Exposure–Response Analysis of Osimertinib in Patients with Advanced Non-Small-Cell Lung Cancer
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Data Collection
2.2. Ethics
2.3. Plasma Drug Assay
2.4. Pharmacogenetic Analysis
2.5. Population Pharmacokinetic Analysis for Osimertinib
2.5.1. Structural and Statistical Model
2.5.2. Covariate Analysis
2.5.3. Parameter Estimation and Model Selection
2.5.4. Osimertinib Individual PK Parameters
2.6. Pharmacokinetic Analysis for Erlotinib
2.7. Clinical Endpoints
2.8. Statistical Analysis
3. Results
3.1. Patients
3.2. Pharmacogenetic Data
3.3. Osimertinib Population PK Analysis
3.4. Exposure–Toxicity Analysis for Osimertinib
3.5. Exposure–Survival Analysis for Osimertinib
3.6. Exposure–Survival Analysis for Erlotinib
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Girard, N. Optimizing outcomes in EGFR mutation-positive NSCLC: Which tyrosine kinase inhibitor and when? Future Oncol. 2018, 14, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- EGFR-Independent Mechanisms of Acquired Resistance to AZD9291 in EGFR T790M-Positive NSCLC Patients|Annals of Oncology|Oxford Academic. Available online: https://academic.oup.com/annonc/article/26/10/2073/144546 (accessed on 18 November 2018).
- Rossi, A.; Muscarella, L.A.; Di Micco, C.; Carbonelli, C.; D’alessandro, V.; Notarangelo, S.; Palomba, G.; Sanpaolo, G.; Taurchini, M.; Graziano, P.; et al. Pharmacokinetic drug evaluation of osimertinib for the treatment of non-small cell lung cancer. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.-L.; Ahn, M.-J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; et al. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Yang, J.C.-H.; Lee, C.K.; Kurata, T.; Kim, D.-W.; John, T.; Nogami, N.; Ohe, Y.; Mann, H.; Rukazenkov, Y.; et al. Osimertinib As First-Line Treatment of EGFR Mutation–Positive Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2017, 36, 841–849. [Google Scholar] [CrossRef]
- Jänne, P.A.; Yang, J.C.-H.; Kim, D.-W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.-J.; Kim, S.-W.; Su, W.-C.; Horn, L.; et al. AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Assessment Report: Tagrisso (osimertinib). Available online: https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf (accessed on 29 April 2022).
- Brown, K.; Comisar, C.; Witjes, H.; Maringwa, J.; de Greef, R.; Vishwanathan, K.; Cantarini, M.; Cox, E. Population pharmacokinetics and exposure-response of osimertinib in patients with non-small cell lung cancer. Br. J. Clin. Pharmacol. 2017, 83, 1216–1226. [Google Scholar] [CrossRef]
- Dickinson, P.A.; Cantarini, M.V.; Collier, J.; Frewer, P.; Martin, S.; Pickup, K.; Ballard, P. Metabolic Disposition of Osimertinib in Rats, Dogs, and Humans: Insights into a Drug Designed to Bind Covalently to a Cysteine Residue of Epidermal Growth Factor Receptor. Drug Metab. Dispos. 2016, 44, 1201–1212. [Google Scholar] [CrossRef]
- MacLeod, A.K.; Lin, D.; Huang, J.T.-J.; McLaughlin, L.A.; Henderson, C.J.; Wolf, C.R. Identification of Novel Pathways of Osimertinib Disposition and Potential Implications for the Outcome of Lung Cancer Therapy. Clin. Cancer Res. 2018, 24, 2138–2147. [Google Scholar] [CrossRef]
- van Hoppe, S.; Jamalpoor, A.; Rood, J.J.M.; Wagenaar, E.; Sparidans, R.W.; Beijnen, J.H.; Schinkel, A.H. Brain accumulation of osimertinib and its active metabolite AZ5104 is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Pharmacol. Res. 2019, 146, 104297. [Google Scholar] [CrossRef]
- Fukudo, M.; Ikemi, Y.; Togashi, Y.; Masago, K.; Kim, Y.H.; Mio, T.; Terada, T.; Teramukai, S.; Mishima, M.; Inui, K.; et al. Population Pharmacokinetics/Pharmacodynamics of Erlotinib and Pharmacogenomic Analysis of Plasma and Cerebrospinal Fluid Drug Concentrations in Japanese Patients with Non-Small Cell Lung Cancer. Clin. Pharmacokinet. 2013, 52, 593–609. [Google Scholar] [CrossRef]
- Petit-jean, E.; Buclin, T.; Guidi, M.; Quoix, E.; Gourieux, B.; Decosterd, L.A.; Gairard-dory, A.; Ubeaud-séquier, G.; Widmer, N. Erlotinib: Another Candidate for the Therapeutic Drug Monitoring of Targeted Therapy of Cancer? A Pharmacokinetic and Pharmacodynamic Systematic Review of Literature. Ther. Drug Monit. 2015, 37, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-F.; Eppler, S.M.; Wolf, J.; Hamilton, M.; Rakhit, A.; Bruno, R.; Lum, B.L. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin. Pharmacol. Ther. 2006, 80, 136–145. [Google Scholar] [CrossRef]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2021, 77, 441–464. [Google Scholar] [CrossRef]
- Wind, S.; Schnell, D.; Ebner, T.; Freiwald, M.; Stopfer, P. Clinical Pharmacokinetics and Pharmacodynamics of Afatinib. Clin. Pharmacokinet. 2017, 56, 235–250. [Google Scholar] [CrossRef]
- Yang, J.C.-H.; Sequist, L.V.; Zhou, C.; Schuler, M.; Geater, S.L.; Mok, T.; Hu, C.-P.; Yamamoto, N.; Feng, J.; O’Byrne, K.; et al. Effect of dose adjustment on the safety and efficacy of afatinib for EGFR mutation-positive lung adenocarcinoma: Post hoc analyses of the randomized LUX-Lung 3 and 6 trials. Ann. Oncol. 2016, 27, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.-K.; Wei, Y.-F.; Tsai, M.-S.; Chen, K.-Y.; Shih, J.-Y.; Yu, C.-J. Treatment effectiveness and tolerability of afatinib at different doses in patients with EGFR-mutated lung adenocarcinoma: How low can we go? Eur. J. Cancer 2018, 103, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Nakao, K.; Kobuchi, S.; Marutani, S.; Iwazaki, A.; Tamiya, A.; Isa, S.; Okishio, K.; Kanazu, M.; Tamiya, M.; Hirashima, T.; et al. Population pharmacokinetics of afatinib and exposure-safety relationships in Japanese patients with EGFR mutation-positive non-small cell lung cancer. Sci. Rep. 2019, 9, 18202. [Google Scholar] [CrossRef] [PubMed]
- FDA. Center for Drug Evaluation and Research. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/201292Orig1s000ClinPharmR.pdf (accessed on 22 February 2022).
- de Wit, D.; Guchelaar, H.-J.; den Hartigh, J.; Gelderblom, H.; van Erp, N.P. Individualized dosing of tyrosine kinase inhibitors: Are we there yet? Drug Discovery Today 2015, 20, 18–36. [Google Scholar] [CrossRef]
- Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; et al. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal. 2018, 158, 174–183. [Google Scholar]
- Cardoso, E.; Guidi, M.; Khoudour, N.; Boudou-Rouquette, P.; Fabre, E.; Tlemsani, C.; Arrondeau, J.; Goldwasser, F.; Vidal, M.; Schneider, M.P.; et al. Population Pharmacokinetics of Erlotinib in Patients with Non-small Cell Lung Cancer: Its Application for Individualized Dosing Regimens in Older Patients. Clin. Ther. 2020, 42, 1302–1316. [Google Scholar] [CrossRef]
- Gene-Specific Information Tables for CYP3A5. Available online: https://www.pharmgkb.org/page/cyp3a5RefMaterials (accessed on 14 July 2021).
- Kuypers, D.R.J.; de Jonge, H.; Naesens, M.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin. Pharmacol. Ther. 2007, 82, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-H.; Yang, J.C.-H.; Mok, T.S.; Loong, H.H. Overview of current systemic management of EGFR-mutant NSCLC. Ann. Oncol. 2018, 29, i3–i9. [Google Scholar] [CrossRef] [PubMed]
- Steendam, C.M.J.; Veerman, G.D.M.; Pruis, M.A.; Atmodimedjo, P.; Paats, M.S.; van der Leest, C.; von der Thüsen, J.H.; Yick, D.C.Y.; Oomen-de Hoop, E.; Koolen, S.L.W.; et al. Plasma Predictive Features in Treating EGFR-Mutated Non-Small Cell Lung Cancer. Cancers 2020, 12, 3179. [Google Scholar] [CrossRef] [PubMed]
- Geraud, A.; Mezquita, L.; Auclin, E.; Combarel, D.; Delahousse, J.; Gougis, P.; Massard, C.; Jovelet, C.; Caramella, C.; Adam, J.; et al. Chronic Plasma Exposure to Kinase Inhibitors in Patients with Oncogene-Addicted Non-Small Cell Lung Cancer. Cancers 2020, 12, 3758. [Google Scholar] [CrossRef]
- Vishwanathan, K.; Dickinson, P.A.; So, K.; Thomas, K.; Chen, Y.-M.; De Castro Carpeño, J.; Dingemans, A.-M.C.; Kim, H.R.; Kim, J.-H.; Krebs, M.G.; et al. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib. Br. J. Clin. Pharmacol. 2018, 84, 1156–1169. [Google Scholar] [CrossRef]
- Vishwanathan, K.; Dickinson, P.A.; Bui, K.; Cassier, P.A.; Greystoke, A.; Lisbon, E.; Moreno, V.; So, K.; Thomas, K.; Weilert, D.; et al. The Effect of Food or Omeprazole on the Pharmacokinetics of Osimertinib in Patients with Non-Small-Cell Lung Cancer and in Healthy Volunteers. J. Clin. Pharmacol. 2018, 58, 474–484. [Google Scholar] [CrossRef]
- Alanazi, A.; Yunusa, I.; Elenizi, K.; Alzarea, A.I. Efficacy and safety of tyrosine kinase inhibitors in advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutation: A network meta-analysis. Lung Cancer Manag. 2020, 10, LMT43. [Google Scholar] [CrossRef]
- Park, S.; Lee, M.-H.; Seong, M.; Kim, S.T.; Kang, J.-H.; Cho, B.C.; Lee, K.H.; Cho, E.K.; Sun, J.-M.; Lee, S.-H.; et al. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann. Oncol. 2020, 31, 1397–1404. [Google Scholar] [CrossRef]
- Johnson, M.; Schmidt, H.; Sunnaker, M.; Nash, A.F.; Nayak, S.; Tomkinson, H.; Vishwanathan, K. Population pharmacokinetic and pharmacodynamic analysis of osimertinib. J. Clin. Oncol. 2017, 35, e20536. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin. Pharmacol. Ther. 2017, 102, 765–776. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Yu, H.A. The Evolving Landscape of Resistance to Osimertinib. J. Thorac. Oncol. 2020, 15, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Balakirouchenane, D.; Guégan, S.; Csajka, C.; Jouinot, A.; Heidelberger, V.; Puszkiel, A.; Zehou, O.; Khoudour, N.; Courlet, P.; Kramkimel, N.; et al. Population Pharmacokinetics/Pharmacodynamics of Dabrafenib Plus Trametinib in Patients with BRAF-Mutated Metastatic Melanoma. Cancers 2020, 12, 931. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Lu, C.; Li, J.; Zhang, K.; Lin, C.; Tang, X.; Liu, Z.; Zhang, Y.; Han, R.; et al. Ibrutinib reverses IL-6-induced osimertinib resistance through inhibition of Laminin α5/FAK signaling. Commun. Biol. 2022, 5, 155. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, X.; Zhao, C.; Jiang, T.; Zhao, S.; Zhang, L.; Liu, X.; Shi, J.; Qiao, M.; Luo, J.; et al. Impact of serum vascular endothelial growth factor and interleukin-6 on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small-cell lung cancer. Lung Cancer 2018, 125, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.B.; Sun, H.; Diao, L.; Tong, P.; Liu, D.; Li, L.; Fan, Y.; Poteete, A.; Lim, S.-O.; Howells, K.; et al. Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers. Sci. Transl. Med. 2017, 9, eaao4307. [Google Scholar] [CrossRef] [PubMed]
- Fiala, O.; Pesek, M.; Finek, J.; Topolcan, O.; Racek, J.; Minarik, M.; Benesova, L.; Bortlicek, Z.; Poprach, A.; Buchler, T. High serum level of C-reactive protein is associated with worse outcome of patients with advanced-stage NSCLC treated with erlotinib. Tumour Biol. 2015, 36, 9215–9222. [Google Scholar] [CrossRef]
- Simon, F.; Gautier-Veyret, E.; Truffot, A.; Chenel, M.; Payen, L.; Stanke-Labesque, F.; Tod, M. Modeling Approach to Predict the Impact of Inflammation on the Pharmacokinetics of CYP2C19 and CYP3A4 Substrates. Pharm. Res. 2021, 38, 415–428. [Google Scholar] [CrossRef]
- Lenoir, C.; Daali, Y.; Rollason, V.; Curtin, F.; Gloor, Y.; Bosilkovska, M.; Walder, B.; Gabay, C.; Nissen, M.J.; Desmeules, J.A.; et al. Impact of Acute Inflammation on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clin. Pharmacol. Ther. 2021, 109, 1668–1676. [Google Scholar] [CrossRef]
- Rivory, L.P.; Slaviero, K.A.; Clarke, S.J. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br. J. Cancer 2002, 87, 277–280. [Google Scholar] [CrossRef]
- Mir, O.; Coriat, R.; Blanchet, B.; Durand, J.-P.; Boudou-Rouquette, P.; Michels, J.; Ropert, S.; Vidal, M.; Pol, S.; Chaussade, S.; et al. Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS ONE 2012, 7, e37563. [Google Scholar] [CrossRef]
- Bigot, F. Erlotinib pharmacokinetics: A critical parameter influencing acute toxicity in elderly patients over 75 years-old. Investig. New Drugs 2017, 35, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Di Noia, V.; Tonetti, L.; Strippoli, A.; Basso, M.; Schinzari, G.; Cassano, A.; Leone, A.; Barone, C.; D’Argento, E. Does sarcopenia affect outcome in patients with non-small-cell lung cancer harboring EGFR mutations? Future Oncol. 2018, 14, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Topcu, A.; Ozturk, A.; Yurtsever, I.; Besiroglu, M.; Yasin, A.I.; Turk, H.M.; Seker, M. The effect of sarcopenia on erlotinib therapy in patients with metastatic lung adenocarcinoma. Bosn J. Basic Med. Sci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Minami, S.; Ihara, S.; Nishimatsu, K.; Komuta, K. Low Body Mass Index Is an Independent Prognostic Factor in Patients with Non-Small Cell Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. World J. Oncol. 2019, 10, 187–198. [Google Scholar] [CrossRef]
- Osimertinib Western and Asian Clinical Pharmacokinetics in Patients and Healthy Volunteers: Implications for Formulation, Dose, and Dosing Frequency in Pivotal Clinical Studies. Available online: https://pubmed.ncbi.nlm.nih.gov/26902828/ (accessed on 19 August 2020).
- Hidalgo, M.; Siu, L.L.; Nemunaitis, J.; Rizzo, J.; Hammond, L.A.; Takimoto, C.; Eckhardt, S.G.; Tolcher, A.; Britten, C.D.; Denis, L.; et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol. 2001, 19, 3267–3279. [Google Scholar] [CrossRef]
- Thomas, F.; Rochaix, P.; White-Koning, M.; Hennebelle, I.; Sarini, J.; Benlyazid, A.; Malard, L.; Lefebvre, J.-L.; Chatelut, E.; Delord, J.P. Population pharmacokinetics of erlotinib and its pharmacokinetic/pharmacodynamic relationships in head and neck squamous cell carcinoma. Eur. J. Cancer 2009, 45, 2316–2323. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Assessment Report: Tarceva (Erlotinib). Available online: https://www.ema.europa.eu/en/documents/product-information/tarceva-epar-product-information_fr.pdf (accessed on 29 April 2022).
Characteristics | Median [25th–75th Percentile] or Number (%) | ||
---|---|---|---|
1st Line (n = 28) | 2nd Line (n = 47) | ≥3rd Line (n = 12) | |
Sex | |||
Female | 16 (57.1) | 34 (72.3) | 10 (83.3) |
Ethnicity | |||
Caucasian | 21 (75.0) | 31 (66.0) | 12 (100) |
African | 2 (7.1) | 11 (23.4) | 0 (0) |
Asian | 5 (17.9) | 5 (10.6) | 0 (0) |
Age (years) | 63.0 [55.8–72.2] | 68.0 [56.5–78.5] | 69.5 [59.2–73.0] |
BMI (kg/m2) | 22.0 [19.6–24.4] | 23.2 [21.0–26.0] | 21.1 [17.9–23.9] |
ECOG PS | |||
0–1 | 18 (64.3) | 31 (66.0) | 9 (75.0) |
≥2 | 10 (35.7) | 16 (34.0) | 3 (25.0) |
PPI intake | |||
Yes | 9 (32.1) | 10 (21.3) | 2 (16.7) |
CYP3A4 moderate and strong inhibitors | 1 (3.6) | 8 (17) | 2 (16.7) |
CYP3A4 moderate and strong inductors | 0 (0) | 1 (2.1) | 1 (8.3) |
Smoking status | |||
Non-smoker | 14 (50) | 35 (74.5) | 8 (66.7) |
Ex- and current smoker | 14 (50) | 12 (25.5) | 4 (33.3) |
Starting dose (mg/day) | |||
40 | 0 (0) | 4 (8.5) | 0 (0) |
80 | 26 (92.9) | 43 (91.5) | 11 (91.7) |
160 | 2 (7.1) | 0 (0) | 1 (8.3) |
Cerebral metastases | |||
Yes | 12 (42.9) | 23 (48.9) | 7 (58.3) |
Number of metastatic sites | |||
≥3 | 8 (28.6) | 15 (31.9) | 7 (58.3) |
Histological tumor type | |||
NSCLC adenocarcinoma | 27 (96.4) | 45 (95.7) | 12 (100) |
NSCLC NOS | 1 (3.6) | 2 (4.3) | 0 (0.0) |
Type of EGFR mutation | |||
Exon 18 | 2 (7.1) | 3 (6.4) | 0 (0) |
Exon 19 | 14 (50) | 30 (63.8) | 6 (50) |
Exon 20 | 3 | 27 | 6 |
Exon 21 | 12 (42.9) | 14 (29.8) | 6 (50) |
ALT (UI/L) | 24.0 [14.5–43.0] | 26.0 [17.5–33.0] | 18.0 [17.5–33.5] |
AST (UI/L) | 22.0 [18.0–30.5] | 26.0 [22.0–31.5] | 21.0 [18.0–27.5] |
Total bilirubin (µmol/L) | 6.9 [6.0–8.1] | 6.0 [4.1–7.4] | 6.0 [5.5–11.5] |
Albumin (g/L) | 40.0 [35.5–42.8] | 38.0 [36.0–40.0] | 41.0 [39.5–42.5] |
CRP (mg/L) | 6.3 [2.1–23.0] | 3.5 [2.1–19.3] | 2. 5 [1.3–2.9] |
Creatinine (µmol/L) | 64.5 [58.0–75.5] | 82.0 [70.0–94.0] | 74.5 [61.0–82.5] |
LDH (UI/L) | 258 [196–278] | 230 [188–271] | 253 [235–271] |
Characteristics | Median [25th–75th Percentile] or Number (%) |
---|---|
Sex | |
Female | 25 (61) |
Ethnicity | |
Caucasian | 32 (78) |
Other | 9 (22) |
Age (years) | 73.3 [60.1–81.1] |
BMI (kg/m2) | 61.0 [54.0–72.0] |
ECOG PS | |
0–1 | 30 (73.2) |
≥2 | 11 (26.8) |
Smoking status | |
Non-smoker | 26 (63.4) |
Ex-smoker and current smoker | 15 (36.6) |
Treatment line | |
1st line | 25 (61.0) |
2nd line | 16 (39.0) |
Starting dose (mg/day) | |
150 | 37 (90.2) |
100 | 3 (7.3) |
75 | 1 (2.5) |
Cmin,ss (ng/mL) | 1387 [1009–1728] |
ALT (UI/L) | 21.0 [15.0–35.5] |
AST (U/L) | 24.0 [20.0–34.8] |
Total bilirubin (µmol/L) | 12.0 [8.0–14.5] |
Albumin (g/L) | 36.0 [32.2–39.0] |
CRP (mg/L) | 5.5 [5.0–22.2] |
Creatinine (µmol/L) | 75 [68.0–94.0] |
Gene | Allele | Rs Number | Annotation | wt/wt, n (%) | wt/m, n (%) | m/m, n (%) | Minor Allele Frequency | Missing Genotype Data, n (%) | HWE p-Value |
---|---|---|---|---|---|---|---|---|---|
CYP3A5 | 6986 A>G | rs776746 | CYP3A5*3 | 12 (14) | 15 (17) | 59 (69) | 0.14 | 1 (1.2) | <0.001 a |
CYP3A4 | c.522–191 C>T | rs35599367 | CYP3A4*22 | 79 (92) | 7 (8) | 0 (0) | 0.06 | 1 (1.2) | 0.69 |
CYP1A2 | c.-163 C>A | rs762551 | CYP1A2*F | 11 (13) | 39 (45) | 36 (42) | 0.37 | 1 (1.2) | 0.93 |
ABCB1 | 3435 C>T | rs1045642 | - | 28 (33) | 46 (53) | 12 (14) | 0.48 | 1 (1.2) | 0.32 |
ABCB1 | 2677 G>T/A | rs2032582 | - | 33 (38) | 44 (51) | 9 (11) | 0.41 | 1 (1.2) | 0.31 |
ABCG2 | c.421 C>A | rs2231142 | - | 68 (82) | 14 (17) | 1 (1) | 0.08 | 4 (4.6) | 0.77 |
Parameter | Mean Estimate | RSE (%) |
---|---|---|
CL/F (L/h) | 13.7 | 7.2 |
V/F (L) | 974 | 17.5 |
ka (1/h) | 0.24 (fixed) | - |
IIVCL/F | 0.40 | 11.7 |
IIVV/F | 0.64 | 30.4 |
Proportional residual variability | 0.35 | 4.2 |
Parameters | DLT (n = 13) | No DLT (n = 73) | p-Value |
---|---|---|---|
AUC (ng/mL.h) | 5786 [5555–7494] | 5202 [4112–6959] | 0.23 |
Cmin,ss (ng/mL) | 217 [199–287] | 201 [153–264] | 0.27 |
Age (years) | 68.0 [62.0–72.0] | 66.0 [54.0–74.0] | 0.41 |
BMI (kg/m2) | 20.2 [19.4–23.1] | 23.0 [20.6–26.0] | 0.15 |
Sex | 0.21 | ||
Male | 2 (15.4%) | 25 (34.2%) | |
Female | 11 (84.6%) | 48 (65.8%) | |
Presence of cerebral metastases | 7 (53.8%) | 34 (46.6%) | 0.75 |
ECOG PS | 0.003 | ||
0–1 | 13 (100%) | 44 (60.3%) | |
≥2 | 0 (0.00%) | 29 (39.7%) | |
Concomitant PPI | 3 (23.1%) | 18 (24.7%) | 1.0 |
Smoking status | 0.76 | ||
ex-smoker and current smoker | 5 (38.5%) | 25 (34.2%) | |
non-smoker | 8 (61.5%) | 48 (65.8%) | |
CYP3A4*22 | 0.58 | ||
wt/wt | 12 (100%) | 66 (91.7%) | |
wt/m, m/m | 0 (0.00%) | 6 (8.33%) | |
CYP3A5*3 | 0.54 | ||
wt/wt, wt/m | 3 (23.1%) | 24 (33.3%) | |
m/m | 10 (76.9%) | 48 (66.7%) | |
CYP1A2*F | 0.67 | ||
wt/wt | 2 (15.4%) | 9 (12.5%) | |
wt/m, m/m | 11 (84.6%) | 63 (87.5%) | |
ABCG2 c.421 C>1 | 0.68 | ||
wt/wt | 7 (77.8%) | 57 (81.4%) | |
wt/m, m/m | 2 (22.2%) | 13 (18.6%) | |
ABCB1 3435 C>T | 0.53 | ||
wt/wt | 3 (23.1%) | 25 (34.7%) | |
wt/m, m/m | 10 (76.9%) | 47 (65.3%) | |
ABCB1 2677 G>T/A | 0.07 | ||
wt/wt | 2 (15.4%) | 31 (43.1%) | |
wt/m, m/m | 11 (84.6%) | 41 (56.9%) |
Univariate Model | Risk of Death | Risk of Progression | ||
---|---|---|---|---|
HR (CI95%) | p-Value | HR (CI95%) | p-Value | |
Age | 1.00 (0.98–1.03) | 0.884 | 0.99 (0.96–1.01) | 0.368 |
Sex (Female vs. male) | 0.99 (0.46–2.13) | 0.989 | 0.67 (0.34–1.33) | 0.255 |
ECOG PS ≥ 2 | 2.00 (0.97–4.09) | 0.059 | 1.28 (0.67–2.44) | 0.448 |
Presence of cerebral metastases | 1.72 (0.86–3.44) | 0.122 | 2.01 (10.6–3.80) | 0.031 |
Albumin | 0.99 (0.94–1.04) | 0.575 | 1.01 (0.96–1.07) | 0.625 |
CRP | 1.03 (1.00–1.05) | 0.015 | 1.04 (1.01–1.06) | 0.004 |
LDH | 1.00 (0.99–1.01) | 0.976 | 1.00 (0.99–1.01) | 0.728 |
CRP ≥ 10 mg/L | 2.27 (0.77–6.70) | 0.139 | 2.14 (0.73–6.32) | 0.168 |
LDH ≥ 200 UI/L | 0.70 (0.22–2.22) | 0.543 | 0.69 (0.22–2.13) | 0.519 |
Concomitant PPI | 2.18 (0.94–5.08) | 0.069 | 2.24 (1.05–4.79) | 0.038 |
Smoking status (ex-smoker and current smoker vs. non-smoker) | 1.47 (0.71–3.03) | 0.300 | 2.09 (1.03–4.26) | 0.041 |
CYP3A4*22 (wt/m, m/m vs. wt/wt) | 1.21 (0.37–4.00) | 0.757 | 0.71 (0.22–2.32) | 0.567 |
CYP3A5*3 (m/m vs. wt/wt, wt/m) | 0.63 (0.31–1.27) | 0.199 | 0.88 (0.46–1.67) | 0.687 |
CYP1A2*1F (wt/m, m/m vs. wt/wt) | 0.78 (0.34–1.79) | 0.551 | 0.52 (0.24–1.11) | 0.092 |
ABCG2 c.421 C>A (wt/m, m/m vs. wt/wt) | 0.51 (0.19–1.33) | 0.169 | 0.58 (0.26–1.28) | 0.180 |
ABCB1 3435 C>T (wt/m, m/m vs. wt/wt) | 0.72 (0.36–1.46) | 0.365 | 0.58 (0.30–1.12) | 0.104 |
ABCB1 2677 G>T/A (wt/m, m/m vs. wt/wt) | 0.53 (0.26–1.05) | 0.068 | 0.69 (0.37–1.32) | 0.264 |
Log AUC | 2.97 (0.89–9.85) | 0.031 | 2.25 (0.98–5.14) | 0.055 |
Log Cmin,ss | 3.01 (1.12–8.14) | 0.030 | 2.20 (0.98–4.96) | 0.056 |
Multivariate Models | HR (CI95%) | p-Value | HR (CI95%) | p-Value |
Log AUC | 11.61 (1.98–68.13) | 0.007 | 2.73 (1.11–6.70) | 0.029 |
CRP | 1.03 (1.01–1.06) | 0.008 | ||
Smoking status (ex-smoker and current smoker vs. non-smoker) | 2.41 (1.16–5.03) | 0.019 | ||
Log Cmin,ss | 11.31 (2.05–62.42) | 0.005 | 2.60 (1.08–6.24) | 0.033 |
CRP | 1.03 (1.01–1.06) | 0.009 | ||
Smoking status (ex-smoker and current smoker vs. non-smoker) | 2.35 (1.13–4.88) | 0.022 |
Univariate Model | Risk of Death | Risk of Progression | ||
---|---|---|---|---|
HR (CI95%) | p-Value | HR (CI95%) | p-Value | |
Second vs. first-line treatment | 1.02 (0.53–1.96) | 0.951 | 1.23 (0.66–2.31) | 0.512 |
Sex (female vs. male) | 0.73 (0.38–1.43) | 0.363 | 0.70 (0.37–1.32) | 0.269 |
ECOG PS ≥ 2 | 2.50 (1.17–5.34) | 0.018 | 1.90 (0.94–3.84) | 0.075 |
Albumin | 0.93 (0.85–1.01) | 0.084 | 0.93 (0.85–1.02) | 0.115 |
CRP | 1.01 (1.00–1.02) | 0.012 | 1.02 (1.01–1.03) | 0.004 |
Age | 0.97 (0.95–1.00) | 0.038 | 0.98 (0.96–1.00) | 0.046 |
Age ≥ 50 | 0.13 (0.03–0.48) | 0.002 | 0.25 (0.07–0.87) | 0.029 |
Smoking status (ex-smoker and current smoker vs. non-smoker) | 2.18 (1.12–4.24) | 0.022 | 2.43 (1.29–4.58) | 0.006 |
Cmin,ss/100 | 1.14 (1.05–1.24) | 0.002 | 1.11 (1.03–1.19) | 0.006 |
Multivariate Models | HR (CI95%) | p-Value | HR (CI95%) | p-Value |
ECOG PS ≥ 2 | 2.84 (1.29–6.24) | 0.009 | ||
Age | 0.97 (0.95–1.00) | 0.041 | 0.97 (0.95–1.00) | 0.031 |
Smoking status (ex-smoker and current smoker vs. non-smoker) | 2.20 (1.09–4.46) | 0.028 | 2.23 (1.14–4.37) | 0.019 |
Cmin,ss/100 | 1.17 (1.08–1.28) | <0.001 | 1.16 (1.08–1.26) | <0.001 |
ECOG PS ≥ 2 | 2.97 (1.32–1.30) | <0.001 | ||
Age ≥ 50 | 0.08 (0.02–0.34) | 0.001 | 0.21 (0.06–0.74) | 0.015 |
Smoking status (ex-smoker and current smoker vs. non-smoker) | 2.29 (1.12–4.69) | 0.023 | 2.41 (1.22–4.76) | 0.011 |
Cmin,ss/100 | 1.19 (1.08–1.30) | <0.001 | 1.15 (1.07–1.25) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodier, T.; Puszkiel, A.; Cardoso, E.; Balakirouchenane, D.; Narjoz, C.; Arrondeau, J.; Fallet, V.; Khoudour, N.; Guidi, M.; Vidal, M.; et al. Exposure–Response Analysis of Osimertinib in Patients with Advanced Non-Small-Cell Lung Cancer. Pharmaceutics 2022, 14, 1844. https://doi.org/10.3390/pharmaceutics14091844
Rodier T, Puszkiel A, Cardoso E, Balakirouchenane D, Narjoz C, Arrondeau J, Fallet V, Khoudour N, Guidi M, Vidal M, et al. Exposure–Response Analysis of Osimertinib in Patients with Advanced Non-Small-Cell Lung Cancer. Pharmaceutics. 2022; 14(9):1844. https://doi.org/10.3390/pharmaceutics14091844
Chicago/Turabian StyleRodier, Thomas, Alicja Puszkiel, Evelina Cardoso, David Balakirouchenane, Céline Narjoz, Jennifer Arrondeau, Vincent Fallet, Nihel Khoudour, Monia Guidi, Michel Vidal, and et al. 2022. "Exposure–Response Analysis of Osimertinib in Patients with Advanced Non-Small-Cell Lung Cancer" Pharmaceutics 14, no. 9: 1844. https://doi.org/10.3390/pharmaceutics14091844
APA StyleRodier, T., Puszkiel, A., Cardoso, E., Balakirouchenane, D., Narjoz, C., Arrondeau, J., Fallet, V., Khoudour, N., Guidi, M., Vidal, M., Declèves, X., Csajka, C., Alexandre, J., Cadranel, J., Fabre, E., Wislez, M., Goldwasser, F., & Blanchet, B. (2022). Exposure–Response Analysis of Osimertinib in Patients with Advanced Non-Small-Cell Lung Cancer. Pharmaceutics, 14(9), 1844. https://doi.org/10.3390/pharmaceutics14091844