Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Set-up
2.3. Fabrication of Agar Phantom
2.4. Microbubble Preparation
2.5. Focused Ultrasound Stimulation of Microbubbles
2.6. PCD Data Collection and Analysis
2.7. Harmonic Cavitation Dose
2.8. Broadband Cavitation Dose
2.9. Statistical Analysis
3. Results and Discussion
3.1. MB Characterization
3.2. Signal Analysis
3.3. Harmonic Cavitation Dose vs. Mechanical Index
3.4. Broadband Cavitation Dose vs. Mechanical Index
3.5. Harmonic Cavitation Dose vs. Concentration
3.6. Harmonic Cavitation Dose vs. Gas Volume Fraction
3.7. Broadband Cavitation Dose vs. Gas Volume Fraction
3.8. Master Surface Plot of Harmonic and Broadband Caviation Dose vs. Gas Volume Fraction vs. Mechanical Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borden, M.A.; Song, K.-H. Reverse Engineering the Ultrasound Contrast Agent. Adv. Colloid Interface Sci. 2018, 262, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Frinking, P.; Segers, T.; Luan, Y.; Tranquart, F. Three Decades of Ultrasound Contrast Agents: A Review of the Past, Present and Future Improvements. Ultrasound Med. Biol. 2020, 46, 892–908. [Google Scholar] [CrossRef]
- Stride, E.; Segers, T.; Lajoinie, G.; Cherkaoui, S.; Bettinger, T.; Versluis, M.; Borden, M. Microbubble Agents: New Directions. Ultrasound Med. Biol. 2020, 46, 1326–1343. [Google Scholar] [CrossRef] [PubMed]
- Roovers, S.; Segers, T.; Lajoinie, G.; Deprez, J.; Versluis, M.; De Smedt, S.C.; Lentacker, I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. Langmuir 2019, 35, 10173–10191. [Google Scholar] [CrossRef]
- Chen, Q.; Song, H.; Yu, J.; Kim, K. Current Development and Applications of Super-Resolution Ultrasound Imaging. Sensors 2021, 21, 2417. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elkacem, L.; Bachawal, S.V.; Willmann, J.K. Ultrasound Molecular Imaging: Moving toward Clinical Translation. Eur. J. Radiol. 2015, 84, 1685–1693. [Google Scholar] [CrossRef]
- Kosareva, A.; Abou-Elkacem, L.; Chowdhury, S.; Lindner, J.R.; Kaufmann, B.A. Seeing the Invisible—Ultrasound Molecular Imaging. Ultrasound Med. Biol. 2020, 46, 479–497. [Google Scholar] [CrossRef]
- Kooiman, K.; Vos, H.J.; Versluis, M.; de Jong, N. Acoustic Behavior of Microbubbles and Implications for Drug Delivery. Adv. Drug Deliv. Rev. 2014, 72, 28–48. [Google Scholar] [CrossRef]
- Song, K.-H.; Fan, A.C.; Brlansky, J.T.; Trudeau, T.; Gutierrez-Hartmann, A.; Calvisi, M.L.; Borden, M.A. High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts. Theranostics 2015, 5, 1419–1427. [Google Scholar] [CrossRef]
- Leighton, T. The Acoustic Bubble; Academic Press: Cambridge, MA, USA, 2012; ISBN 0-323-14413-6. [Google Scholar]
- McDannold, N.; Vykhodtseva, N.; Hynynen, K. Effects of Acoustic Parameters and Ultrasound Contrast Agent Dose on Focused-Ultrasound Induced Blood-Brain Barrier Disruption. Ultrasound Med. Biol. 2008, 34, 930–937. [Google Scholar] [CrossRef]
- Chu, P.-C.; Chai, W.-Y.; Tsai, C.-H.; Kang, S.-T.; Yeh, C.-K.; Liu, H.-L. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging. Sci. Rep. 2016, 6, 33264. [Google Scholar] [CrossRef] [PubMed]
- McDannold, N.; Arvanitis, C.D.; Vykhodtseva, N.; Livingstone, M.S. Temporary Disruption of the Blood–Brain Barrier by Use of Ultrasound and Microbubbles: Safety and Efficacy Evaluation in Rhesus MacaquesBlood–Brain Barrier Disruption via Focused Ultrasound. Cancer Res. 2012, 72, 3652–3663. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Wai, Y.-Y.; Chen, W.-S.; Chen, J.-C.; Hsu, P.-H.; Wu, X.-Y.; Huang, W.-C.; Yen, T.-C.; Wang, J.-J. Hemorrhage Detection during Focused-Ultrasound Induced Blood-Brain-Barrier Opening by Using Susceptibility-Weighted Magnetic Resonance Imaging. Ultrasound Med. Biol. 2008, 34, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Tung, Y.-S.; Marquet, F.; Teichert, T.; Ferrera, V.; Konofagou, E.E. Feasibility of Noninvasive Cavitation-Guided Blood-Brain Barrier Opening Using Focused Ultrasound and Microbubbles in Nonhuman Primates. Appl. Phys. Lett. 2011, 98, 163704. [Google Scholar] [PubMed]
- Choi, J.J.; Feshitan, J.A.; Baseri, B.; Wang, S.; Tung, Y.-S.; Borden, M.; Konofagou, E.E. Microbubble-Size Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening in Mice In Vivo. IEEE Trans. Biomed. Eng. 2010, 57, 145–154. [Google Scholar] [CrossRef]
- Tung, Y.-S.; Vlachos, F.; Feshitan, J.A.; Borden, M.A.; Konofagou, E.E. The Mechanism of Interaction between Focused Ultrasound and Microbubbles in Blood-Brain Barrier Opening in Mice. J. Acoust. Soc. Am. 2011, 130, 3059–3067. [Google Scholar] [CrossRef]
- Wang, S.; Samiotaki, G.; Olumolade, O.; Feshitan, J.A.; Konofagou, E.E. Microbubble Type and Distribution Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening. Ultrasound Med. Biol. 2014, 40, 130–137. [Google Scholar] [CrossRef]
- Goertz, D.E.; de Jong, N.; van der Steen, A.F.W. Attenuation and Size Distribution Measurements of DefinityTM and Manipulated DefinityTM Populations. Ultrasound Med. Biol. 2007, 33, 1376–1388. [Google Scholar] [CrossRef]
- Segers, T.; de Jong, N.; Versluis, M. Uniform Scattering and Attenuation of Acoustically Sorted Ultrasound Contrast Agents: Modeling and Experiments. J. Acoust. Soc. Am. 2016, 140, 2506–2517. [Google Scholar] [CrossRef]
- Segers, T.; Kruizinga, P.; Kok, M.P.; Lajoinie, G.; De Jong, N.; Versluis, M. Monodisperse versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep Tissue Imaging Potential. Ultrasound Med. Biol. 2018, 44, 1482–1492. [Google Scholar] [CrossRef]
- Jafari Sojahrood, A.; de Leon, A.C.; Lee, R.; Cooley, M.; Abenojar, E.C.; Kolios, M.C.; Exner, A.A. Toward Precisely Controllable Acoustic Response of Shell-Stabilized Nanobubbles: High Yield and Narrow Dispersity. ACS Nano 2021, 15, 4901–4915. [Google Scholar] [CrossRef]
- Helbert, A.; Gaud, E.; Segers, T.; Botteron, C.; Frinking, P.; Jeannot, V. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and Safety in Rat and Pig. Ultrasound Med. Biol. 2020, 46, 3339–3352. [Google Scholar] [CrossRef]
- Samiotaki, G.; Vlachos, F.; Tung, Y.-S.; Konofagou, E.E. A Quantitative Pressure and Microbubble-Size Dependence Study of Focused Ultrasound-Induced Blood-Brain Barrier Opening Reversibility in Vivo Using MRI: FUS-Induced BBB Opening Reversibility. Magn. Reson. Med. 2012, 67, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Sirsi, S.; Feshitan, J.; Kwan, J.; Homma, S.; Borden, M. Effect of Microbubble Size on Fundamental Mode High Frequency Ultrasound Imaging in Mice. Ultrasound Med. Biol. 2010, 36, 935–948. [Google Scholar] [CrossRef]
- Song, K.-H.; Harvey, B.; Borden, M. Microbubble Gas Volume: A Unifying Dose Parameter in Blood-Brain Barrier Disruption by Focused Ultrasound. J. Acoust. Soc. Am. 2018, 144, 1823. [Google Scholar] [CrossRef]
- Navarro-Becerra, J.A.; Song, K.-H.; Martinez, P.; Borden, M.A. Microbubble Size and Dose Effects on Pharmacokinetics. ACS Biomater. Sci. Eng. 2022, 8, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Tung, Y.-S.; Choi, J.J.; Baseri, B.; Konofagou, E.E. Identifying the Inertial Cavitation Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles. Ultrasound Med. Biol. 2010, 36, 840–852. [Google Scholar] [CrossRef]
- Sassaroli, E.; Hynynen, K. Cavitation Threshold of Microbubbles in Gel Tunnels by Focused Ultrasound. Ultrasound Med. Biol. 2007, 33, 1651–1660. [Google Scholar] [CrossRef]
- Chen, W.-S.; Matula, T.J.; Brayman, A.A.; Crum, L.A. A Comparison of the Fragmentation Thresholds and Inertial Cavitation Doses of Different Ultrasound Contrast Agents. J. Acoust. Soc. Am. 2003, 113, 643–651. [Google Scholar] [CrossRef]
- Li, T.; Chen, H.; Khokhlova, T.; Wang, Y.-N.; Kreider, W.; He, X.; Hwang, J.H. Passive Cavitation Detection during Pulsed HIFU Exposures of Ex Vivo Tissues and In Vivo Mouse Pancreatic Tumors. Ultrasound Med. Biol. 2014, 40, 1523–1534. [Google Scholar] [CrossRef]
- Xu, S.; Ye, D.; Wan, L.; Shentu, Y.; Yue, Y.; Wan, M.; Chen, H. Correlation Between Brain Tissue Damage and Inertial Cavitation Dose Quantified Using Passive Cavitation Imaging. Ultrasound Med. Biol. 2019, 45, 2758–2766. [Google Scholar] [CrossRef] [PubMed]
- Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T.W. Understanding Ultrasound Induced Sonoporation: Definitions and Underlying Mechanisms. Adv. Drug Deliv. Rev. 2014, 72, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Stride, E. Physical Principles of Microbubbles for Ultrasound Imaging and Therapy. Cereb. Dis 2009, 27, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hernot, S.; Klibanov, A.L. Microbubbles in Ultrasound-Triggered Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153–1166. [Google Scholar] [CrossRef]
- Tung, Y.-S.; Vlachos, F.; Choi, J.J.; Deffieux, T.; Selert, K.; Konofagou, E.E. In Vivo Transcranial Cavitation Threshold Detection during Ultrasound-Induced Blood–Brain Barrier Opening in Mice. Phys. Med. Biol. 2010, 55, 6141. [Google Scholar] [CrossRef]
- O’Reilly, M.A.; Hynynen, K. Blood-Brain Barrier: Real-Time Feedback-Controlled Focused Ultrasound Disruption by Using an Acoustic Emissions-Based Controller. Radiology 2012, 263, 96–106. [Google Scholar] [CrossRef]
- Neppiras, E.A. Acoustic Cavitation. Phys. Rep. 1980, 61, 159–251. [Google Scholar] [CrossRef]
- Miller, M.W.; Miller, D.L.; Brayman, A.A. A Review of in Vitro Bioeffects of Inertial Ultrasonic Cavitation from a Mechanistic Perspective. Ultrasound Med. Biol. 1996, 22, 1131–1154. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hatanaka, S.; Komarov, S.V. Fragmentation of Cavitation Bubble in Ultrasound Field under Small Pressure Amplitude. Ultrason. Sonochem. 2019, 58, 104684. [Google Scholar] [CrossRef]
- Wu, Q.; Gray, M.; Smith, C.; Bau, L.; Coussios, C.; Stride, E.P. Correlating High-Speed Optical Imaging and Passive Acoustic Mapping of Cavitation Dynamics. J. Acoust. Soc. Am. 2022, 151, A174. [Google Scholar] [CrossRef]
- Pereno, V.; Aron, M.; Vince, O.; Mannaris, C.; Seth, A.; de Saint Victor, M.; Lajoinie, G.; Versluis, M.; Coussios, C.; Carugo, D.; et al. Layered Acoustofluidic Resonators for the Simultaneous Optical and Acoustic Characterisation of Cavitation Dynamics, Microstreaming, and Biological Effects. Biomicrofluidics 2018, 12, 034109. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.; Tapia-Siles, C.; Gerold, B.; Postema, M.; Cochran, S.; Cuschieri, A.; Prentice, P. Periodic Shock-Emission from Acoustically Driven Cavitation Clouds: A Source of the Subharmonic Signal. Ultrasonics 2014, 54, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Feshitan, J.A.; Chen, C.C.; Kwan, J.J.; Borden, M.A. Microbubble Size Isolation by Differential Centrifugation. J. Colloid Interface Sci. 2009, 329, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, L.; Cheng, M.; Jin, L.; Du, L.; Han, T.; Xu, L.; Yu, A.C.H.; Qin, P. Effect of Acoustic Parameters on the Cavitation Behavior of SonoVue Microbubbles Induced by Pulsed Ultrasound. Ultrason. Sonochem. 2017, 35, 176–184. [Google Scholar] [CrossRef]
- Yasui, K.; Lee, J.; Tuziuti, T.; Towata, A.; Kozuka, T.; Iida, Y. Influence of the Bubble-Bubble Interaction on Destruction of Encapsulated Microbubbles under Ultrasound. J. Acoust. Soc. Am. 2009, 126, 973–982. [Google Scholar] [CrossRef]
- Sojahrood, A.J.; Earl, R.; Haghi, H.; Li, Q.; Porter, T.M.; Kolios, M.C.; Karshafian, R. Nonlinear Dynamics of Acoustic Bubbles Excited by Their Pressure-Dependent Subharmonic Resonance Frequency: Influence of the Pressure Amplitude, Frequency, Encapsulation and Multiple Bubble Interactions on Oversaturation and Enhancement of the Subharmonic Signal. Nonlinear Dyn. 2021, 103, 429–466. [Google Scholar] [CrossRef]
- Yasui, K.; Tuziuti, T.; Lee, J.; Kozuka, T.; Towata, A.; Iida, Y. Numerical Simulations of Acoustic Cavitation Noise with the Temporal Fluctuation in the Number of Bubbles. Ultrason. Sonochem. 2010, 17, 460–472. [Google Scholar] [CrossRef]
- Haghi, H.; Sojahrood, A.J.; Kolios, M.C. Collective Nonlinear Behavior of Interacting Polydisperse Microbubble Clusters. Ultrason. Sonochem. 2019, 58, 104708. [Google Scholar] [CrossRef]
- Haghi, H.; Jafari Sojahrood, A.; De Leon, A.C.; Exner, A.; Kolios, M.C. Experimental and Numerical Investigation of Backscattered Signal Strength from Different Concentrations of Nanobubble and Microbubble Clusters. J. Acoust. Soc. Am. 2018, 144, 1888. [Google Scholar] [CrossRef]
- Keller, S.; Bruce, M.; Averkiou, M.A. Ultrasound Imaging of Microbubble Activity during Sonoporation Pulse Sequences. Ultrasound Med. Biol. 2019, 45, 833–845. [Google Scholar] [CrossRef]
- Definity [Package Insert]; DEFINITY: Waterloo, ON, Canada, 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020664s011lbl.pdf (accessed on 8 September 2021).
- Hyvelin, J.-M.; Gaud, E.; Costa, M.; Helbert, A.; Bussat, P.; Bettinger, T.; Frinking, P. Characteristics and Echogenicity of Clinical Ultrasound Contrast Agents: An in Vitro and in Vivo Comparison Study. J. Ultrasound Med. 2017, 36, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Doinikov, A.A.; Haac, J.F.; Dayton, P.A. Resonance Frequencies of Lipid-Shelled Microbubbles in the Regime of Nonlinear Oscillations. Ultrasonics 2009, 49, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Katiyar, A.; Sarkar, K.; Chatterjee, D.; Shi, W.T.; Forsberg, F. Material Characterization of the Encapsulation of an Ultrasound Contrast Microbubble and Its Subharmonic Response: Strain-Softening Interfacial Elasticity Model. J. Acoust. Soc. Am. 2010, 127, 3846–3857. [Google Scholar] [CrossRef] [PubMed]
- Khismatullin, D.B. Resonance Frequency of Microbubbles: Effect of Viscosity. J. Acoust. Soc. Am. 2004, 116, 1463–1473. [Google Scholar] [CrossRef]
- Butler, M.B.; Thomas, D.H.; Pye, S.D.; Moran, C.M.; McDicken, W.N.; Sboros, V. The Acoustic Response from Individual Attached and Unattached Rigid Shelled Microbubbles. Appl. Phys. Lett. 2008, 93, 223906. [Google Scholar] [CrossRef]
- Ferrara, K.; Pollard, R.; Borden, M. Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447. [Google Scholar] [CrossRef]
- Chomas, J.E.; Dayton, P.; May, D.; Ferrara, K. Threshold of Fragmentation for Ultrasonic Contrast Agents. J. Biomed. Opt. 2001, 6, 141. [Google Scholar] [CrossRef]
- Postema, M.; Marmottant, P.; Lancée, C.T.; Hilgenfeldt, S.; Jong, N. de Ultrasound-Induced Microbubble Coalescence. Ultrasound Med. Biol. 2004, 30, 1337–1344. [Google Scholar] [CrossRef]
- Lum, A.F.H.; Borden, M.A.; Dayton, P.A.; Kruse, D.E.; Simon, S.I.; Ferrara, K.W. Ultrasound Radiation Force Enables Targeted Deposition of Model Drug Carriers Loaded on Microbubbles. J. Control. Release 2006, 111, 128–134. [Google Scholar] [CrossRef]
- Acconcia, C.N.; Wright, A.; Goertz, D.E. Translational Dynamics of Individual Microbubbles with Millisecond Scale Ultrasound Pulses. J. Acoust. Soc. Am. 2018, 144, 2859–2870. [Google Scholar] [CrossRef]
- Dayton, P.; Klibanov, A.; Brandenburger, G.; Ferrara, K. Acoustic Radiation Force in Vivo: A Mechanism to Assist Targeting of Microbubbles. Ultrasound Med. Biol. 1999, 25, 1195–1201. [Google Scholar] [CrossRef]
- Wang, S.; Hossack, J.A.; Klibanov, A.L.; Mauldin, F.W. Binding Dynamics of Targeted Microbubbles in Response to Modulated Acoustic Radiation Force. Phys. Med. Biol. 2014, 59, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.Y.; Unnikrishnan, S.; Klibanov, A.L.; Hossack, J.A.; Mauldin, F.W. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results. Investig. Radiol. 2015, 50, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.H.; Butler, M.; Anderson, T.; Emmer, M.; Vos, H.; Borden, M.; Stride, E.; de Jong, N.; Sboros, V. The “Quasi-Stable” Lipid Shelled Microbubble in Response to Consecutive Ultrasound Pulses. Appl. Phys. Lett. 2012, 101, 071601. [Google Scholar] [CrossRef]
Size Distribution Characterization | |||||||
---|---|---|---|---|---|---|---|
Number % Parameters | Volume % Mean | ΦMB @ 1010 MBs/mL | |||||
Mean | Mode | SD | d10 | d90 | |||
2 µm | 2.0 µm | 1.8 µm | 0.46 µm | 1.3 µm | 2.4 µm | 2.4 µm | 5.28 µL/mL |
3 µm | 2.9 µm | 2.9 µm | 0.7 µm | 2.2 µm | 3.6 µm | 3.5 µm | 14.8 µL/mL |
5 µm | 4.4 µm | 4.2 µm | 1.1 µm | 3.2 µm | 5.4 µm | 5.5 µm | 54.7 µL/mL |
Polydisperse | 1.9 µm | 1.0 µm | 1.6 µm | 0.8 µm | 3.6 µm | 8.8 µm | 18.7 µL/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, P.; Bottenus, N.; Borden, M. Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound. Pharmaceutics 2022, 14, 1925. https://doi.org/10.3390/pharmaceutics14091925
Martinez P, Bottenus N, Borden M. Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound. Pharmaceutics. 2022; 14(9):1925. https://doi.org/10.3390/pharmaceutics14091925
Chicago/Turabian StyleMartinez, Payton, Nick Bottenus, and Mark Borden. 2022. "Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound" Pharmaceutics 14, no. 9: 1925. https://doi.org/10.3390/pharmaceutics14091925
APA StyleMartinez, P., Bottenus, N., & Borden, M. (2022). Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound. Pharmaceutics, 14(9), 1925. https://doi.org/10.3390/pharmaceutics14091925