decrease in



Pharmaceutics 2022, 14, 1615 7 of 15

the convective velocity moving particles away from the needle tip and an increase in
particle deposition, as deposition is inversely proportional to the fluid velocity. Whereas
the concentration of deposited particles increases and then decreases when moving away
from the injection location. This is because more nanoparticles pass the cells that are closer
to the needle tip during injection, leading to a higher concentration of deposited particles
there. However, as the rate of particle deposition is inversely proportional to the fluid
velocity, fewer particles deposit immediately close to the needle tip where the fluid velocity
is substantially higher. The magnitude of the fluid velocity decreases quickly when moving
out from the needle, as shown in Figure 4. With the region of substantially high velocity
corresponding entirely to the region of lower particle concentration in the immediate
vicinity of the injection point. Beyond this, the velocity has fallen sufficiently that the rate of
particle deposition ceases to be the dominant factor determining the concentration pattern.
The distribution of deposited particles is not studied as frequently as the distribution of
particles within the fluid [17,32,33], but as both will influence the efficacy of radiotherapy it
is equally important to examine the distributions of both.
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The main difference between the three selected time points (at 2, 5, and 10 s) is
the magnitude of the concentration; the spatial distribution of particles does not vary
much beyond 5 s, but the magnitude of concentration still increases. This is clearly seen
for the deposited particles with the maximum deposited concentration increasing from
8.30 × 10−8 mol/m2 at 2 s to 2.31 × 10−7 mol/m2 at 5 s to 4.83 × 10−7 mol/m2 at 10 s.
The concentration of particles within the fluid is constrained by the inlet concentration
and so the maximum concentration does not increase from 2 to 10 s. Figure 5 shows
changes in the concentration of particles within the fluid along the distance from the point
of injection for the three selected time points. It can be seen that although the concentration
close to the injection point remains the same, the concentration further away is constantly
increasing during the injection. This is due to the high diffusivity of the particles; away
from the injection point the fluid velocity is minimal and so the transport of particles is
due to diffusion alone. Although deposition is higher in regions where the velocity is low,
the diffusion is strong enough to continue to transport particles away from the injection
point, increasing the particle concentration there. This increase in concentration far from
the injection point only occurs due to the increased value of diffusivity used for charged
particles, something not considered in previous studies [10,17,19].
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Figure 5. Particle concentration within the fluid during injection at 2 s, 5 s, and 10 s, along the distance
from the point of injection.

Figure 6 shows concentration contours for the distribution of nanoparticles within
the fluid for five different time points: the end of injection, and 3, 6, 12, and 60 s post-
injection. Here, the range of concentration values displayed in the figure has been restricted
to allow for an easier comparison of the magnitude of concentration throughout the time
period. It can be seen that after the end of injection, the concentration profile for particles
in the fluid quickly becomes uniform across the tumour, with the concentration becoming
0.184 mol/m3 throughout the domain by 12 s post-injection. The concentration profile is
unchanged from 12 s to 60 s post-injection as the concentration is uniform and diffusion
no longer has any effect. There is no convective velocity after the end of injection and the
deposition rate of particles is dependent upon the fluid velocity, as this is zero so too is the
deposition rate. As the concentration of deposited particles is dependent on the deposition
rate, the concentration of deposited particles remains constant from the end of injection
until the end of the simulation.
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Figure 6. Concentration contours of charged nanoparticles (−20 mV) within the fluid at; (a) end of
injection, and (b) 3 s, (c) 6 s, (d) 12 s, and (e) 60 s post-injection.

The nanoparticle concentration within the fluid remains constant from 12 s post-
injection to the end of the simulation. However, within the first 12 s post-injection, the max-
imum particle concentration decreases dramatically from 0.784 mol/m3 to 0.184 mol/m3.
Figure 7 displays changes in fluid particle concentration at six time points within the
first 12 s post-injection; here, the effect of particle diffusivity on the maximum particle
concentration is clear. The high effective diffusivity enables nanoparticles in areas of high
concentration to move quickly to areas of low concentration, thereby achieving a uniform
distribution across the tumour in less than 12 s post-injection.
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For the quantitative evaluation of particle volumes within the tumour, a volume
integration was performed using a threshold limit of concentration to set the edge of the
volume containing particles. Figure 8 shows changes in the calculated volume of particles
within the fluid and deposited onto cell surfaces from the start of the injection until 1 min
post-injection, with the concentration thresholds being 0.15 mol/m3 for particles within
the fluid and 1 × 10−8 mol/m2 for the deposited particles. It can be seen that the particle
volume increases during the injection as the convective velocity and diffusion causes the
particles to spread away from the needle tip. After the injection ends, the distribution of
nanoparticles quickly becomes uniform across the tumour driven by their high diffusivity,
and the redistribution of particles causes the concentration further from the injection
point to increase above the threshold limit and so the particle volume becomes that of the
entire tumour. The volume remains constant until the end of the simulation as there is no
further particle transport once the concentration has become uniform. Figure 8b shows
the change in the deposited particle volume, as previously discussed the volume of the
deposited particles depends entirely on the volume of the particles within the fluid and so
the deposited volume also increases rapidly during injection. Beyond this point, no change
in particle volume is seen, as particle deposition is zero after the end of the injection.
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3.2. Particles with Zero Surface Charge

The particle surface charge has been shown to be a very important parameter in
determining the final spread of nanoparticles within a tumour post-injection, both in
previous computational and experimental studies [1,2,10]. Figure 9 shows concentration
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contours for the distribution of uncharged nanoparticles both within the fluid and deposited
onto cell surfaces during the injection at 2, 5, and 10 s. In contrast to the negatively charged
particles, the concentration profile of the particles within the fluid is completely restricted
to the immediate vicinity of the needle tip, with the profile unchanging from 2 s onwards.
This is because uncharged particles have a small diffusivity, and away from the injection
site, once the movement of particles by the convective fluid velocity balances with the
deposition of particles onto cell surfaces, the concentration profile will not change until
after the end of the injection. The concentration of the deposited particles similarly does
not change spatially during the injection, but the magnitude of the concentration does
continue to increase, with the maximum concentration increasing from 4.15× 10−4 mol/m2

at 2 s to 2.08 × 10−3 mol/m2 at 10 s. The substantial difference in particle distribution
pattern between the negatively charged particles and the uncharged particles is due to the
change in the deposition rate and particle diffusivity. With a substantial increase in the
deposition rate for the uncharged particles compared to the negatively charged particles,
the number of particles remaining in the fluid is significantly reduced, resulting in a decline
in particle concentration away from the needle tip. In addition, the effective diffusivity of
the uncharged particles is four orders of magnitude smaller than the negatively charged
particles, significantly reducing the ability of the particles to move away from the needle tip
and resulting in a spatially restricted concentration profile. As the profile of the deposited
particles is dependent upon the profile of the particles within the fluid, this also sees
a substantial reduction in the spread of the particles. However, the magnitude of the
concentration is significantly higher than for the negatively charged particles because the
uncharged particles are confined to a much smaller area.
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As the diffusivity of the uncharged particles is significantly lower, the time taken for
the concentration of the particles in the fluid to become uniform post-injection is greatly
increased as compared to the negatively charged particles. Figure 10 shows the distribution
of the particles within the fluid at 20 min intervals from the end of the injection until 1 h
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post-injection. The high concentration area gradually expands over this period of time
due to the particles’ diffusion but at a much slower rate than for the negatively charged
particles as there is a four orders of magnitude difference between their diffusivities. As the
particle deposition is zero after the end of injection, there is no change the concentration
profile of deposited particles.
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Figure 10. Concentration contours of uncharged nanoparticles within the fluid at; (a) 0 min,
(b) 20 min, (c) 40 min, and (d) 60 min post-injection.

Figure 11 shows the calculated volume of the nanoparticles within the fluid over time
from the start of the injection to the end of the injection and the concentration of particles
deposited onto cell surfaces until 10 s post-injection. This shows that the rate of increase
in the particle volume within the fluid continually decreases until 7 s, then the volume
remains constant until the end of the injection. The shape of the concentration profile
is determined by the balance of the two main transport mechanisms: convection, and
deposition. Close to the needle tip the convective velocity is sufficiently large to move
particles away from the needle; as the fluid velocity declines the rate of deposition increases.
The fraction of particles depositing onto a cell surface is inversely proportional to the fluid
velocity, reaching a point where the volume of the particles no longer increases as these two
competing mechanisms reach a state of equilibrium. The volume of the deposited particles
increases during the injection, following the same pattern as that of the particles within the
fluid, and then remains constant after injection as no further deposition occurs.
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4. Conclusions and Future Perspectives

A three-part computational model to predict the spatio-temporal nanoparticle con-
centration has been developed. The model calculates the fluid velocity and nanoparticle
deposition rate and uses these as inputs to a modified convection–diffusion equation giv-
ing the concentration of particles within the fluid and those deposited onto cell surfaces
throughout the tumour over time. The concentration of the deposited particles has not been
discussed in previous works [17,32,33], but is important for understanding the transport
and distribution of nanoparticles. The spatial distribution of nanoparticles within the
tumour is dependent upon the balance of the three transport mechanisms, fluid convection,
particle diffusion, and particle deposition. For negatively charged particles during injection,
convection and diffusion are more significant than deposition, with particles successfully
moving away from the injection point. After injection, only diffusion still acts, causing the
magnitude of the particle concentration in the fluid to become uniform across the tumour.
Simulation results for uncharged particles have shown a significant reduction in the overall
spread of particles away from the injection location, both for particles within the fluid,
178.7 mm3 to 15.7 mm3, and those deposited onto cell surfaces, 178.7 mm3 to 9.3 mm3,
due to both their much lower diffusivity and increased rate of deposition compared to the
negatively charged particles. The effect of particle surface charge on effective diffusivity has
been investigated by Yuan et al. [27], who reported that the surface charge of nanoparticles
can have a significant effect on the magnitude of their diffusivity; negatively charged
nanoparticles were shown to have a diffusivity 10,000 times greater than uncharged par-
ticles. To the author’s knowledge, there have been no studies that take into account this
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variation in diffusivity when analyzing the effect of varying nanoparticle surface charge on
the final nanoparticle distribution.

Several other factors can also influence the spatial distribution of nanoparticles in solid
tumours, including the shape and size of the tumour [11], the tumour characteristics [14,34],
the location of injection site [35,36], the number of injections [32,33], the nanoparticle
concentration [37], and the injection rate [10,17], etc. The current model is limited to
idealised geometry, a single injection point, and a simplified characterization of the tumour
material. In the future, the model will be extended to account for a realistic shape of the
tumour and its deformability. The influence of the injection location and the injection rate
on the final particle concentration profile will also be investigated.
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