The Finite Element Analysis Research on Microneedle Design Strategy and Transdermal Drug Delivery System
Abstract
:1. Introduction
2. MNs Design Strategy by FEA
2.1. Based on the Matrix Materials of MNs
2.2. Based on the Morphology of MNs
3. Characteristics of Skin Mechanics and FEA Models
4. Skin Permeability and the Drug Transport Processes
5. The FEA Research on Drug Delivery by MNs
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.S.; Kong, Y.; Wang, Y.; Luo, Y.; Fan, X.; Xie, X.; Yang, B.R.; Wu, M.X. Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials 2020, 232, 119740. [Google Scholar] [CrossRef]
- Pahal, S.; Badnikar, K.; Ghate, V.; Bhutani, U.; Nayak, M.M.; Subramanyam, D.N.; Vemula, P.K. Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. Eur. J. Pharm. Biopharm. 2021, 159, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, R.; Wang, S.; Yang, X.; Ling, G.; Zhang, P. Fabrication, evaluation and applications of dissolving microneedles. Int. J. Pharm. 2021, 604, 120749. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Kahkoska, A.R.; Wang, J.; Buse, J.B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev. 2019, 139, 51–70. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lai, K.Y.; Chiu, Y.H.; Wu, Y.W.; Shiau, A.L.; Chen, M.C. Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomater. 2019, 97, 230–238. [Google Scholar] [CrossRef]
- Gadag, S.; Narayan, R.; Nayak, A.S.; Catalina Ardila, D.; Sant, S.; Nayak, Y.; Garg, S.; Nayak, U.Y. Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy. Int. J. Pharm. 2021, 606, 120877. [Google Scholar] [CrossRef]
- Fakhraei Lahiji, S.; Seo, S.H.; Kim, S.; Dangol, M.; Shim, J.; Li, C.G.; Ma, Y.; Lee, C.; Kang, G.; Yang, H.; et al. Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials 2018, 167, 69–79. [Google Scholar] [CrossRef]
- Dangol, M.; Kim, S.; Li, C.G.; Fakhraei Lahiji, S.; Jang, M.; Ma, Y.; Huh, I.; Jung, H. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J. Control. Release 2017, 265, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomed. 2019, 14, 1633–1657. [Google Scholar] [CrossRef] [Green Version]
- Gholami, S.; Mohebi, M.M.; Hajizadeh Saffar, E.; Ghanian, M.H.; Zarkesh, I.; Baharvand, H. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. Int. J. Pharm. 2019, 558, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Tabish, T.A.; Abbas, A.; Narayan, R.J. Graphene nanocomposites for transdermal biosensing. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1699. [Google Scholar] [CrossRef] [PubMed]
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Cai, B.; Quan, G.; Peng, T.; Yao, G.; Zhu, C.; Wu, Q.; Ran, H.; Pan, X.; Wu, C. Novel strategy for immunomodulation: Dissolving microneedle array encapsulating thymopentin fabricated by modified two-step molding technology. Eur. J. Pharm. Biopharm. 2018, 122, 104–112. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, L.; Li, J.; Yao, L.; Chen, Y.; Liu, B.; Jiang, L. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018, 65, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Economidou, S.N.; Douroumis, D. 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential. Adv. Drug Deliv. Rev. 2021, 173, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Gadeela, P.R.; Thathireddy, P.; Venuganti, V.V.K. Microneedle-based drug delivery: Materials of construction. J. Chem. Sci. 2019, 131, 90. [Google Scholar] [CrossRef] [Green Version]
- Lutton, R.; Moore, J.; Larrañeta, E.; Ligett, S.; Woolfson, A.D.; Donnelly, R.F. Microneedle characterisation: The need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv. Transl. Res. 2015, 5, 313–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, H.A.E.; Grice, J.E.; Mohammed, Y.; Namjoshi, S.; Roberts, M.S. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr. Drug Deliv. 2019, 16, 444–460. [Google Scholar] [CrossRef]
- Suzuki, S.; Suzuki, N.; Hattori, A.; Hayashibe, M.; Hashizume, M. Tele-surgery simulation with a patient organ model for robotic surgery training. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2010, 1, 80–88. [Google Scholar] [CrossRef]
- Westervelt, A.R.; Myers, K.M. Computer modeling tools to understand the causes of preterm birth. Semin. Perinatol. 2017, 41, 485–492. [Google Scholar] [CrossRef]
- Smiljana, Đ.; Marko, R.-Š.; Miloš, R.; Bojana, A.Ć.; Nenad, F. Finite Element Modelling of Cardiac Ischemia and Data Mining Application for Ischemic Detection and Localization. Proceedings 2018, 2, 410. [Google Scholar]
- Herrera, A.; Ibarz, E.; Cegoñino, J.; Lobo Escolar, A.; Puértolas, S.; López, E.; Mateo, J.; Gracia, L. Applications of finite element simulation in orthopedic and trauma surgery. World J. Orthop. 2012, 3, 25–41. [Google Scholar] [CrossRef]
- Sahai, N.; Gogoi, M. Computer aided designing and finite element analysis for development of porous 3D tissue scaffold—A review. Int. J. Biomed. Eng. Technol. 2020, 33, 174. [Google Scholar] [CrossRef]
- Feng, Z. Modeling of Blast Wave and Its Effect on the Human/Animal Body. In Basic Finite Element Method as Applied to Injury Biomechanics; Academic Press: Cambridge, MA, USA, 2018; pp. 689–701. [Google Scholar]
- Hashash, Y.; Jung, S.; Ghaboussi, J. Numerical implementation of a neural network based material model in finite element analysis. Int. J. Numer. Methods Eng. 2004, 59, 989–1005. [Google Scholar] [CrossRef]
- Yadav, P.R.; Pattanayek, S.K.; Das, D.B.; Han, T.; Olatunji, O. Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug Delivery: Trends and Progress. Pharmaceutics 2020, 12, 693. [Google Scholar] [CrossRef]
- Herbst, E.C.; Lautenschlager, S.; Bastiaans, D.; Miedema, F.; Scheyer, T.M. Modeling tooth enamel in FEA comparisons of skulls: Comparing common simplifications with biologically realistic models. iScience 2021, 24, 103182. [Google Scholar] [CrossRef]
- Johnson, K.L.; Trim, M.W.; Mao, Y.; Rhee, H.; Williams, L.N.; Liao, J.; Griggs, J.; Horstemeyer, M.F.; Duan, Y. Finite element analysis of a ram brain during impact under wet and dry horn conditions. J. Mech. Behav. Biomed. Mater. 2021, 119, 104400. [Google Scholar] [CrossRef] [PubMed]
- Mendez, V.; Di Giuseppe, M.; Pasta, S. Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Comput. Biol. Med. 2018, 100, 221–229. [Google Scholar] [CrossRef]
- Ali, R.; Mehta, P.; Arshad, M.; Kucuk, I.; Chang, M.; Ahmad, Z. Transdermal microneedles—A materials perspective. AAPS Pharmscitech 2020, 21, 12. [Google Scholar] [CrossRef]
- Kang, N.W.; Kim, S.; Lee, J.Y.; Kim, K.T.; Choi, Y.; Oh, Y.; Kim, J.; Kim, D.D.; Park, J.H. Microneedles for drug delivery: Recent advances in materials and geometry for preclinical and clinical studies. Expert Opin. Drug Deliv. 2021, 18, 929–947. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Xian, Y.; Singh, P.; Feng, J.; Cui, S.; Carrier, A.; Oakes, K.; Luan, T.; Zhang, X. Multifunctional Graphene-Oxide-Reinforced Dissolvable Polymeric Microneedles for Transdermal Drug Delivery. ACS Appl. Mater. Interfaces 2020, 12, 352–360. [Google Scholar] [CrossRef]
- Al Japairai, K.; Mahmood, S.; Almurisi, S.H.; Venugopal, J.R.; Raman, S. Current Trends in Polymer Microneedle for Transdermal Drug Delivery. Int. J. Pharm. 2020, 587, 119673. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, R.; Singh, M.; Nguyen, H.X.; Jonnalagadda, S. A review of recent advances in microneedle technology for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020, 59, 101923. [Google Scholar] [CrossRef]
- Vora, L.K.; Courtenay, A.J.; Tekko, I.A.; Larraeta, E.; Donnelly, R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2019, 146, 290–298. [Google Scholar] [CrossRef]
- Roy, G.; Galigama, R.D.; Thorat, V.S.; Garg, P.; Venuganti, V. Microneedle ocular patch: Fabrication, characterization and ex-vivo evaluation using pilocarpine as model drug. Drug Dev. Ind. Pharm. 2020, 46, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Demir, Y.K.; Zafer, A.; Oya, K.; Vipul, B. Characterization of Polymeric Microneedle Arrays for Transdermal Drug Delivery. PLoS ONE 2013, 8, e77289. [Google Scholar]
- Kim, J.D.; Kim, M.; Yang, H.; Lee, K.; Jung, H. Droplet-born air blowing: Novel dissolving microneedle fabrication. J. Control. Release 2013, 170, 430–436. [Google Scholar] [CrossRef]
- Moronkeji, K.; Todd, S.; Dawidowska, I.; Barrett, S.D.; Akhtar, R. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin. J. Control. Release 2017, 265, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Zhang, Z.; He, P.; Zhang, Z.; Sun, X. Determination of the mechanical properties of polymeric microneedles by micromanipulation. J. Mech. Behav. Biomed. Mater. 2021, 117, 104384. [Google Scholar] [CrossRef]
- Wang, Q.L.; Ren, J.W.; Chen, B.Z.; Jin, X.; Zhang, C.Y.; Guo, X.D. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J. Ind. Eng. Chem. 2018, 59, 251–258. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Qian, W.; Zhu, J.; Chen, B.; Yang, J.; Xia, Y. Characterization of mechanical properties of epoxy/nanohybrid composites by nanoindentation. Nanotechnol. Rev. 2020, 9, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Loizidou, E.Z.; Williams, N.A.; Barrow, D.A.; Eaton, M.J.; McCrory, J.; Evans, S.L.; Allender, C.J. Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur. J. Pharm. Biopharm. 2015, 89, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Kanakaraj, U.; Lhaden, T. Analysis of structural mechanics of solid microneedle using COMSOL software. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (Iciiecs), Coimbatore, India, 19–20 March 2015; pp. 1–5. [Google Scholar]
- Kong, X.; Zhou, P.; Wu, C. Numerical simulation of microneedles’ insertion into skin. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 827–835. [Google Scholar] [CrossRef]
- Juster, H.; Bart, V.D.A.; De Brouwer, H. A Review on Microfabrication of Thermoplastic Polymer-Based Microneedle Arrays. Polym. Eng. Sci. 2019, 59, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wang, C.; Yan, L.; Huang, L.; Zhu, X.; Chen, B.; Sant, H.J.; Niu, X.; Zhu, G.; Yu, K.N. Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. J. Mater. Chem. B 2014, 2, 1699. [Google Scholar] [CrossRef] [PubMed]
- Boehm, R.D.; Daniels, J.; Stafslien, S.; Nasir, A.; Lefebvre, J.; Narayan, R.J. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases 2015, 10, 11004. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Prausnitz, M.R. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force. J. Korean Phys. Soc. 2010, 56, 1223–1227. [Google Scholar] [CrossRef]
- Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release 2012, 161, 645–655. [Google Scholar] [CrossRef]
- Xenikakis, I.; Tzimtzimis, M.; Tsongas, K.; Andreadis, D.; Demiri, E.; Tzetzis, D.; Fatouros, D.G. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur. J. Pharm. Sci. 2019, 137, 104976. [Google Scholar] [CrossRef]
- Ayittey, P.N.; Walker, J.S.; Rice, J.J.; de Tombe, P.P. Glass microneedles for force measurements: A finite-element analysis model. Pflügers Arch. Eur. J. Physiol. 2008, 457, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.Y.; Kuo, H.C.; Lin, Y.; Lee, J.L.; Shen, Y.K.; Kang, S.J. Optimal Design of Microneedles Inserts into skin by Numerical Simulation. Key Eng. Mater. 2012, 516, 624–628. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Campbell, S.A.; Karthikeyan, S. Finite element analysis of hollow out-of-plane HfO 2 microneedles for transdermal drug delivery applications. Biomed. Microdevices 2018, 20, 19. [Google Scholar] [CrossRef]
- Kochhar, J.S.; Quek, T.C.; Wei, J.S.; Choi, J.; Shui, Z.; Kang, L. Effect of Microneedle Geometry and Supporting Substrate on Microneedle Array Penetration into Skin. J. Pharm. Sci. 2013, 102, 4100–4108. [Google Scholar] [CrossRef]
- Loizidou, E.Z.; Inoue, N.T.; Ashton-Barnett, J.; Barrow, D.A.; Allender, C.J. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur. J. Pharm. Biopharm. 2016, 107, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Chen, Y.; Shi, Y. Microneedles: A potential strategy in transdermal delivery and application in the management of psoriasis. RSC Adv. 2020, 10, 14040–14049. [Google Scholar] [CrossRef]
- Hoang, M.T.; Ita, K.B.; Bair, D.A. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride. Pharmaceutics 2015, 7, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.N.; Ghazali, N.N.N.; Wong, Y.H. Mechanical and fluidic analysis of hollow side-open and outer-grooved design of microneedles. Mater. Today Commun. 2021, 29, 102940. [Google Scholar] [CrossRef]
- García, J.; Rios, I.; Fonthal, F. Structural and microfluidic analysis of microneedle array for drug delivery. In Proceedings of the 2016 31st Symposium on Microelectronics Technology and Devices, Belo Horizonte, Brazil, 29 August–3 September 2016; pp. 1–4. [Google Scholar]
- Yafei, W. Modeling and Analysis on the Process of Inserting Microneedle into Skin; Henan University: Kaifeng, China, 2019. [Google Scholar]
- Xenikakis, I.; Tsongas, K.; Tzimtzimis, E.K.; Katsamenis, O.L.; Demiri, E.; Zacharis, C.K.; Georgiou, D.; Kalogianni, E.P.; Tzetzis, D.; Fatouros, D.G. Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. J. Drug Deliv. Sci. Technol. 2022, 67, 102891. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, P.; Sun, Y.; Wang, Y.; Zhang, X.; Yang, Z.; Ding, G. A Minimally Invasive Hollow Microneedle With a Cladding Structure: Ultra-Thin but Strong, Batch Manufacturable. IEEE Trans. Biomed. Eng. 2019, 66, 3480–3485. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, S.; Izumi, H.; Fukuda, M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens. Actuators A Phys. 2008, 143, 20–28. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Y.; Lee, W.; Ren, L.; Liu, B. Additive Manufacturing of Honeybee-inspired Microneedle for Easy Skin Insertion and Difficult Removal. ACS Appl. Mater. Interfaces 2018, 10, 29338–29346. [Google Scholar] [CrossRef]
- Maeda, T.; Arakawa, N.; Takahashi, M.; Aizu, Y. Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model. Opt. Rev. 2010, 17, 223–229. [Google Scholar] [CrossRef]
- Yudovsky, D.; Pilon, L. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl. Opt. 2010, 49, 1707–1719. [Google Scholar] [CrossRef] [Green Version]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 2002, 65, 109. [Google Scholar] [CrossRef] [Green Version]
- Dehdashtian, A.; Stringer, T.P.; Warren, A.J.; Mu, E.W.; Amirlak, B.; Shahabi, L. Anatomy and Physiology of the Skin. In Melanoma: A Modern Multidisciplinary Approach; Springer International Publishing: Cham, Switzerland, 2018; pp. 15–26. [Google Scholar]
- Kang, G.; Wu, X. Ratchetting of porcine skin under uniaxial cyclic loading. J. Mech. Behav. Biomed. Mater. 2011, 4, 498–506. [Google Scholar] [CrossRef]
- Olsson, R.; Block, T.B. Criteria for skin rupture and core shear cracking induced by impact on sandwich panels. Compos. Struct. 2015, 125, 81–87. [Google Scholar] [CrossRef]
- Joodaki, H.; Panzer, M.B. Skin mechanical properties and modeling: A review. Proc. Inst. Mech. Eng. Part H 2018, 232, 323–343. [Google Scholar] [CrossRef]
- Groves, R.B.; Coulman, S.A.; Birchall, J.C.; Evans, S.L. An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 2013, 18, 167–180. [Google Scholar] [CrossRef]
- Benítez, J.M.; Montáns, F.J. The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. 2017, 190, 75–107. [Google Scholar] [CrossRef]
- Engebretsen, K.A.; Johansen, J.D.; Kezic, S.; Linneberg, A.; Thyssen, J.P. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Annaidh, A.N.; Roccabianca, S. A microstructurally inspired constitutive model for skin mechanics. Biomech. Modeling Mechanobiol. 2020, 19, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Luca, J.; Adams, B.B.; Yosipovitch, G. Skin manifestations of athletes competing in the summer olympics: What a sports medicine physician should know. Sports Med. 2012, 42, 399. [Google Scholar] [CrossRef]
- Dobrev, H.P. In vivo study of skin mechanical properties in patients with systemic sclerosis. J. Am. Acad. Dermatol. 1999, 40, 436–442. [Google Scholar] [CrossRef]
- Chao, C.; Zheng, Y.P.; Cheing, G. Epidermal Thickness and Biomechanical Properties of Plantar Tissues in Diabetic Foot. Ultrasound Med. Biol. 2011, 37, 1029–1038. [Google Scholar] [CrossRef]
- Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Diridollou, S.; Patat, F.; Gens, F.; Vaillant, L.; Black, D.; Lagarde, J.M.; Gall, Y.; Berson, M. In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 2000, 6, 214–221. [Google Scholar] [CrossRef]
- Manschot, J.F.M.; Brakkee, A.J.M. The measurement and modelling of the mechanical properties of human skin in vivo—II. The model. J. Biomech. 1986, 19, 517–521. [Google Scholar] [CrossRef]
- Lévêque, J.; Audoly, B. Influence of Stratum Corneum on the entire skin mechanical properties, as predicted by a computational skin model. Skin Res. Technol. 2013, 19, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Antona-Makoshi, J.; Alshareef, A.; Giudice, J.S.; Panzer, M.B. Investigation of Cross-Species Scaling Methods for Traumatic Brain Injury Using Finite Element Analysis. J. Neurotrauma 2020, 37, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Flynn, C.; McCormack, B.A.O. Simulating the wrinkling and aging of skin with a multi-layer finite element model. J. Biomech. 2010, 43, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Meliga, S.C.; Coffey, J.W.; Crichton, M.L.; Flaim, C.; Veidt, M.; Kendall, M.A.F. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Acta Biomater. 2017, 48, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.Q.; Wu, C.W. Measurement and Prediction of Insertion Force for the Mosquito Fascicle Penetrating into Human Skin. J. Bionic Eng. 2009, 6, 143–152. [Google Scholar] [CrossRef]
- Chen, S.; Li, N.; Chen, J. Finite element analysis of microneedle insertion into skin. Micro Nano Lett. 2012, 7, 1206–1209. [Google Scholar] [CrossRef]
- Amiri, Y.; Vahidi, B. Three dimensional simulation of the microneedle penetration process in the skin by finite element method. In Proceedings of the 2019 26th National and 4th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 27–28 November 2019. [Google Scholar]
- Shu, W.; Heimark, H.; Bertollo, N.; Tobin, D.J.; O’Cearbhaill, E.D.; Annaidh, A.N. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomater. 2021, 135, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, G.; Barry, B.W.; Williams, A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci. 2008, 34, 203–222. [Google Scholar] [CrossRef]
- Dragicevic, N.; Maibach, H.I. Skin Deep: The Basics of Human Skin Structure and Drug Penetration; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L. Mathematical models of skin permeability: An overview. Int. J. Pharm. 2011, 418, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Frasch, H.F.; Barbero, A.M. Application of numerical methods for diffusion-based modeling of skin permeation. Adv. Drug Deliv. Rev. 2013, 65, 208–220. [Google Scholar] [CrossRef]
- Barbero, A.M.; Frasch, H.F. Transcellular route of diffusion through stratum corneum: Results from finite element models. J. Pharm. Sci. 2006, 95, 2186–2194. [Google Scholar] [CrossRef]
- Calcutt, J.J.; Roberts, M.S.; Anissimov, Y.G. Modeling drug transport within the viable skin—A review. Expert Opin. Drug Metab. Toxicol. 2020, 17, 105–119. [Google Scholar] [CrossRef]
- Gu, Y.; Gu, Q.; Yang, Q.; Yang, M.; Wang, S.; Liu, J. Finite Element Analysis for Predicting Skin Pharmacokinetics of Nano Transdermal Drug Delivery System Based on the Multilayer Geometry Model. Int. J. Nanomed. 2020, 15, 6007–6018. [Google Scholar] [CrossRef] [PubMed]
- Rim, J.E.; Pinsky, P.M.; Osdol, W. Finite Element Modeling of Coupled Diffusion with Partitioning in Transdermal Drug Delivery. Ann. Biomed. Eng. 2005, 33, 1422–1438. [Google Scholar] [CrossRef] [PubMed]
- Khanday, M.A.; Rafiq, A. Variational finite element method to study the absorption rate of drug at various compartments through transdermal drug delivery system. Alex. J. Med. 2015, 51, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Römgens, A.M.; Bader, D.L.; Bouwstra, J.A.; Baaijens, F.P.T.; Oomens, C.W.J. Diffusion profile of macromolecules within and between human skin layers for (trans)dermal drug delivery. J. Mech. Behav. Biomed. Mater. 2015, 50, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.C.; He, J.S.; Tsai, M.T.; Lin, K.C. Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. J. Mater. Chem. B 2015, 3, 276–285. [Google Scholar] [CrossRef]
- Rattanapak, T.; Birchall, J.; Young, K.; Ishii, M.; Meglinski, I.; Rades, T.; Hook, S. Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using Optical Coherence Tomography and Two-Photon Microscopy. J. Control. Release 2013, 172, 894–903. [Google Scholar] [CrossRef]
- Hansen, F.S.; Wenande, E.; Haedersdal, M.; Fuchs, C. Microneedle fractional radiofrequency-nduced micropores evaluated by in vivo reflectance confocal microscopy, optical coherence tomography, and histology. Skin. Res. Technol. 2019, 24, 482–488. [Google Scholar] [CrossRef]
- Khalil, M.A.; Saleh, A.A.; Gohar, S.M.; Khalil, D.H.; Said, M. Optical coherence tomography findings in patients with bipolar disorder. J. Affect. Disord. 2017, 218, 115–122. [Google Scholar] [CrossRef]
- Chavoshi, S.; Rabiee, M.; Rafizadeh, M.; Rabiee, N.; Shamsabadi, A.S.; Bagherzadeh, M.; Salarian, R.; Tahriri, M.; Tayebi, L. Mathematical modeling of drug release from biodegradable polymeric microneedles. Bio-Des. Manuf. 2019, 2, 96–107. [Google Scholar] [CrossRef]
- Benslimane, A.; Fatmi, S.; Taouzinet, L.; Hammiche, D. Mathematical modeling of transdermal drug delivery using microneedle. Mater. Today Proc. 2022, 53, 213–217. [Google Scholar] [CrossRef]
- Al Qallaf, B.; Das, D.B.; Mori, D.; Cui, Z. Modelling transdermal delivery of high molecular weight drugs from microneedle systems. Philos. Trans. 2007, 365, 2951–2967. [Google Scholar] [CrossRef] [PubMed]
- Lyashko, S.I.; Klyushin, D.A.; Onotskyi, V.V.; Lyashko, N.I. Optimal Control of Drug Delivery from Microneedle Systems. Cybern. Syst. Anal. 2018, 54, 357–365. [Google Scholar] [CrossRef]
- Machekposhti, S.A.; Soltani, M.; Najafizadeh, P.; Ebrahimi, S.A.; Chen, P. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. J. Control. Release 2017, 261, 87–92. [Google Scholar] [CrossRef]
- Zoudani, E.L.; Soltani, M. A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: Extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery. Eur. J. Pharm. Sci. 2020, 150, 105339. [Google Scholar] [CrossRef]
- Castilla Casadiego, D.A.; Carlton, H.; Gonzalez Nino, D.; Miranda Muñoz, K.A.; Daneshpour, R.; Huitink, D.; Prinz, G.; Powell, J.; Greenlee, L.; Almodovar, J. Design, characterization, and modeling of a chitosan microneedle patch for transdermal delivery of meloxicam as a pain management strategy for use in cattle. Mater. Sci. Eng: C 2021, 118, 111544. [Google Scholar] [CrossRef]
- Kjla, B.; Ssj, C.; Dong, H.; Dong, Y.; Hkc, D.; Ehl, C. A practical guide to the development of microneedle systems—In clinical trials or on the market—ScienceDirect. Int. J. Pharm. 2020, 573, 118778. [Google Scholar]
- Trivedi, S. Finite element analysis: A boon to dentistry. J. Oral Biol. Craniofacial Res. 2014, 4, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Ita, K. Reflections on the Insertion and Fracture Forces of Microneedles. Curr. Drug Deliv. 2016, 13, 357–363. [Google Scholar] [CrossRef]
- Engelke, K.; van Rietbergen, B.; Zysset, P. FEA to measure bone strength: A review. Clin. Rev. Bone Miner. Metab. 2016, 14, 26–37. [Google Scholar] [CrossRef]
Microneedle Material | [kg/m3] | Young’s Modulus E [GPa] | Yield Strength [GPa] | Characteristic | |
---|---|---|---|---|---|
Silicon | 2329 | 170 | 0.28 | 7 | Brittle materials with good stiffness, hardness, and biocompatibility |
Polysilicon | 2320 | 169 | 0.22 | 7 | High strength, acid and alkali resistance, high-temperature resistance |
Silicon Carbide | 3216 | 748 | 0.45 | 21 | Anti-oxidation, low thermal expansion, erosion resistance, corrosion resistance, low density, high strength, high modulus, wear resistance |
Borosilicate glass | 2230 | 66.3 | 0.22 | 3.6 | Good mechanical properties |
Titanium | 4506 | 115.7 | 0.321 | 0.1625 | Low cost, excellent mechanical properties |
Steel | 7850 | 200 | 0.33 | 0.250 | Has excellent comprehensive mechanical properties, easily broken and left in the body |
Silk | 1340 | 8.55 | 0.4 | 0.500 | Has excellent toughness and ductility |
Maltose | 1812 | 7.42 | 0.3 | 7.44 | Very common excipient in FDA-approved parenteral formulations, the most commonly used sugar for preparation of MNs, easily absorbs moisture |
Polycarbonate (PC) | 1210 | 2.4 | 0.37 | 0.070 | Good biodegradability and biocompatibility |
Polyurethane (PU) | 1120 | 0.055 | 0.39 | 0.000196 | High abrasion resistance, low-temperature capability, ambient curing, and comparatively low cost |
Polyvinyl pyrrolidone 58 (PVP 58) | 1062 | 2.4 | / | / | Too brittle |
Polylactic acid (PLA) | 1251.5 | 1.280 | 0.36 | 0.05345 | Higher modulus of elasticity |
Poly-L-Glutamic Acid (PGA) | 1530 | 9.9 ± 0.3 | 0.3 | 0.09 | Has a higher modulus of elasticity |
Poly Lactic-co-Glycolic Acid (PLGA) | 1000 | 3 | / | 0.05 | Combined with other quick-release materials in different ways to achieve various purposes |
Model Diagram | Constitutive Model | Material Parameters | Positives and Negatives | Ref. |
---|---|---|---|---|
Stratum corneum: Isotropic Neo-Hookean (J − 1) Dermis: = )] + B{cosh(JX − 1) − 1} Hypodermis: Isotropic Hyperelastic Yeoh = (J − 1)6 | Stratum corneum: Relative humidities (RH): 30%, 75%, 85%, 92%, 96%, 100% Young’s modulus, E(MPa): 960, 240, /, /, /, 5–6 C10(MPa): 160, 40, 24, 12, 4, 1 D1(MPa): 0.00025, 0.00101, 0.00169, 0.00338, 0.01013, 0.0405 Hypodermis: C10(KPa): 1.649, C20(KPa): −1.136, C30(KPa): −1.792 | It can replicate the changes in skin layers with different properties and different inherent tension in the process of wrinkle formation. However, since the surface of real skin is not perfectly smooth and the surface where wrinkles form is not flat, the model is just a simplification of real skin. | [87] | |
Stratum corneum: Isotropic Neo-Hooken (I1 − 3) Dermis: Isotropic Neo-Hooken (I1 − 3) Hypodermis: Elastic | Stratum corneum: : 37 Dermis: : 7 Hypodermis: Young’modulus, E(Pa): 3.4 × 104, : 0.48 | It can successfully predict the deformation and damage of multi-layer skin and the penetration force of micro acupuncture into the skin. However, the skin failure model requires programming in a subroutine. | [89] | |
Stratum corneum: Hyperelastic Ogden model (α = 8.68) Viable epidermis: Hyperelastic Ogden model (α = 20.68) ) Dermis: Hyperelastic Ogden model (α = 57.89) ) Hypodermis: Elastic | Stratum corneum: : 0.752 Viable epidermis: : 0.489 Dermis: : 7.33 Hypodermis: : 3.4 × 104 | A non-linear finite element model was established, the failure criterion was combined with the eroding surface-to-surface contact method to analyze the rupture of the skin. | [90] | |
Epiderm: Ogden model Dermis: Ogden model Material failure criterion: Cohesive method G1 + (G2 − G1)(2G2/(G1 + G2))ƞ = Gc | Epiderm: : 2.9814; : 4.0991 Dermis: : 3.2876; : 0.0226 | Using the cohesive model and energy-based method to predict the path of skin injury and the contact between microneedles. It can be evaluated without defining life and death units. | [91] | |
Epidermis: Elastic Dermis: Elastic | Epidermis: : 1;: 0.495 Dermis: : 0.066; : 0.495 | The skin was defined as a linear elastic material, which can not predict skin damage and failure. | [44] | |
Stratum corneum: Hyperelastic Ogden model Viable epidermis: Hyperelastic Ogden model Dermis: Hyperelastic Ogden model | Stratum corneum: : 3.35; Stretch exponent α: 5.77 Viable epidermis: : 2.7 Stretch exponent α: 27.6 Dermis: = 27.4 Stretch exponent α: 15.5 | It can simulate the damaged characteristics of the skin, describe the fractured image, and predict the fracture depth. However, this model does not appear to be appropriate due to different behavior of the skin and ductile materials. | [88] | |
Stratum corneum: Neo-Hookean Dermis: Gasser-Ogden-Holzapfel Hypodermis: Linear elastic material | Stratum corneum: :10; Compressibility value, D1: 1.03 × 10−7 Dermis: : 24.53; k2: 0.1327; Compressibility value, D1: 1.03 × 10−7 Hypodermis: : 34 Poisson’s ratio: 0.48 | A two-analysis step (Skin Stretching-Microneedle Penetration) was employed,, which can provide a quantitative and detailed analysis of the microneedle-skin interaction. However, mesh dependency is a major challenge. | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Shen, S.; Wang, Y.; Weng, J.; Wan, A.; Yang, G.; Feng, L. The Finite Element Analysis Research on Microneedle Design Strategy and Transdermal Drug Delivery System. Pharmaceutics 2022, 14, 1625. https://doi.org/10.3390/pharmaceutics14081625
Yan Q, Shen S, Wang Y, Weng J, Wan A, Yang G, Feng L. The Finite Element Analysis Research on Microneedle Design Strategy and Transdermal Drug Delivery System. Pharmaceutics. 2022; 14(8):1625. https://doi.org/10.3390/pharmaceutics14081625
Chicago/Turabian StyleYan, Qinying, Shulin Shen, Yan Wang, Jiaqi Weng, Aiqun Wan, Gensheng Yang, and Lili Feng. 2022. "The Finite Element Analysis Research on Microneedle Design Strategy and Transdermal Drug Delivery System" Pharmaceutics 14, no. 8: 1625. https://doi.org/10.3390/pharmaceutics14081625
APA StyleYan, Q., Shen, S., Wang, Y., Weng, J., Wan, A., Yang, G., & Feng, L. (2022). The Finite Element Analysis Research on Microneedle Design Strategy and Transdermal Drug Delivery System. Pharmaceutics, 14(8), 1625. https://doi.org/10.3390/pharmaceutics14081625